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PREFACE

The 1965 Easter School at Bad Kreuznach, Germany, was the fourth in a series that
began in 1962. Wheareas the first two Schools, held at St. Cergue (Switzerland) in 1962 and
1963, were devoted to introducing young emulsion physicists to the experimental possibilities
offered at CERN, and to the modern developments of high-energy nuclear physics, the scope of
the 1964 School which took place at Herceg Novi (Yugoslavia) was widened to include also the
bubble chamber technique. For the 1965 School no restriction as to the experimental technique
was applied: young research students working in elementary particle physics with any technique
were eligible for admission, the only restrictions being due to the limited space available in

the Kurhaus hotel and its lecture rooms,

The lectures of the 1965 Easter School at Bad Kreuznach started in the morning of
2 April, The School closed on 14 April with an after-dinner speech by Professor W. Jentschke.
It was attended by about 90 students from 22 countries in Western Europe, Eastern Europe, Asia,

and the United States.

The purpose of the School was to familiarize the students with the current theoretical
and experimental situation in Elementary Particle Physics. Eighteen lecturers contributed to
this end. Their respective lecture courses varied in length, some lasting two hours, and two

(by Van Hove and by Veltman) consisting of six lessons of 90 minutes duration each.

In the interest of speedy publication of the Proceedings of the School we are
reducing to a minimum any editorial changes in the manuscripts as they are kindly supplied by
the lecturers., As a consequence, some topics will be treated several times by different
authors. In some cases the notations used will not be consistent. It was felt, however,
that any inconvenience derived from these facts is not serious, and is in any case amply out-

weighed by the advantage that the Proceedings will be available sooner.

Volume I contains the lectures by N. Schmitz, H., Pilkuhn, and A.M. Wetherell.

Further volumes will follow in due course.

We are grateful to the authors for their co-operation in preparing the manuscripts and
checking the typed texts. Our thanks are also due to Miss S. Bloch and Miss M, Hutin for their
careful typing; Mr., P, Theurillat and his colleagues of the Scientific Information Service, and
Miss A, Lutke and Mrs. D, Bader of the MSC Drawing Office for their preparation of certain

figures; and to Mrs. K., Wakley for her careful checking of the final text.

Editorial Board
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PERIPHERAL COLLISIONS

N. Schmitz,

Max-Planck Institut fur Physik and Astrophysik,
Minchen.

I. INTRODUCTION TO THE PERIPHERAL MODEL

During the last years many elementary particle reactions in which particles are
produced (inelastic collisions) have been studied at various primary momenta above ~ 1 GeV/c.
The majority of the experiments has been carried out by bombarding the protons in hydrogen
bubble chambers by nucleons, antinucleons, kaons, and pions. The inelastic production pro-

cesses were found to be characterized by two major features:

a) In many cases inelastic reactions do not proceed directly to the final state which is
observed in the bubble chamber, but go via the production of strongly decaying particles
(mesonic and baryonic resonances such as p, w, f, K¥, N¥, Y*x, etc.) as intermediate states.
The resonant states then decay strongly, i.e. with an extremely short lifetime into the final
state. An important role in this category of reactions play the quasi-two-body processes of

the type

a+b>c+d (e.g. 7N-> pN) (1)

where ¢ or/and d are resonances.

b) Many inelastic reactions are characterized by the tendency of the secondary particles
to go in the forward-backward direction in the centre-of-mass system (dominance of small
momentum transfers, see below). Generally speaking, one can often group the secondary
particles together into two particle systems ¢ and d, such that c maintains preferentially
nearly the direction of the incident particle a, and d the direction of the incident particle
b, in the c.,m,s. of the reaction. (For the two systems we use the same symbols c and d as
for the particles in reaction (I) since,ifor example, the system c may consist of the decay products
of a resonance and is therefore identical with the resonance itself as far as kinematics are
concerned. ) The forward-backward preference generally increases with increasiﬁg primary

momentum and decreases with increasing number of secondary particles.

The observed forward-backward preference has led to the development of the

peripheral model for strong interactions. This model has turned out to describe rather

successfully the main features of many inelastic reactions with relatively small numbers of
secondaries, and in particular of quasi-two-body processes of type (1) in the energy range
between ~ 1 GeV and ~ 10 GeV. Descriptively speaking, this model is based on the following
idea: in most of the cases the two incident particles a and b do not collide in a head-on
collision but rather in a peripheral collisien in which the particles only "glance at each
other" (glancing collision); the two particles interact with each other preferentially by
their peripheries, As a consequence of this peripheral interaction, the original directions
are not changed very much; the particles in the final state keep predominantly the directions

of the incident particles. In the case of inelastic nucleon-nucleon collision for instance,
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one would say that the interaction takes place in the pion clouds of the nucleons; in pion-
nucleon collision the incident pion interacts with the pion cloud of the nucleon and not with

the "nucleon itself", which merely plays the role of a "spectator",

More physically speaking this picture means: the interaction between two particles
is dominated by the long range forces. These forces are due to the exchange of a virtual
particle (in this lecture we discuss only one-particle exchanges). The lighter the exchanged
particle is, the longer the range of the force. This can be seen, for instance, from the
form e_mr/r of the Yukawa potential, where m is the mass of the exchanged particle, Since
the pion is the lightest amongst the strongly interacting particles, and thereby responsible
for the forces of longest range, the one-pion exchange (OPE) mechanism has been treated and
applied most extensively in the framework of the peripheral model during the past years.

There are, however, several reactions for which OPE is forbidden,as will be discussed later.

The theoretical formulation of the peripheral one-particle-exchange model starts
from the Feynman diagram shown in Fig. 1. The incident particles a and b interact with each
other by the exchange of particle e; this interaction leads to the particle systems c and d.

The most important quantity for the diagram of Fig. 1 is the relativistically invariant square

Fig. 1

A% of the four-momentum transfer (from now on called briefly "momentum transfer") between c

and a (or d and b); it is defined by

]

A% = - (gc-ga)z = - (Ed-Bb)z

(o-3y) - (E,~E) (2)

- (mz +m;) +2EE_-2p_p, cos &% .

P E, E, and m are, respectively, the four-momentum, three-momentum, total energy, and mass of
the particle or particle system indicated by the index. B, = (;c’Ec)’ for instance, is the
sum of the four-momenta of all particles of which the system c consists; mC = VEE- Bz is the
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relativistically invariant effective mass of the system c. It is equal to the total energy
of all particles of the system ¢ in their c.m.s. (rest frame of c) since in that system

EC = 0, ©* is the scattering or production angle.

For fixed values of mc and md one obtains the lower and upper limit of the physical
A% range by evaluating the right-hand side of (2) in the c.m.s. and putting cos ©* = *1,
Since the process a+b-c+d of Fig, 1 is a two-body process, the momenta P, and P, and the
energies Ea and EC can be expressed by the total c.m.s. energy E and the four masses, using
energy and momentum conservation, One then obtains the following formula for the lower and

upper limit of A®:

*)

2 2_ 2 2 2 2_ 2 2 2 2 _ 2 _(m2=m? 2
A2 ={ <E +mc md>_m2 : <E -l-ma mb>_m2} -{(mc ma) (md mb)} . (3)
mi: 2E ¢ 2E . a 2E
ma

Since, due to four-momentum conservation at the vertex I of Fig. 1, the quantity
(Bc'-ga) is equal to the four-momentum of the virtual particle e, the momentum transfer A® can,
according to (2), be interpreted as the negative square of the virtual mass of e. At the
point A2=-mz (me being the physical mass of e) the exchanged particle becomes real ("on the
mass shell"), This point, however, lies in the unphysical A? region, since A? is usually
positive for reactions of the type a +b-c +d, i.e. the particle e is virtual ["off the mass
shell", see (3)].

According to the Feynman rules the matrix element Mfi for the diagram of Fig. 1 has

the following general structure:

_ 2 1 2
Mpy o= Mp(a%,m ) T Mpp(8%,my) . (4)

In this formula L/Q2~km? is the propagator of the exchanged particle. The quantities MI and

MII are the vertex functions of the vertices I and II in Fig. 1. At the point A% = -m: they

are equal to the matrix elements for the physical processes

a+e>cC (5)
b+e-»>d

if ¢ and d are systems of particles. If, on the other hand, for instance, ¢ is a single
particle (e.g. a resonance) MI at A% = - mz is apart from a known constant factor equal to the

aec coupling constant.

The differential cross-section in A® (A® distribution) for the process of Fig. 1 is
given by the A? dependence of the propagator and of the vertex functions. From the propagator
the cross-section has a pole at the unphysical point A® = -m: where the particle e is real.

Moreover, one sees from (4) that the propagator tends to make the cross-section large for small

%) Exercise: derive formula (3).
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physical A® values which are closest to the pole. Small AZ? values, however, correspond accord-
ing to (2) to small c.m.s. scattering angles & [if one evaluates the right-hand side of (2)
in the c.m.s.J. The propagator thus favours small scattering angles; therefore, the peri-
pheral model should be able to explain at least qualitatively the observed preference for the
forward-backward direction mentioned above, if the A® dependence of the vertex functions does
not have a strong opposite effect on the angular distribution. A further discussion of this

point will be given in a later section on A® distributions (Section VIII).

One of the main applications of the peripheral model during the last years has been
the determination and study of the cross-section for the reaction 7w mm which cannot yet be
investigated in a direct scattering experiment since there are no free pion targets"a)
We do not discuss this subject in detail here but nevertheless mention it because of its

importance, If one applies the idea of the peripheral model to the reaction
7N~ Nam (6)

one would say that the incident pion interacts with a virtual pion in the nucleon cloud and
makes it free. The corresponding one-pion exchange diagram, a special case of Fig. 1, is
shown in Fig. 2. At the unphysical point A® = =u? (¢ = pion mass) the vertex function of the
lower vertex of Fig., 2 is equal to the 77 scattering amplitude. So from a study of reaction
(6) it was possible to obtain information about the elastic 7w scattering mw- 7w, a special

case of reaction (5).

Fig. 2

More recently the peripheral model has been applied to quasi-two-body reactions of

the general type

a+b->c+d (1)
where ¢ or/and d are strongly decaying resonancesz_7). A one-meson exchange model (OME) has
been developed which describes the production and the decay of resonances., From now on we
want to concentrate on reactions of type (1) only and discuss the experimental and some
theoretical aspects of the OME model in greater detail, First we list a few examples for

reaction (1):



+ *
T p>pp
%
n+pa»ﬂ°N * with the decays:
+ 0 k++ * *o
T p->p N pToTw
+ 0, K++ o + -
T p>w N p >
+ *+ -
K'p>K 7p wo- 1T+K 17'o
+ 0 ¥++ * °
Kp*KN+ K+-¥KO7T+ (7)
* ¥ =

K+p-> KFONF K o KOq0

+ +
T p-> K*+2_ N*++-» p1T+

+ *+
mp>KY - Y5 A(2)7

+ *+
po Ky

II. EXPERIMENTAL SEPARATION OF THE REACTIONS a +b-c +d FROM THE BACKGROUND

If one wants to study the reactions (7) experimentally, one has to deal with the
following difficulty: due to its short lifetime a resonance does not travel a measurable dis-
tance in a bubble chamber but decays "immediately" into the decay products, so only the final
state of the reaction is observed experimentally. In the following let us discuss the

reactions

+ +
T p>pp (8a)

- P (8b)

as an example, Both reactions lead to the final state pﬂ+ﬂ°. Furthermore, there are ﬂ+b
reactions which proceed directly to this final state ("direct reactions", "background reactions")
not going via resonance production, For an individual event one cannot say if it was a

direct reaction or a resonance production. How can one then separate the reactions (8) from

each other and from the background?

In order to find out how frequently the over-all reaction
+ + 0
T p-pT W (9)

proceeds, e.g. via p+ production (Sa), one plots the effective mass distribution of the ﬂ+ﬂo

system, The relativistically invariant effective mass Mn+ﬂ° is defined by

Mo = (Epa+Ep0)®= (BratBro)? . (10)

E"4n+E"o is the total energy, 3"4:P;no the momentum of the ﬂ+ﬂ°-system. Mn+ﬂ° is the total
+ 0 +

energy of the ﬂ+ and ﬂ° in their c.m.s. (see above). If the # and m originate from a p

decay the w*r® c.m.s. coincides with the p+ rest system, Therefore, due to energy con-

servation in p decay the total atn® energy M o in that system is equal to the total p

wt
energy in its rest frame, i.e. to the p mass., For p+ productions the quantity M”+ﬂo has thus
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within the decay width Pp of the p meson a definite value equal to the p mass (= 750 MeV).
So, the over-all n*r® effective mass distribution for reaction (9) will have the shape shown in

Fig. 3.

No of Events

750 MeV Mp+ e

Fig. 3

The distribution consists of a broad background distribution from background events, including
reaction (8b), and a bump with a width Pp around the p mass from reaction (8a). From the
total number of events and the number of events in the bump, one can then immediately
determine the relative frequency of reaction (8a). The same can be done for reaction (8b) by

studying the pﬂ+ effective mass distribution.

More information is contained in a so-called Dalitz plot in which one plots
M;+ﬂo versus M;”+ (one point per event) as shown in Fig. 4. The boundary of the plot as

indicated by the curve depends only on the primary momentum.

2
M1TWP

Fig. 4

Now two cases are thinkable:

Case 1: All reactions (9) proceed via p or N* production, In this case there will be no

points outside the p and N* band of Fig. 4. [This situation is realized to a good approxi-
E £

mation in the reaction K+p» K°ﬂ+p at 3 GeV/c,to which K** and N = production contributes

7 ok
~ 80% )]. The background in the 7*n° effective mass distribution then comes only from N A
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events, reaction (8b). One can obtain a pure sample of p productions if one takes only events
in the p band of Fig. 4 outside the N*p overlap region, i.e. events for which Mp”+ is outside
the mass region of the N* bump (N* region). However, this sample does not contain those p
productions for which Mpﬂ+ falls into the N*¥ region by accident and is, therefore, biased as

can be seen from the following consideration:

Figure 5 shows reaction (8a) in the c.m.s. for the dominant case of a small pro-
duction angle ©%, Let us regard, now, those events in which the p+ decays in such a way that
in the p+ rest system the decay at goes backward with respect to the incident at (see below,
where the decay angle ¢ will be defined). This means since @* is predominantly small, that
the decay 7t travels nearly towards the secondary proton; thus, the effective mass M at tends
to be small and may therefore fall into the N*¥ mass region. So, if events in this region are

not taken the p decay angular distribution will be biased.

i / - P

Fig. 5

Since the decay angular distributions play an important role in the framework of the

OME model, we discuss here several methods to obtain an unbiased p decay distribution:

a) Assuming that the p decays symmetrically in the forward and backward hemisphere (as a
particle with definite spin should) one takes only those events in the p band for which the
decay o goes forward and studies only this forward part of the decay distribution, This means
that one takes only those events for which Mpﬂ+ has higher values and does not fall into the

overlap region of Fig. 4, so there is no contamination from N* events,

b) One plots the decay angular distribution for the 7+r° system for all events with M”+"°
in the p region A of Fig. 3. This distribution contains background from N* events (overlap
region of Fig. 4). If one assumes that the angular distribution for the background 7+r°
systems does not depend strongly on M"+"o one may represent the background under the p peak by
the w*a® systems in the regions B and C of Fig. 3 adjacent to the p region on the left and
right side. So, one also plots the angular distribution for events in the regions B and C,
normalizes it to the background under the p peak and subtracts it from the over-all angular dis-

tribution for region A, The result of this background subtraction method should be the decay

angular distribution for the p meson only.
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c) According to the peripheral model the p production (8a) should occur predominantly with
small momentum transfer Az(p/p) between incident and outgoing proton, whereas for N* production
(8b) the momentum transfer A2(p/pm*) between incident proton and outgoing pw' system should be
small, Thus, one can hope to obtain a sample of reactions (8a) purified from N* events by
taking only those events for which Mﬂ+ﬂ° is in the p band and Az(p/p) is small (limitation to
small A%), In order to examine if this method really works, two checks can be carried out:
the Mﬂ+ﬂ0 distribution for events with small Az(p/p) should have the shape of the p resonance.
Furthermore, the Mp"+ distribution for events with Mﬂ+ﬂ° in the p band, and small Az(p/p),

should not show an N¥ peak,

Since the decay angular distribution, in general, depends on the production angle ©%
(i.e. on A%) it is a disadvantage of this limitation method that it allows study of the decay
only at small A%, The same methods can, of course, be applied for a study of the N* decay

angular distribution,

Case 2: In addition to reactions (8a) and (8b), the direct channel contributes appreciably to
the whole reaction (9). Since, in the Dalitz plot of Fig. 4, the points from the direct
channel are distributed over the whole area inside the kinematical boundary, the p and N*
resonance bands are contaminated by background events not only in the overlap region but every-
where, In this case one cannot apply method a) in order to obtain, for instance, the p decay
distribution, Only the subtraction method, and perhaps the limitation to small Az(p/p), will
yield this distribution. Whether the latter method rcally does strongly reduce the background

under the p peak must first be checked from a Mw+ﬂ° distribution for events with small A2(p/p).
Let us now discuss resonance production in another reaction, namely
aposprimtT . (1)

This reaction is more complicated than (9) due to the larger number of secondary particles.
Limiting ourselves to N*++ and p° production only and neglecting, for example,N*°, £° production,

we see that the following four channels can contribute to (11):

7'p> N, (N*p channel) (12a)
ﬂ+p» N*++ﬂ+ﬂ- (N* channel; w+ﬂ- not resonant) (12b)
ﬂ+p*~pﬂ+p0 (p channel; pﬂ+ not resonant) (120)
ﬂﬂb-*pﬂ+ﬂ+ﬂ- (direct channel; no resonances) (12d)

Thus, in contrast to reaction (9),two resonances can be produced simultaneously in reaction

(11) [channel (12a)].

A further complication in addition to the larger number of channels is the presence
of two n+(ﬂf and w:); in the pﬂ+ and 7' effective mass distributions two combinations enter

K .
per event, Thus, even if reaction (ll) proceeded, for example, completely via N production

"
3

(12a) and (12b), the pﬂ+ effective mass distribution would have many combinations outside the
region, since only the n+ from N* decay gives with the proton an effective mass in the N¥

+
region, whereas the effective mass of the proton and the other 7 may have any value within the

kinematical limits,
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A useful plot for reaction (11) is a scatter diagram of Mp"+ versus Mﬂ+ﬂ_.
a b
The boundary of such a plot is given by a triangle, as indicated in Fig. 6. For a given

value of Mﬂ the lower limit of Mpw* is mp-km" corresponding to p and W; being at rest in

4 -
b7 a

* ) MP";
E™-2my;
(o4
mp+m1-|»
1 1 -—
*®
2m E -(mp+mn) M"g -
Fig. 6
their c.m.s. The upper limit is
MUY = Ex- M, _ (13)
P, LA

where E* is the total energy in the over-all c.m.s. This situation corresponds to the ﬂ;ﬂ-
system and therefore also the pﬂ; system being at rest in the over-all c.m.s. so that all the
available energy E* goes into the masses of the two systems. Equation (13) gives the straight

line ¢ in Fig. 6. Since the absolute lower limit for M,,r

gﬂ- is 2m”,the absolute upper limit of

, . % .
Mpn; is E 2mw according to (13).

Figure 7 shows as an example a Mpﬂg versus Mﬂﬁﬂ- plot for reaction (11) at a primary
momentum of 4 GeV/c 8). Because of a,b = 1,2 and 2,1 two points enter per event. One observes
an accumulation of points in the N* and p band, and an additional accumulation iﬁ the N¥p
overlap region due to the channel (l2a). There are many points outside the two resonance
bands. However, even if all reactions proceeded via N¥ and p production (i.e. no contribution
from the direct channel) there would be many points outside the two bands because each event
contributes two points, one of which must originate from combining the "wrong" particles (ﬂ+
from N* decay combined with 7 and ﬂ+ from p decay combined with p). So one cannot rely on
the first impression of Fig. 7, and a more careful study of the plot is necessary in order to

determine the relative frequencies of the channels (12a) to (12d).

Since we are interested here in quasi-two-body reactions, let us discuss the limita-
tion to small momentum transfers as a method to separate out a rather pure sample of the
channel (12a) 7'p> N**"5°.  If this process occurs peripherally (Fig. 8) the Aa(p/pﬂ;) for the
7T from N decay (ﬂ;) should predominantly be small, whereas the Az(p/pﬂ;) calculated with the

"wrong® (w;) should have no strong tendency towards small values, so one should obtain a
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Fig. 7

04 08 12 16

Scatter diagram of Mpﬁg versus Mﬂgﬂ- (two points per event)

for wtp- prtrtr™ at 4 GeV/c.
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purified sample of channel (12a) by selecting out those events of type (11) for which one of
the two 7% gives a small A’(p/pw+). This 7" then would predominantly be the n; from N* decay
and the other 7% would be ﬂ; from p decay. Figure 9 shows the result of this method when
applied to the data of Fig., 7: it shows Mpﬂg versus ngﬂ- (one point per event) for events
with Az(p/pw;) < 0.3 GeV2, For those few events for which both A2(p/pr’) were smaller than
0.3 GeV?, that 7¥ was taken to be ﬂ;.WhiCh gave the smaller AZ, One observes the strong
purifying effect of the A% limitation; only in the N¥*p overlap region a strong accumulation of
points remains. From the pﬂ; and ﬂ;#_ effective mass distributions for events in the p and N¥
band of Fig. 9, respectively (obtained by projecting the number of points in the two bands on
the vertical and horizontal scale) one could seec that there is very little background left under
the N* and p peaks. So, the result is: one obtains a rather pure sample of the channel

7tp> N***p° by taking only those events of type (11) for which Az(p/pﬂ;) is small (e.g.

< 0.3 GeV?), Mpwg is in the N* mass region and Mﬂﬁﬂ' in the p region,

After this discussion on experimental methods of separating out and studying quasi-

two-body reactions we return to the OME model.

III. QUANTUM NUMBERS OF THE EXCHANGED PARTICLE

Figure 10 shows the OME diagram for the general two-body reaction (1). From con-

servation of angular momentum, parity, G-parity, isospin, and strangeness at each vertex of

AZ|e

Fig. 10
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Fige 9 Scatter diagram of: Mpﬂg versus Mﬂgﬂ— for 1T+p-> p7T+7T+7T— at

4 GeV/c with 82(p/pmy) < 0.3 GevZ.

16
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Fig. 10 and from the known quantum numbers of the particles involved, a selection is obtained

of what mesons can be exchanged in a given reaction (we do not discuss baryon exchange here).

As candidates for the exchanged particle e all known mesons, for which the quantum numbers have
definitely been established, are listed in the following list:

7(1077), n and X0(00™ "), p(117"), w and @(0177), f(02%%),

K(Y207), kx(Y%17).

A(12%7);

The numbers and signs in the brackets indicate the isospin I, spin J, parity P, and G-parity G
in the form IJPG for the non-strange mesons (first row) and in the form IJp for the strange

mesons (second row) which do not have a definite G-parity.

Let us now discuss as an instructive example the reaction
mip> N¥F (14)

in further detail and ask what mesons can be exchanged. Figure 11 shows the OME diagram for

this reaction.

p I N*++
e
mt I me
Fig, 11

a) Strangeness
From strangeness conservation at both vertices it follows that e must have strangeness

b) G-parity
The G-parity is a multiplicative quantum number having the values *1. Each particle

with baryon number zero and strangeness zero is an eigenstate of the G-operator, i.e. has
definite G-parity. The pion has G-parity Gw = -1, From G-parity conservation at the meson

vertex II of Fig. 11 where the virtual process
T+e->T (]5)

occurs, it follows that Gﬂ- Ge = G" and therefore Ge = +1, ruling out 7 exchange.
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c) Angular momentum and parity

The sketch of Fig. 12 illustrates the process (15) in the rest frame of the outgoing

T o Spin J and parity P of each particle are indicated in the form JP. L is the relative

0" Q e

\
-\ 3
A

Fig. 12

. + :
orbital angular momentum of 7 and e. Because of angular momentum conservation, the vectors

t and je must be added to give the spin zero of the ﬂ°; therefore, L = Je.

Parity conservation yields

L _ b de L _
PP (-0 =P, Py = (-1)7 = (-1, sinceL =3, .

Thus the exchanged particle e must have natural parity (the parity is called natural if

P = (-1)J and unnatural if P = -(—I)J): JePe = 0%, 1

, 2t . From the baryon vertex I of

Fig. 11 no conclusions about Jepe can be drawn.

d) Isospin
Isospin conservation at the baryon vertex demands that the isospin Ie of e must be
coupled with the nucleon isospin of 72 to give the N* isospin Yz This is feasible with Ie= 1
and 2. (From isospin conservation at the meson vertex one obtains only the weaker condition
I, = 0,1,2.)

If we search through the above meson list for those mesons which satisfy all these con-
ditions on their quantum numbers, we find that only the p meson is left. So, reaction (14)

can proceed only via p exchange.

In a similar way it is possible to examine which mesons may be exchanged in the other

reactions (7). The results are summarized in Table I,
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)

*
Table I

Reaction G J Pe 1 known mesons
e e e
N> pN -1 arbitr,, not 0F 0,1 7, w(p), Az
N-> 7Nk +1 o*, 17, 2%... 1,2 p
mN-> pNk -1 arbitr., not 0* 1,2 7, As
TN-> wN* +1 arbitr., not 0% 1 p
KN-> K*N arbitrary arbitr., not 0™ 0,1 7,1n(Xo0), p, w(e), £, A,
KN-> KN¥ arbitrary ot, 17, 2%... 1 0, Az
KN-> K*N¥ arbitrary arbitr., not O+ 1 Ty, Py Az
K*A Y
ﬂN»{ / arbitr., not 0F {1/"' ’;” A K, K*
K*Z Yo, 7e for T
+ L= + 1/ for Y*
7N~ Ky* 1 / 0 ’ 1 ’ 2 ... { 2 ° B K*
Y., %, for Y,
+ ’/ for Y*
N> KokY* 1 / arbitr,, not 0 { 2 ° x| K, K*
72:3@ for Y,

IV. DECAY ANGULAR DISTRIBUTIONS

After examining which meson exchanges are allowed, we ask the question, how one can
find out experimentally what meson(s) is (are) really exchanged in a given reaction at a given
energy? The reaction is, of course, assumed to proceed peripherally as can be checked from the
A% distribution. We assume for the moment the particle d in reaction (1), Fig. 10, to be a

resonance with spin J decaying according to
d>a+p (16)

into a and S. After its production the particle d is in general in a quantum mechanical

mixture of pure spin states, The mixture depends, via the vertex bed (lower vertex of Fig. 10),
on the spin and parity Jepe of the exchanged particle e, and is described by the (2J+ 1)
dimensional density matrix of d with the elements pmm' (m, m’ are the magnetic quantum numbers
of d running from =J to +J). In general, these matrix elements are functions of the production
angle, i.e. of A% for reaction (1). Properties of the density matrix and predictions on the

matrix elements P for certain values of Jepe will be discussed later. On the other hand,

*) Exercise: check Table I.
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the decay angular distribution of d depends on the mixture of spin states of d and, therefore,
on some of the density matrix elements, Thus, by measuring the decay distribution of d, one
can determine some density matrix elements and find out via these matrix elements which

particle e is exchanged in the mechanism producing d.

First we define the decay angles ¢ and ¢ of the particle d. Figure 13 shows the

Fig. 13

production process (1) and the decay (16) in the rest frame of d. The momenta of a, c, and b
lie in the production plane (paper plane). The momenta of a and B are equal in magnitude and
opposite; they usually do not fall into the production plane and are therefore indicated in
Fige 13 by dotted lines. Let us now introduce the following right-handed co-ordinate system
xyz: the z axis is aion§ the direction of b, the y axis is along the normal to tﬁe production

plane defined by i = 8XC ., The unit vector in x direction is then given by fix b . The

ax c
decay angles ¢ and ¢ are the polar and azimuth angle, respectively, of the decay particle a

(or B) in that (xyz) system; they are given by the following formulae:
-

5] I3l

cos ¢

cos ¢ = —Z—.
I 5}:)
//1M¢ between 0° and 360° . (17

sin ¢

]

Ex(gxz). bx o
> >
bx a

I—Sx(;xz)l [Bx 2|

In these formulae the symbols mean the momenta of the respective particles in the d rest system.
Because of the sign one has to be careful to take the momenta in the cross products always in

the order indicated by (17). It is seen that ¢ is zero or 180° in the production plane,

#) Exercise: derive formulae (17).
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The most frequent cases are the decay of a J = 1 meson resonance into two mesons

with J = Jﬁ =0 (e.g. p»mm, K¥>Kw) and the decay of a J = ¥ baryon resonance into a

a
decay angular distribution.

J = ’/2 baryon and a Jﬂ = 0 meson (e.g. N¥- Nm, Y’f—» Yu). Thus, we give and discuss below the

el
9 cos 999 (18)

W(cos d4,9) =
in terms of the density matrix elements for these two cases only. The general expression for
the decay distribution for any spins can be found in reference 3); its explicit form for a
J = 2 resonance decaying into two spin zero mesons (e.g. f- 1r1r) is given in reference 6) .

The formula for J = 1 will be derived by Dr. Pilkuhn,

a) J:l,JazJﬁ=0

W(cos @,¢) = %T {‘/2(1 - poo) + V2(3po0 = 1)cos® @~ py -45in®9 cos 2¢

(19)
- V2 Re pyo sin 28 cos cp} .
The normalization constant is chosen such that
27 +1
fdcp [ d cos & W(cos 9,9) = 1 (20)
) -1

as can be easily checked., It is seen from (19) that by measuring the decay distribution
W(cos 9,¢) one can determine the three matrix elements poo, p1, 4> and Re pso (poo and P11

are real, see below). Integrating (19) over ¢ or cos ¢ yields the distribution incos ¢ or ¢

only, respectively:

W(cos 0) = 7a {(1- poo) + (3p00 - l)cosza}

(21)
W(o) = o {(l +201 1) = 4P1, cosz<p} .

b) J=3/2,Ja=’/2,Jﬂ=0

For this case the normalized decay distribution reads (we now use capital Greek letters
for the angles in order to distinguish the decay angles of a baryon resonance from those of a

meson resonance) :

W(cos ©,8) = -4% ['/5(1 +4ps3) + V(1= 4133.-,)0052(-9-%3 Re p3 -y sin®® cos 23

2 .
-5 Re piy sin 20 cos @} . (22)
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(For simplicity the matrix elements are written here in the form p ) The distributions

a2m,zm’"’
in cos © and ¢ alone are given by the formulae

W(cos @) = Y, {(1 +4p33) + (3= 12p33) cosze}

w(e) = 5‘?7 {(I-y% Re p3,_1>-783 Re p3,-4 coszé} .

(23)

It should be noted that the validity of the formulae (19) and (22) for the decay distributions
is not limited to the OME model. It is more general and valid for the decay of any particle
d with a polarization vector which does not have a component in the production plane, This
is the case for any strong, i.e. parity conserving two-body production process a+b->c+d with
unpolarized incident particles, as will be shown in a moment, The OME model comes in when

predictions are made about the density matrix elements (see Section VI).

Figure 14 shows schematically the effect of the parity operation P (space reflection)

and of a subsequent rotation D by 180° about the y axis (normal to the production plane) on

Fig. 14

the process of Fig., 13 with the particles being in definite spin states. These spin states
are indicated symbolically in Fig. 14 by the small arrows. Under P the momenta of the
particles are reversed, whereas the spins are not affected. The rotation D leads back to the

original situation except that:

a) The x and z components of the spins have changed sign, whereas the y components are

unchanged.
b) The azimuth angle ¢ has changed sign.
Since the interaction operator for the process of Fig. 13 is invariant under P and D,
the transition matrix elements for Fig. 14a and 14c are the same, except for a phase factor.
Since furthermore, due to the incident particles being unpolarized, the initial states of

Fig. 14a and 14c occur with equal frequency, also the final states of Fig. 14a and 14c occur

equally frequently. This has two immediate consequences:
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c) Because of (a) the spin components of d in the production plane cancel; the polariz-

ation of d (= expectation value of the spin operator) is perpendicular to the production plane.

d) Because of (b) the relation

W(cos #,¢) = W(cos &,-¢) (24)

holds for the decay distribution,

The application of P to the strong decay process d- a+f interchanges the directions
of aand 8t cos 9> - cos ¥, 9> T+, From P invariance in the decay one therefore obtains

the relation

W(cos 9,9) = W(- cos &, m+9) . (25)

A more mathematical treatment of the P invariance and its consequences can be found, for

example, in reference 9).

V. GENERAL PROPERTIES OF THE DENSITY MATRIX OF THE PRODUCED RESONANCE

We list here only briefly those properties of the density matrix which are of
importance in our connection, A more detailed discussion of the density matrix can be found,

for example, in reference 9).

Let lu> be the pure spin states which contribute with weights p“ to the quantum

mechanical mixture of the resonance d. The density operator is then defined by

—
p = L |p>pu<ul with Zp# =1 . (26)
T n

The states |u> may be expanded in a complete set of orthogonal and normalized spin states for
which we take the 2J +1 eigenstates lm> of the z component of the spin operator of d. In this
representation the p operator is a (2J+ 1) dimensional matrix (density matrix) with the

elements

Pom? = <m|p|m’> = E;\<m|y>pu<u m'> (27)
o

General properties of the density matrix are:
2 .
< = < 1: i .
02 o0 j{:l<m|p>| p, < 15 p,, is real, see (30); (28)
u

Pom is the weight with which the state |m>

is contained in the mixture,
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YPmm=Trp=l , (29)
—
m

+ . * . ea s
pT= Py deee p, =00, (p is Hermitian), (30)

From parity conservation in the production process a+b-c +d with unpolarized incident

particles it follows that
m-m’
Pyt = (=1) Pmyem’ * /N Pom = Pem,-m (31)

(see Dr. Pilkuhn's lecture). From (30) and (31) one sees immediately that the elements
pm,-m in the diagonal going from the right upper to the left lower corner of the density
matrix are real for integer values of J (mesons) and imaginary for half integer values of J
(baryons). Furthermore, from (30) and (31) one obtains the following values for the

>
components of the polarization vector P of the particle d:

P =P =0
X z

(32)
y Z\ JJ(J+I)-m(m+I) Im Pomat *

o
]

So, the particle d can be polarized only normally to the production plane, as mentioned above.

Exercise: derive equation (32)
Hints for exercise:

(a) P=<d>= Tr(pj) .

In order to obtain the matrix representation of the operators Jx and Jy (Jz is diagonal with

its eigenvalues m in the diagonal) introduce

=J 1
(b) J+ x+1Jy
J_= Jx— 1Jy
with the known properties
(c) J+|m> =\/J(J+I)—m(mil) Imt 1> .

Insert matrix elements of Jx, Jy, Jz into (a) and calculate (32).
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A (23 +1) dimensional matrix with complex elements has 2(2J +1)2 real parameters.,

Due to the constraints (29), (30) and (31) the number of real independent parameters is

2J(J + 1) for integer J, and

(33)
2J(J+1)-%  for half integer J.

From (29), (30) and (31) it follows that the density matrices for a J = 1 meson and a J = 7,

baryon have respectively the forms

Y2(1-poo) P10 Py,

p(J=1) = pTo Poo - PTo (34)
P1,-1 - p1o” Ya(1- poo)

with real poo and P1,-1> and complex pjyo A parameters, see (33)], and

P33 1] P3,-1 P3,-3
* *
( 7 ) P31 7§-P33 P1,-1 Pz,-1 (35)
pJ=2 = 35
%
%, -1 “p1,-1 Vemp3z =31
“P3,-3 P31 —P31 P33

with real ps3, imaginary py,-1, ps,-3 and complex psy, p3,-1 [7 parameters, see (33)].
These forms of the density matrices have been used in the derivation of the decay distributions
(19) ana (22).

VI, PREDICTIONS OF THE OME MODEL ON THE DENSITY MATRIX ELEMENTS

From now on we consider the vertex aec of Fig. 10 to be the meson vertex, and the
vertex bed to be the baryon vertex. The incident particles a and b are assumed to be a
pseudoscalar (0”) meson (7,K) and a nucleon (%™"), respectively. This situation is realized
in almost all experiments, except for nucleon-nucleon collision which we do not discuss here
explicitly. Then from angular momentum and parity conservation at the vertices, predictions
about the density matrix elements can be made depending on the spin Je and parity Pe of the
exchanged meson, We derive some of these predictions here although they are modified (often
only slightly) when taking into account absorptive effects which lead to a diagram more com-

plicated than the one of Fig. 10 (see Section IX).

Exercise: check equation (33).
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1. Vector meson (1~ ) production

a) Jepe = 0~ (pseudoscalar exchange)

Figure 15 shows the process occurring at the meson vertex in the rest frame of c.

L is the relative orbital angular momentum of a and e.

Fig. 15

Angular momentum conservation: L = 1 with Lz =0 (E has no component along the
direction of the incident particles which is,according to Section IV, the direction z of
quantization). Parity is then conserved: PaPe(-l) = PC (one sees from here that a ot ex-
change is forbidden. Conservation of the z component of angular momentum: m = Lz =0,

where m is the z component of the spin of c. The states |m = * 1> thus do not occur in the

mixture consisting of the states |u>. Therefore, the coefficients <m = * llu> vanish and
Poam =Pm,x, =0 (36a)
according to (27); only poo # 0 and because of (29):
poo =1 . (36b)
For this case the decay distributions (19) and (21) of the 1 meson thus simplify to
3 24. 3, 2 1
W(cos 9,9) = 7 oS 9; W(cos 9) = 7. cos?d, W(e) = 3, = const. 37)

b) P, = (-1)Je, Jq 2 1 (natural parity)

Figure 16 shows the process taking place at the vertex aec for this case.

JePes(=1)"%

Fig. 16
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Angular momentum conservition: L = Je— 1, Je’ Je-+l with Lz = 0 (vectors E of these
magnitudes can be composed with Je to give the spin 1 of the produced vector meson c).
Parity conservation: Pa(—l)Je(-l)L =P, N\ L+Je is even, Together: L =J
Conservation of z component of angular momentum: Jez =m=0, £ 1, However, only the two
spin states lJe, * 1> can be coupled with the orbital angular momentum state IL = Je’ 0> to

give the states lJc =1, m=2%1>0f c; the two states IJe, 0> and [L = Je’ 0> cannot be com-
posed to lJc =1, m = 0>, This is so because the Clebsch-Gordan coefficient

<L = Je’ Je; O,OIJc = 1, m = 0> vanishes for odd L-+Je-+Jc; in the expansion of

IL = Je, 0>|Je, 0> into eigenstates IJ,0> of the total angular momentum only those with even

J occur. Thus, it follows that m = * 1; Im = 0> does not occur in the mixture. Therefore,
<m = 0|u> = 0, and from (27):

_ _ . . . B o
Pom = Pmo = 0» in particular: p,, = 0,/\Pyy = Ve (38)
due to (29) and (31); py,-1 is arbitrary and real,

So the decay distributions (19) and (21) for this case are:

W(cos 3,9) = é%(?g-p"_, cos 2¢) sin®d
(39)
W(cos 9) = 7, sin®; W(e) = Z‘;, {(1 +201,21) = 401, cos%} .
c) P, = —(-1)Je, Jq 2 1 (unnatural parity)
Angular momentum conservat;o?:] L =LJe +1, Je, Je— 1 } L = Je+ 1.
Parity conservation Pa(-I) eT (-1)" = Pc,,/4g L+Je is odd

In this case all three spin orientations m = 0, * 1 are allowed, since now
L-pJe-ch = 2Jet 1+1 is even and the Clebsch-Gordan coefficient <L,Je; 0,0[{1,0> does not
vanish. Therefore, in general, all three matrix elements poo, P1,-15 P1o are different from
Zero. In particular, one sees that pyo is different from zero only for the exchange of a

particle with unnatural parity and J_ 2 1.

2. Production of g_?%f_baryon resonance

Since the incident nucleon b has spin, the baryon vertex bed cannot be treated as
easily as the meson vertex aec; only for Je = O predictions about the density matrix elements
of the resonance d can be made. For the case of N* production by p(1”) exchange a specific

10
model has been developed by Stodolsky and Sakurai ).
a) Je =0

Figure 17 shows the process ocaurring at the vertex bed in the rest system of d.

b 112+ 3/02+ Je=0 e
RS2
L

Fig. 17
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1 for Pe -1
2 for P = +1.
e

L]

Angular momentum conservation: L = 1,2 with Lz =0 }//x[ L
Parity conservation: PbPe(—I)L = Pd, /AN Pe = (—I)L L

Conservation of the z component of the angular momentum: m = Jbz =+ Y. Thus, the
states lm = *+ ¥ >do not occur in the mixture of states |u> of the resonance d:

<an = * ¥ |u> = 0, Therefore,

pts,m = pm,ts = 0, in particular pss = 0,

(40)
/N py4 = Y% from (29) and (31).
Thus, the decay distributions (22) and (23) simplify to
W(cos 6,8) = é%(lq-S cos2@);
(41)

W(cos ©) = Y4(1 +3 cos®®), W(&) = g% = const.

b) N¥ production by p exchange

Since the p meson has the same quantum numbers as the ¥y, Stodolsky and Sakurai1°) have
treated the vertex NpN* in analogy to the vertex NyN* in terms of electromagnetic multipole
transitions. This latter vertex occurs in the photoproduction of a pion: %yN- N¥- Nm,

For the magnetic dipole transition M1 which dominates in pion photoproduction, the authors
found that the produced N* has only the spin orientations m = #* }Q normally to the production
plane, as Dr, Pilkuhn will show in his lecture. This leads to a decay distribution of the

form
W(cos ©/,3!) = g;(l-+3 cos?0’) (42)

in a co-ordinate system (x’ y’ z’) with z’ along the normal to the production plane, and x’
and y’ in the production plane. The z’ axis is thus the y axis defined in Section IV,
Fig. 13. ®’ is the angle between the decay nucleon from N* and the normal to the production

plane, ®/ the corresponding azimuth angle.

The distribution (42) can be derived as follows: Since the states with m = * %, do not
occur, the general spin state of the N* is a linear combination, a|%,%> + b|%,-% >, of the

two spin states [J,J > = |%2, + Vo> with
2 2
la] +|b] =1 (43)
because of normalization. The decomposition of the spin states into orbital angular momentum

states Y?(cos @/,8') of the decay nucleon and pion and into the spin states |, * ¥, >of the

nucleon reads

1%, + %> =J73v$|'/z,:'/z>+\]7/,ﬁ'|'/2,:~'/z> (44)
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(£ = 1 because of parity conservation in N* decay.) Inserting this into the linear combination

yields:

al%,Ye> +b|%,-Ye> = <J7/;av‘.’ +JT/; bY:‘) I’/2,72>+<J_‘/?avz +JT/;bY‘3> [Yo,=-Ye> .

(45)
Remembering that

+ id/
Y (cos 6/,37) = -41” cos ©, Yi'(cos 87,8) = 3 ’% sin o e | (46)
N

one obtains with (43)

2 2
W(cos ©/,87) +

'J?;:-ﬂ?+\/73\b‘1," ‘\/73aY1 +J_;3\bY?

-I_ 2q¢
8ﬂ(1-+3 cos?0’) ,

(47

This distribution is transformed into the original system xyz by the transformation z’ =y,

x! = x, y' = -z3
cos @' = sin ® sin &, sin ©’ cos &’ = sin ® cos &, sin ©/ sin &/ = - cos ® . (48)
Since the Jacobian for this transformation is unity, one obtains

W(cos ©,3) = W(cos ©',3') ='§;(1 +3 sin®0 sin?3%) ., (49)

Comparing this with the general form (22) one finds the following Stodolsky-Sakurai predictions

on the density matrix elements for N¥ production by p exchange in an M1 transition

P33 = ?% = 0,375, Re P3,=-1 = %? = 0,216, Re p5q = 0 . (50)

VII. EXPERIMENTAL METHODS OF DETERMINING THE DENSITY MATRIX ELEMENTS

1. Method of maximum likelihood

The best method of determining the density matrix elements of a resonance is the
maximum likelihood method. Let us assume, as an example, that we have n events in which a p
meson is produced; for each event the decay angles 6v and ¢, are measured, We denote for the
moment the three matrix elements poo, P1,-1 and Re py0 occurring in the decay distribution (19)

by x4, X2, and Xz. Then the likelihood function for the experiment is defined by

n
gf(x,,xa,xg) = ;gl W(cos ﬁv’¢v; X1,X2,X3) o (51)
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For given sets of values (x,,xz,x3) one calculates with a computer,4[(x,,x2,x3) by
inserting the experimental values ﬁv and ¢v of the v-th event into (19) and computing the
: . N .
product (51). By varying (x,,X»,x3) one finds the set (xj,Xz,xs) that gives the maximum value of

gf(x,,xz,x3). This set is then the best estimate for the matrix elements.

The error matrix (6xi 8xj) of the matrix elements (Axi = 8xi 5xi) is (for n not too

small) the inverse of the matrix H with the elements

o azlnéi(x,,xz,xz)

H .=
ij Bxi axj

sx. ox. = (H™').. . (52)
% ’ Y
X13293 = X145293 * J H

The matrix H also can be calculated by computer from the experimental values ﬁv, @v and the

best estimates for the matrix elements.

If it is not possible experimentally to obtain a pure unbiased sample of p mesons,
one should, according to the background subtraction method discussed in Section II, determine
the matrix elements xja for all na events in the p mass region, and then the ones (x?b) for
events in the adjacent regions representing the background under the p peak. From these two

sets of matrix elements, and from the number n_ of background events (known from the effective

b -
mass distribution) in the p region, the matrix elements x; of the p can be calculated:

n X*
* b ib
X. =

la n
a

*
+ (na - nb)xi

. (53)

2, Method of moments

The average value f of a function f(cos #,¢) of the decay angles & and ¢ is given by

27T +1
f= j.d¢ /.d cos & f(cos 9,9) W(cos 9,9) , (54)
o -1

since W(cos 9,9) is normalized [see (20)]. Imserting (19) into (54) one finds

cos?d = Ys(1 + 2p00)

- ¥ b1, (55)

sin?® cos 2¢

sin 2% cos ¢

_ 42 Re pyo0 .
5

The corresponding formulae for the decay of a 7 baryon obtained by inserting (22) into (54)

are:

cos?® = - Y 5(7-8p33)

sin%@ cos 2% = - 3%3 Re p3 _4 (56)

sin 20 cos @

8
-gnge P31 .
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Thus, from the experimental mean values the corresponding density matrix elements can

be obtained by (55) and (56). - The error AT of f is given by
1,—~ =2
Af:J;UZ—f) (57)

where n is the number of events.

If the sample of resonance events is contaminated by background, the subtraction pro-

cedure as described in connection with the maximum likelihood method should be applied.

3« Method of least_squares fit

Two of the three matrix elements occurring in the decay distributions can be deter-
mined from the experimental distribution in one angle only (cos 3,¢; cos 0,8). According to

(21) and (23) these distributions are all of the form
W = A+B cos?¥ . (58)

A least squares fit of (58) to the experimental distribution yields the values for the co-

efficients A and B, and the error matrix

SASA GASB
— J— : (59)
5ASB 5B3B

From a comparison of (58) with the formulae (21) and (23), one finds that the matrix elements

are then given by

_A +B _ 1 B
poo —ﬂ“TB—;L s P11 == o —-2_2A2+Bz ,
(60)
_ 1y 3Az-B3 __Y3_By
P33 = /4 3As + By ’ Re 93’_1 = 7 2A, +B,

By differentiating these formulae one obtains expressions for the errors of the matrix elements

in terms of the elements of the error matrix (59). For instance, the ‘error in poo is given by

\

2 —_— :
Apoo = rsz:f:ﬁ:j{lJ A35B, 8By +B55A,5A, - 2A,B,8A, 8B, . (61)

VIII. A% DISTRIBUTIONS

In the previous sections the angular decay distributions have turned out to be an

important tool to study the production mechanism of the process

a+b>c+d . (1)
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A second source of information about this mechanism is the A? distribution do/dA2 for
reaction (1), as was already briefly outlined in Section I. The A® distribution is, accord-
ing to (2), equivalent to the distribution of the production angle. Theoretically, the AZ
distribution is given in the peripheral model (Fig. 10) by the A% dependence of the propagator
and of the two vertex functions [formula 4)]. The propagator l/(Az-rmz) enhances small A?
values, The vertex functions for the vertices aec and bed in Fig. 10 can be calculated in
perturbation theory by using the Feynman rules derived from the interaction by which the par-
ticles at a vertex are coupled. This will be demonstrated by Dr. Pilkuhn for some examples.
It turns out that they are increasing functions of A%®; the increase is the stronger the higher
the spins are of the particles ¢ and d in the final state. Thus, the fall-off of the A% dis-
tribution as predicted only by the propagator is more or less strongly reduced. Now for all
quasi-two-body reactions of type (1) studied so far, it was found that the experimental A?
distribution falls off steeper than the one predicted from the peripheral model of Fig. 10,
Thus, one may say that the reactions proceed more peripherally than the peripheral model
predicts. As a typical example we show in Fig. 18 the A% distribution for ﬂ+pa'p+p at
2.75 GeV/c 7’11). The curve (A) is calculated from the one-pion exchange formula (the re-
action ﬂ+p» p+p was found to proceed practically completely via w exchange); it does not fit
the data at all.

Two approaches have been used to overcome the discussed difficulty of the peripheral

model :

2,13)_

a) The first approach is mainly due to Ferrari and Selleri1 : For each of the two
vertex functions and for the propagator of Fig. 10,a A? dependent form factor has been intro-
duced by which the vertex function and the propagator, as calculated from perturbation theory,
is to be multiplied. Thus, in the matrix element (4) for the peripheral diagram of Fig. 10
there occurs a product F(A?) of three form factors. The vertex form factors are supposed to
take into account higher order effects due to which the vertices have an internal structure.
Similarly, the propagator form factor is a correction to the perturbative form I/(A2-+m2) of the
propagator, Since the coupling constant occurring in a vertex function is defined such that
it gives the value of the vertex function at the pole A% = -m:, the corresponding form factor
is unity for A% = —m:. The same holds for the form factor of the propagator., Thus, F(—m:)

should be unity.

Until now no theory exists which allows one to calculate form factors, Therefore, the
function F(Aa) occurring in the theoretical expression of a A? distribution has been parameter-
ized in a more or less arbitrary fashion, and the parameters have then been adjusted to the
experiments, Since the experimental A? distributions fall off more rapidly than the periph-
eral model without form factors predicts, agreement between experiment and theory is restored
with functions F(A?) which decrease with increasing A%, It was found that the experimental
A% distributions for several one-pion exchange reactions, such as NN- NNm, @#N- pN, #N- Nmw7, at
various primary energies could well be reproduced theoretically by the introduction of one

empirical form factor of the form14

F(a%) = 0.72 + 0.28 , [F(-p2) = 1, u = pion mass] . (62)
A% 4y 1+<A2+u2

LR 32 112
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01 0.2 03 04
A2(GeV2)

A% distribution for the reaction ' p> p'p at 2,75 GeV/c.
The curves show the predictions (A) of the unmodified OPE
model, (B) of the OPE model with the Amaldi-Selleri form
factor, and (C) of the absorptive OPE model.
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As an example the curve (B) in Fig. 18 shows the prediction of the one-pion exchange formula,

including the form factor (62).

On the other hand, the study of reactions for which 7 exchange is forbidden has led to
much less satisfactory results: in order to fit, for example, the experimental A® distribution
for the reaction #N- #N¥ which can proceed only via p exchange (see Table I), a form factor
F(A®) had to be introduced which depends rather strongly on A?, so that the A® dependence of
the propagator is masked. Furthermore, in order to fit the reaction 7N- 7N* at different
primary energies a "form factor" F(A?) was needed which depends on the primary energy‘s),
whereas a genuine form factor should be a function of A? only. So at least for non-m exchange
reactions there are heavy doubts as to whether the "form factors" have any physical meaning,
i.e. whether they are more than just arbitrary fitting functions which allow a fit of the theo-

retical formulae to the experimental A% distribution. So we will not discuss the form factor

approach any further.

b) Because of the rather unsatisfactory results of the form factor approach, one has tried

5:7,16,17), the absorp-

another method to reconcile the peripheral model with the experiments
tive model has been developed which can be regarded as a refinement of the simple peripheral
model. The absorptive model is briefly sketched in the next section; a more rigorous treat-

ment is given by Dr. Pilkuhn,

IX. THE ABSORPTIVE MODEL

The idea of the absorptive model is the following: in the collisicn of the particles
a and b there are at higher energies many inelastic open channels which all contribute to the
total inelastic cross-section. These channels compete with each other and suppress each other
in frequency. In particular, the quasi-two-body reaction is reduced by the presence of the
other absorptive channels, This absorptive effect is the stronger, the closer the incident
particles get together in the collision, i.e., the smaller their impact parameter b is,
In other words, one would expect mainly the partial waves with small orbital angular momentum

1 to contribute to the absorption, since 1 and b are related by the well-known relationship
B21(1 +1) = (pb)? (63)

where p is the c.m.s. momentum of the incident particles. Thus, mainly the contribution of

the low partial waves to the quasi-two-body channel is suppressed by the occurrence of the
absorptive processes; the suppression is the stronger, the smaller 1 is, On the other hand,
the collisions in the lower angular momentum states, i.e. with small impact parameter, lead to
larger scattering angles, i.e. to higher values of A% for the reaction a +b-c +d. (For s-wave
scattering the angular, and therefore the A%, distribution is isotropic!) Thus, by reducing
the contribution of the low partial waves, the absorptive effects suppress the frequency of
reactions with higher A%?; the A® distribution falls off more sharply than the simple peripheral
model, without absorption, predicts. This is in at least qualitative agreement with the

experimental observation.
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The quantitative formulation of the idea of the absorptive model starts from the

diagram of Fig. 19, which replaces the simpler purely peripheral diagram of Fig. 10.

Uy

NN
NSNNNNNN\N

Fig. 19

The absorptive effects are taken into account by an interaction Ui and U, of the particles in

f
the initial and final state, respectively, Dr. Pilkuhn will say more about the nature of

this interaction and about the theoretical treatment of the absorptive model.
There are two main results of the model:

a) The theoretical A% distribution is collimated towards small values, as has already

been discussed.

b) The predictions on the density matrix elements are modified. They are no longer as
simple as discussed in Section VI, but depend now on the production angle, i.e. on A%, That
the matrix elements are changed can be understood qualitatively from the following considera-
tion: let us assume the particle ¢ to be a resonance, the density matrix elements of which are
to be predicted. In Section VI, the predictions were made from angular momentum and parity
conservation at the vertex aec of Fig. 10, in the rest frame of c¢ with the direction of a as
the axis of quantization, In the absorptive model of Fig. 19, however, the experimentally
observed rest system of c after the final state interaction Uf is no longer the rest system of
c when it emerges from the vertex aec, Furthermore, due to the interaction Ui in the initial
state, the known direction of a before the interaction Ui is not the direction of a at the
vertex aec, Therefore, since the decay angular distribution and thereby the matrix elements
of ¢ are measured in the rest frame of c after the interaction Uf with respect to the direction
of a before the interaction Ui’ the predictions on these matrix elements made for the process
at the vertex aec in the rest frame of c and with respect to the direction of a at that vertex
are no longer strictly valid. Since the predictions of the simple peripheral model (Fig. 10)
on the matrix elements are often modified by the absorption only slightly (especially for small

Az), nevertheless, it was worth while to discuss them in Section VI.

The modified predictions of the absorptive model for various cases will be discussed

in the following section in connection with the experimental results.



- 32 -

X. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY

We do not intend to give in this section a complete review of all experiments on
resonance production in quasi-two-body reactions. Only typical experiments on the following
seven reactions will be discussed in some detail although some interesting points (e.g. deter-

mination of coupling constants) will be left out:

+ +
T p->pp (64)
o e (65)
1r+p—> poN*++ (66)
1T+p—’ woN*++ (67)

+ *+
Kp>K 7p (68)
K KONFHT (69)
K> K*FN (70)

The A®? distribution for this reaction at 2.75 GeV/c has already been shown up to
A% = 0.4 GeV® in Fig. 18. The curve (C) in this figure is the theoretical distribution as
predicted by the absorptive model for pure = exchange without any form factor7). It fits the
experimental histogram rather well, It should be mentioned that the theoretical distribution
can be calculated in absolute scale since the N7#N and the #mp coupling constants which enter
the theoretical formula are known; the latter coupling constant is known from the mass and the
decay width of the p decaying into two pions4 . The absorptive model was first applied by
Gottfried and Jackson5 to the reaction ﬂ-p* p—p at 4 GeV/c 18). Also at this momentum the
experimental A? distribution was reproduced well in shape and absolute magnitude by the

absorptive model,

Figure 20 shows the distributions of the p+ decay angles cos ¢ and ¢ for the reaction
w+pé p+b at 4 GeV/b with A% < 0.3 GeV? 19). The distributions were obtained by the background
subtraction method discussed in Section II, The curves show least squares fits of the form
(58). From these fits and from the average value of sin 2% cos ¢, the p+ density matrix
elements poo, P11 Re pyo were determined according to (60) and (55) for A% < 0.3 GeVZ3,

The experimental values are tabulated in Table II,
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Table II

Density matrix elements of resonances produced in
in 7'p collisions at 4 GeV/c

vector meson (p,w) baryon (N*) A2
Reaction range
Poo P11 Re pyo P33 Re P31 Re p34 (Gev?)
o +
7*p> o' | 0.70%0.08 | 0.17% 0.08 g'g%‘ < 0.5
+ 0, & ++ -0.026 *
N 40% 0, .21%0, ° - .
T p>T 0.40+ 0,06 | 0.21+0.08 0.072 < 0.3
+ 0 ¥4+ -0.044 * -0.062* | 0,077 0,011+ -0.013+
+
m'p> p N T 0,772 0.04 | Tg" 2% 0.025 | 0.028 0.030 0.028 < 0.5
+ 0 K++ -0,10 0.035% -0.048
+ + +
T p>wN 0.47* 0,05 0.13% 0,05 0.0% 0.15* 0.04 0.040 0.038 < 0.6

Figure 21 shows the p+ density matrix elements as functions of A®? for four A® inter-
vals below 1 GeVZ, The curves are the theoretical predictions of the absorptive model for
pure 7 exchange. Their agreement with the experimental points is satisfactory; the experi-

mental errors are unfortunately rather large.

Thus from the A? distribution, as well as from the density matrix elements, it seems
+ +
that the reaction 7 p- p p proceeds via pure 7_exchange. No evidence was found for a con-

tribution of w (or Az) exchange (see Table I).

In the same way the density matrix elements pss, Re ps _4, Re p3qy of the NE produced
in the reaction ﬂ+p* 7°N*** at 4 GeV/c 19) were determined from ;he experimental distributions
of the N*++ decay angles cos © and &, and from the average value of sin 20 cos &, using the
formulae (60) and (56). The experimental values for the A® range below 0.3 GeV? are listed in
Table II. It is seen that the results are in very good agreement with the Stodolsky-Sakurai

prediction (50) for p_exchange in an M1 transition at the baryon vertex.

i matrix elements for three A® intervals below 0.3 GeVZ?,

Figure 22 shows the N
Above 0.3 GeV? there were only very few events so that the matrix elements could not be deter-
mined there. So far, the predictions of the absorptive model on these matrix elements have not
yet been published. They probably will not deviate strongly from the Stodolsky-Sakurai values.
Also, the absorptive model prediction on the A? distribution for reaction (65) is not yet

available in the literature,

The reaction (65) has also been studied at various other primary momentas
22
1.59 GeV/c 20), 2.75 GeV/c z’), 3.54 GeV/c ). At all momenta the N*++

were found to agree with the Stodolsky-Sakurai predictions for p exchange in an M1 transition.

decay distributions
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3. wp~ poN”“’+

In Section II (Figs. 7 and 9) a method (limitation to small A%) has been discussed
by which a rather pure sample of reaction (66) could be isolated from events of the type
ﬂ+b'*pﬂ+ﬂ+ﬂ- at 4 GeV/c 3’23). From the p0 and N’i‘++ decay angular distributions, and from
the average values of sin 2% cos ¢ and sin 20 cos &, the pO and N*++ density matrix elements

were determined for A2 < 0.3 GeVZ2, The experimental values are listed in Table II,

Figures 23 and 24 show the density matrix elements of p° and N*++, respectively, for
five A? intervals. The points for the highest A? region (0.3 GeV? to 0.8 GeV2) have to be
taken with caution since the events there were contaminated by background. The curves show
the predictions of the absorptive model for pure w exchange7). Apart from a few points lying
outside the general trend of the experimental A? dependence, the agreement with the theoretical

curves is not bad.

The experimental A? distribution for reaction (66) could be reproduced in its shape
but not in absolute magnitude by the absorptive model7 ; the theoretical distribution was too

high by a factor of about three.

)

+ o %
The reaction 7 p-> p N*++ has also been investigated at 3.65 GeV/c 24 .

As in the case of reaction ﬂ+p+ pN* a pure sample of reaction (67) at 4 GeV/c was
- 8,23
obtained from events of the type n+b-»pﬂ+v+ﬂ n° by limitation to small A% (< 0.6 Gev?) ’ ).

Since the w° decays according to

o

PRI P (71)

into three pions, the w decay angles ¢ and ¢ cannot be defined in the same way as for a
resonance decaying into two particles by the formulae (17). It can be shown, however, that
for the w meson (as for any vector meson decaying into three pions) the decay distribution is
given by (19) if one takes ¢ to be the angle between the incident 7" and the normal

- 0
m X 7

m X T

(72)

=1

to the w decay plane in the w rest system; ¢ is then the corresponding azimuth angle. The w

decay angles & and ¢ are thus obtained from the formulae (17) if one replaces in them ] by fi.

From the «’ and N*++ decay angular distributions, and from the average values of

* ++

sin 29 cos ¢ for the w and sin 20 cos & for the N , the density matrix elements for the two

resonances were obtained. The values are listed in Table II for A® < 0.6 GeVZ,

Figurcs 25 and 26 show the density matrix elements of the «° and N*++ for five A?
intervals., The curves are the theoretical predictions of the absorptive model for p exchange
by an M1 transition at the baryon vertexzs). Their agreement with the experimental points is
not very good, but within the rather large experimental errors the results may be consistent

with p exchange.
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The experimental A® distribution of reaction (67) could not be fitted well by the
absorptive model for p exchange without form factor. However, agreement between the experi-
mental distribution and the absorptive model is restored,when one introduces a form factor of

the form

F(82) = F(0)e 07 4%/GeV? (73)

25
which does not depend very strongly on A? ).

The reaction K+pevK*+p has been studied mainly at the following three primary

6 7
momenta: 1.45 GeV/c 2 ), 1.96 GeV/c 2 ), 3,0 GeV/c 28’29).
experiment at 3.0 GeV/c [see also references (7) and (30)]. Figure 27 shows the experimental

We discuss here briefly the

A® distribution up to A® = 0.8 GeV®, The 7 exchange contribution to reaction (68) can be
calculated in agsolute magnitude from the absorptive model since the N#N and KaK* coupling
constants are known [the latter is known from the mass and the decay width of the K* decaying
into K and ﬂ4)]. Thus, the dashed curve in Fig. 27 shows the prediction of the absorptive
model for w exchange only. It is seen that 7 exchange alone cannot account for the whole

cross-section for reaction (68). Therefore, Gottfried, Jackson, and Svensson7’30)

have
included vector-meson exchange in their absorptive model calculation, and have adjusted its
amount to the experimental A? distribution and to the experimental values for the K* density
matrix elements (see below; the amount of vector-meson exchange is adjustable since the
coupling constants for this exchange are not known a priori). The solid curve in Fig., 27

shows the resulting theoretical distribution,

In Fig. 28 the experimental values for the K** density matrix elements are plotted
as functions of AZ. The curves show the predictions of the absorptive model for a mixture

of 7 and vector-meson exchange,

It should be noted that the reaction

K*n-> K*°p (68a)

7431)
L

seems to proceed via m exchange only The difference between this reaction and reaction

K'p- K*+p (68b)

is that in (68a) the exchanged particle is charged, whereas it is neutral in (68b). Thus, the
vector-meson exchanged in reaction (68b) seems to occur only in the neutral charge state;
otherwise its exchange would also contribute to reaction (68a). Therefore, it has isospin

zero and must be the w or ¢ meson; the p meson is excluded.

- Ko 32
The reaction K p-» K p has been investigated at 3 GeV/c ), and at 3.5 GeV/c 33).

e * 4
The density matrix elements of K were very similar to those of the K from reaction (68b).
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6. K'ps> KN

)

This reaction has been studied at primary momenta of 0,91 GeV/c 34), 1.14 GeV/c 33 .
1.45 GeV/c 26), 1.96 GeV/c 27), 3.0 GeV/c 293. Figure 29 shows the N density matrix
elements as functions of A? from the experiment at 3.0 GeV/c. The experimental points are in
reasonable agreement with the theoretical Stodolsky-Sakurai values (50) for p exchange by an
M1 transition at the baryon vertex. When absorption is taken into account, the theoretical
predictions are somewhat modified, as exhibited by the curves in Fig. 29 30 . The curves fit
the experimental data rather well. Also at the other primary momenta, the N*++ decay dis-

tributions were found to agree with the Stodolsky-Sakurai predictions.

The experimental A? distribution falls off a little steeper than is expected from

)

the absorptive model30 .

6
This reaction has been investigated at 1.96 GeV/c ? ), 3.0 GeV/c 29), and
3.5 GeV/c 37). It was found from the decay angular distributions that it proceeds pre-

dominantly via w exchange.
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THE PERIPHERAL MODEL

H. Pilkuhn,
Theory Division, CERN.

I. THE BORN TERM MODEL

1. Definition_of_the BTM

At this CERN School, experimental information on peripheral collisions has been dis-
cussed by Schmitz, who also explained the main physical ideas leading to the peripheral model.
Consequently, I shall concentrate in these two lectures on the mathematical formulation of the

various versions of the peripheral model.

Since no generally accepted definition of "the peripheral model" exists, I shall

avoid this term altogether, Also, I shall restrict my discussion to reactions of the type
a+b>c+d , (v

where the outgoing particles ¢ and d are either stable or else resonances with definite spin,

parity and isospin quantum numbers (quasi-two-particle reactions).

First, let me define the Born Term Model (hereafter abbreviated as BTM). In this

model, the scattering amplitude T(s,t) is given by the sum of all possible Born terms,

calculated by means of the Feynman rules in lowest (i.e. second) order perturbation theory:
T(s,t) = B"(s,t)-+Bv(s,t)-+Bb(s,t) +oee (2)

where s = (c.m.s. energy)?, t = -A% = ~(four momentum transfer)?, and 7 = pion, v = vector
meson, b = baryon indicate the quantum numbers of the exchanged particle e (see Fig. 1).

As Schmitz told you, in each specific reaction most of the Born terms are forbidden by selec-
tion rules. If, for example, the outgoing particles ¢ and d carry different strangeness than
the ingoing particles a and b, then the exchanged particle in each of the contributing Born

terms has to carry strangeness (K, K* and hyperons).

Y

Y
<

AA

ebd

Fig. 1
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The general forms of the Born terms for exchange of spin zero and one are:

1

Bw = Vnac Az-Fmi' and ’ (3)

2
+e e /m
B = ! Ewt e, u/ v,y
v vac Az-rms vbd ’

(4)

where the vertex factors V contain one coupling constant each, and a few more factors which
follow from the Feynman rules (examples are given in this section, paragraph 5). When
particles b and d represent baryons, v:bd generally contains more than one term, corresponding
to the different couplings (vector, tensor, etc.). In that case Bv is strictly a sum of

several Born terms.

The baryon exchange Bb is allowed in most reactions, but is nevertheless neglected
(except in antinucleon annihilation and in meson-nucleon backward scattering). If the BTM as
defined in (2) is to be consistent, one should of course verify by calculation that the con-
tribution of Bb to some forward peaked reaction is really small, especially in reactions where
it would give rise to an interference term with some pseudoscalar or vector exchange. I say
this as a warning to the younger experimentalists, because on their question concerning the
"exchange mechanism" they might get as an answer not just a single graph, but a sum of squares

and interference terms,

The connection between the differential cross-section do/dt and the scattering

amplitude T is

TS

doa(s,t) = Teir+ %o Z |7(s, ) at (5)

spins

where q = initial c.m.s. momentum, and the index 2 on do indicates that there are two outgoing

particles. If one of the particles in the final state is a resonance with appreciable width,

particle d, say, then (5) is modified intol—d)

do = doy(s,t,s,) «~ o Tsa) o
A L GRS T L il

s 6
5 ()

where sd is the square of the invariant mass of the decay products of d, and My and P(sd)
denote the mass and width of the resonance, respectively. This modification comes from the
propagator of the unstable particle, [sd-Mz]", M =Mo- il/2. It is important for the exact

shape and position of the resonance; in the following I shall omit it.

2. Pion-exchange Born terms_and their relation to the pole approximation

As you know, many reactions are dominated by one-pion-exchange, which means that the
sum, (2), reduces to the single term Bn’ which is of the general form (3). In the BTM, this

can have three reasons:

i) In a few reactions the exchange of a particle other than a pion is forbidden by selection
rules, as discussed by Schmitz,
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ii) The vertex factors vnac and and may be much larger than those of the remaining Born

terms.
iii) m; << mz, which makes the denominator in (3) much smaller than the denominator in (4),

at least for A% < ms.

Whereas points (i) and (ii) occur accidentally, (iii) is true for all reactions
where 7 exchange can occur, and is the origin of the peripheral models_10 invented around
1958. At that time, of course, one knew little about vector mesons, so instead of Bv one had
the "exchange of more than one pion", Also, at that time one had few quasi-two-particle
reactions, and one wanted to apply the model to more general reactions, where c¢ and d in (1)
simply meant two groups of uncorrelated particles, one going forward, the other going backward
in the c.m.s.9 . Since, for such processes, one knew nothing about the vertex factors Vﬂac
and Vﬂbd’ they were expressed in terms of the cross-sections Srac and Srbd by relations of the
type:
lz d(phase-space element) . @)

do 1 |y

mac  Tlux

ac

This is the so-called pole approximation (this term derives from dispersion theory).

Since (7) holds true for a real incident pion, the approximation is

Voo (8%) =V (-m2) . (8)

When one applies the pole approximation to a quasi-two-particle reaction and compares

. . 10,4)
the result with the BTM, one finds
P Prac ,p Pt
of f of f
do-g — . —— . do- y (9)

P P pole

on on

Tac mbd

where znac and £ denote the relative orbital angular momenta for pion absorption at the two

7bd

vertices mac and 7bd, respectively, and P P n - pion momentum in resonance rest frame taken
o

of f’
at A% and -m;, respectively:

-m2)2-4m2m2 ¢ (IO)

Equation (9) is exactly correct for the mesonic vertex, whereas at the baryonic

vertex the Feynman rules give rise to small extra terms.

3. Form factors

As you heard from Schmitz, the sad fact about the BTM is that do/dt falls off too
slowly at high A%, There is usually a peak at small A?, due to the factor [A? +m?]~2

(deriving from the square of the propagator), but then at large A® the curve starts rising
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again due to the various factors (Poff)2 which increase like (A%)2. [Although (9) is meaning—

ful for 7 exchange only, the argument on the powers of A% is true in general.]

This shows that the BTM is wrong, except maybe at the smallest values of A%, This is
not surprising since nobody would expect lowest order perturbation theory to give good results
in strong interactions, I shall discuss three possible improvements of the BTM in my second
lecture. There is, however, one rather trivial improvement, namely a form factor, F(AZ),
which is independent of s. In field theory such a factor would arise from the higher order
corrections to a one-particle exchange graph, but since these corrections cannot be calculated,

2

F(Az) is really arbitrary. It should however be real, and for A% = me it should reproduce the

Born term:

F(-m?) =1 . (11)
e
For pion exchange, Ferrari and Selleri used a form factor that goes like
—_T . (12)

1)

. R . _ 1
denominator with one more power of A%, I can recommend to you the exponential form factor

Schmitz has given you the later version of Amaldi and Selleri' which contains one more

2)
exp X(-mz— AZ) (13)

which will kill the A® increase of (Poff)zl for any value of £. The value A = 2.5 GeV? gives
a reasonable fit to both pion and vector-meson exchange for most meson-nucleon reactions up to

3 or 4 GeV/c, but this number should, of course, be modified when other improvements of the

BTM are introduced.

In a loose way I shall continue to speak about the "BTM", even when I admit the
inclusion of a form factor. As a better term, let me suggest the name "reduced BTM", since
in the physical region of A% the form factor always reduces the matrix element to a smaller

value,

4. Decay distributions

When one of the outgoing particles is a resonance, the distribution of 1its decay
vector gives information about the production amplitudes. Let me first discuss the more
complicated case where you have two resonances in the final state, for example

#*
7 +p>p 4N (14)

3)

directions of the p° and N¥, respectively. Problems of this type occur again and again [see

and suppose one wants the joint decay distribution1 W(s,Az,&,ﬁ), where o and ﬁ are the decay

for example, W. Koch in the Proceedings of the 1964 CERN Easter School‘d)]. We are interested

in the general result independent of the BTM.
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The spin summation of (5) for reaction (14) reads explicitly

S 2
L [<cnn [T 2> (15)

mn\

where m and n are the z components of the p and N¥ spins, and A that of the proton spin,

In order to arrive at W(&,ﬁ) (dropping the variables s and t for this section), one cannot use
(15). Instead, one has to multiply each <mn|TlX> by the angular-dependent parts of the p and
N* decay matrix elements, which I shall denote by M;(&) and M;z(ﬁ A'), respectively. (The
index A\’ stands for the polarization of the decay proton from N%,) Then one has to sum these
products of amplitudes over m and n, then to square the sum, and finally to sum the squared

sums over the remaining polarization indices A and N/, The first double sum is

A M(a,B) A = y () mzz(ﬁ,w) . <mn|T|A> (16)
fa—

m,n

and the sum of the squares is

W(%,p) = y Lo (e ) o] . (17)
[
AN/

Once you understand these two equations the rest is trivial. Interchanging the order of

summations, (17) becomes

* 3 3
5B = § 19 E Yoy 72*) . mm! (18)
W(a,p) = LY < M M > Pant

mm’ A
nn’
where
mm/ %*
Pont = <mn|T|A><m’n’ |T|2> (19)
*

is the joint density matrix acting in both the p-meson spin space and the N* spin space.
If you want the distribution of the N* decay alone, you integrate (18) over @  For the M&

you have to insert the spherical harmonics Y;. Since these are orthonormal,

, (20)

1(2) o M? *on -
/Mm(a) M, (&) do, =8,

you simply obtain

W(p) = Z <X M?Mf{%*)- P (21)

nn’ X/



where

=Y o (22)
Pant = Phn¢
m

is the density matrix of N* alone. In the same way, the p-meson decay distribution W(&)is

obtained by integrating (18) over ﬁ:

el N 3 % A
/> ‘MZz(ﬁ,K') Mn/f (B, \") dQﬁ =8, (23)
A
~ - %, a '
W(a) = 7 Ml:l(a) . M:n, (&) - ™ (24)
e
mm’ N mm’
) = > Pon (25)
L
n
If you integrate over both decay directions, you rediscover (15):
- a N mm
/wmd%=/wwd%=> o= (15) . (26)

El
-
=

Usually this sum is normalized to one:

N e N (27)
) =) ) A

A p— —
m n m,n

In the explicit expressions for W(&) and W(ﬁ) in paragraph 5 of this section, I shall assume

this normalization,

For the explicit construction of the joint decay distribution (18), one simplifies
the summations over m, m’, n, n’ by using the hermiticity
mm’ m’ m¥

Pant = Parn (28)

and the symmetry following from parity conservation

-m,-m’ ( I)m— m’ +n-n’ pmm’
= - .
-n,-n’ nn’

. (29)
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The hermiticity follows trivially from (19), whereas (29) holds true only when the spin quanti-
zation axis (z axis) lies in the production plane. One may choose different quantization

axes for p and N*; "a useful choice is the incident pion momentum direction in the p rest frame
for the p decay, and the initial proton momentum direction in the N* rest frame for the N¥
decay.

In the 1iterature'3’1s), (29) is proven for helicity eigenstates, with reference to
6
(44) of Jacob and Wick1 ). This is an unnecessary complication since we want to prove (29)

for the peculiar quantization axes which I just mentioned, which are not helicity eigenstates.

The direct argument goes as follows:

i) Apply a momentum inversion (parity operation). Neglect intrinsic parities since they

will drop out in (19). This operation does not affect the spin states.

ii) Rotate by 180° around the normal to the production plane, taken as y axis. This sends
the momenta back to their old positions. Moreover, with both z axes in the production

plane, this transforms the spin states according to

s,m>»(—05_m b,

-m> (30)

because of

m’, -m

(e'i”Jy> =d, (m) = (-0 "5, . (31)

m
The total effect on <mn|T|\> is thus

(Vo= + (1-m) *+ (3, -
<mn |T|A>- (—1)_(/2 A) £ (1-m) £ (72-n) <=m,-n|T|-)> , (32)
where the sign of each bracket in the exponent does not matter since the bracket is an integer

number., Taking the upper signs in (32) and the lower signs in the corresponding transform of

<m’n’]T|x>*, multiplying together and summing over A\ gives one equation (29).

With (28) and (29), the general forms of the single-particle density matrices

reduce to

. ‘o e P33 P31 P31 P3~3
, . p p ,D=§1 P11 P11 pi’:—i
mm’ 10% 00 _p1o* P - w s (33)
p 1 o *  Ppp’ P3=1 —P1-1 P11 —P31
-1 _ 11
P p P -P3-3 P31 ~P31 P33

for the p meson and N*, respectively. Hermiticity requires that all diagonal elements are

1-1

real, and that in addition p is real, and that psz-s and p;-4 are purely imaginary.

The explicit result for W(&,ﬁ) has been given in reference 13; it is rather lengthy.

The forms of W(&) for the p meson alone and W(ﬁ) for the N* alone are by now well known's)'

W(a) = i%(p“ sin® 0+ p°° cos? 8- p'*”! sin? @ cos 2¢- V2 Re p'° sin 20 cos o) , (34)



- 52 -

~ . 2 .
w(p) = -l%r[p” sin® @+ py4 (14 Y5 cos? @)-73 Re ps_4 sin® O cos 2<p—72-5 Re psy sin 20 cos q)] R

(35)

where © and ¢ stand for polar and azimuthal angles as usual, Let me just indicate how (34)

is derived from (24), using the symmetry properties (33): as mentioned before, M;(&) = Y'(8,9),
m
or explicitly

Y},:‘/z\/%cos e, Y‘t1 ='~i'/2J‘%_sin@eﬁ(P . (36)

2 2
The coefficient of p'! is %ﬂ(lY}l +|Yl,| ), that of Re p'° is %W(Y}Yé + YQY}*_ Y, Y- ngjf),

and so on.

It is generally true that the decay distributions of resonances depend on the real
part of the density matrix only, if the decays conserve parity. The imaginary part is
measured in polarization experiments. An important property of most peripheral models is

that they predict that all polarizations are strictly zero, simply because all density matrix

elements are real, This is true for the BTM without and with form factor, and also for the

absorption model, but not for the unitary models like the K-matrix model and the N/D method.

5. Vertex factors

Consider first a 3-meson vertex. Let a be the incident pseudoscalar meson, 7 or K.
If the outgoing meson ¢ is pseudoscalar too, then 7 exchange is forbidden, whereas vector-meson

exchange gives

chp’ = igla+c)? . (37)

For an outgoing vector-meson resonance one can have both 7 and v exchange:

. *(m)
Vapv! = igla-e) - € ’ (38)
vH =L P9 a e e*(m) (39)
vpv’ ~ m, v p o ’
m
where e( ) is the polarization vector of the resonance. (The complex conjugate e* has to be

taken for outgoing particles.)

In the c rest frame,
(7). ()71§<(')> . (8) (40)

are the polarization vectors for m = +1, -1, and 0, respectively. The time components of all
three ¢ vectors are zero in the c rest frame. In any system, c“e#x = 0. Frome = c-a

and c+ € = 0 one rewrites (38) as:
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2iga . e*(m) = Zigac eﬁ(m) , (41)

where a, is the magnitude of 3 in the ¢ rest frame, and the 3-axis is taken along ;. From (40)
o
we see that e( ) is the only polarization vector with a non-vanishing 3-component, and there-

fore

Fa T S S (42)

and W(a) = é%- cos?® 8, independent of the azimuth.,

uy po

For the vector exchange (39), the antisymmetry property of ¢ this time allows

usav  *(m

one to replace e by ¢, and (39) becomes f - ¢ €, which shows that e;m) will not con-

tribute, thence p10 = 0,

On the nucleon side there are more couplings and their evaluation is more complicated.

The 7NN’ coupling is conveniently written as

Vﬂ'NN' = Ga(d,x,)Y—'S u(b97\) . (43)

There are two different vNN’ couplings, which are conveniently written as

v =, v
Voans = u(d,\’) [ka-+Gt) Yy o+ 2i

G
: d”]uua,x), (44)
d

m_+m
b

are the vector and tensor coupling constants, respectively.

)

For the N*¥ finally, a vector spinor u#(d,K”) is used' /. It is constructed from the

where G and G
v t

spinor u(d,\’) and polarization vectors € by means of C-G coefficients:

u (%) = u(a,%) - e, (45)

w(@%) =g ula%) - P [Fu@n) - L @)

The remaining two vector spinors u”(d,-?;) and uﬂ(d,-}é) are obtained from (45) and (46) simply
by replacing

u(d, %) €> u(d,-%), €£+)® 51(1-) . (47)
With the vector spinor, the 7NN*¥ vertex reads
G* - u

Vo = u(d2) BReu(b,n) (48)

2
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and the vNN* coupling reads

VCNN* = i‘-lv (d,\) G1guv i m—b—f'm_ vY“]Ys u(b,N) . (49)

In the last formula a possible term proportional to e’ bH ¥s is omitted. Still, equation

18)
.

(49) becomes practicable only for Gy = G,, which is the Stodolsky-Sakurai model

6. The Stodolsky-Sakurai model

An important prediction of this model is that the decay distribution of N*¥* with
respect to the production normal is approximately 1 +3 cos? ®, independent of the azimuth.
Schmitz has discussed how this follows from the absence of states with A\’ = * ?@ (quantization
axis = normal to the production plane). The absence of these states follows from the picture

18, 22)

of magnetic dipole absorption , but for those who are not familiar with this picture I

shall show by explicit calculation under which conditions

G,
(N = Yoy A= V2) =u(d /2)[ A"‘1m +m eY A]YS u(b,%;) ~ 0,
d
(50)
where A” is the product of the V propagator and Vﬁac' An exact treatment shows that (50) is
only approximately true, therefore we can put my = my = M and obtain, by inserting the
Hermitian conjugate of equation (45),
. G
(%, 2%) = 55 a(d,%) - e e uGan) L 6D
where we have abbreviated
Al= - (A - 1Ay), e = - (e - 1ey) . (52)
. 01
With ys = - < I0 > and
1 1
0 0
ub, %) = 2.3 (,) | o (53)
2 \0 M P+
we get
b_/2M
b./2M 0
voul, %) = (P ) uk-) < S ) L (e
0 -1

Similarly, we have in the approximation m = M

u(d, %) = (1,0,0,d_/2M) . (55)
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Next, we go to a co-ordinate system (for example the lab. system) in which both d+/2M and
b+/2M are so small that we can work in lowest non-vanishing order of 1/2M (such a system
exists only when A® is small). Due to the factor ys in (51), this is the first order in 1/2M.

Inserting equation (55) into equation (51), we get

a(d,¥)|GiA - 1 & e_yA:]= [?,A, 0,-% e, S=(Ge_ + G,d_):] . (56)
Dotting this spinor into ys u(b,V.) gives zero if
A =0, (57)
and dotting it into ys u(b,=-%) gives
-51—1[b+A_-A_(Gze_+qu_)] =0 for Gy =G . (58)

To complete the proof, I should show that the matrix elements for A’ = * 7@ do not
vanish to order 1/2M, and that Az = 0 for the reactions in which we are interested., For the
vertex (37) Az = 0 holds because the z axis is the normal to the production plane. For vertex

(39), Az becomes approximately zero for high meson energies.

II. MODIFICATIONS OF THE BORN TERM MODEL

1. VWhat is wrong with the Born term model?

Schmitz has already told you the main physical arguments, so let me again restrict my

arguments to the formal theoretical pointse.

The first point is unitarity of the S matrix:

sts =1 (59)

where "1" means a big unit matrix. Putting

S =14+iT , (60)

and taking T as a symmetric matrix (which is possible whenever S is time-reversal invariant),

unitarity reads

2 ImT = T*T . (61)

In the BTM, T = ZB. Since Born terms are real, the left-hand side of (61) is zero. In quantum
electrodynamics, B is proportional to the small fine structure constant o, and the right-hand
side is then, in fact, zero too, to lowest order in a. (You can also invert this argument to

prove that B has to be real,) But in strong interactions the coupling constants are large,
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and so is T*T. Since the perturbation theory of strong interactions does not converge, one

has to modify the Born terms in a non-perturbative way in order to get a unitary model,

20) 21)
and the N/D methods. The latter

method is superior to the K-matrix method in the low-energy region, for bound states,etc., but

. . .19
Two such "unitarizers" are the K-matrix

is difficult to apply at high energies where many channels are open.

Then there are approximate methods, among which the absorption modelzz) has reached
the greatest practical importance. In the approximate methods elastic scattering plays a
special role. To see the reason for this, put some indices onto (61), i,m, and f for initial,

intermediate, and final states, respectively:

B3
—_ 7
21In T, = g L P 61)

m

Then for f = i, you have a sum of absolute squares, which is certainly larger than any sum
with i # f. Therefore, at high energies where the number of contributing channels is large,

the absorption model takes Tii as purely imaginary, and the remaining Ti as purely real,

f
hoping that many terms in the sums for i # f somehow cancel each other.

Now you understand why the BTM is not applied to elastic scattering: it would give

a purely real amplitude.

The second, and probably more serious, difficulty arises when one considers the

exchange of particles with spin: for exchange of a particle of spin j, the amplitude B(s,t)

diverges like st as so o, This will be briefly discussed under paragraph 4.

2. Absorption model

In the absorption model the Born terms are modified by elastic scattering in the
initial and final states. This has to be done for each value of J, the total angular
momentum. The transition from T(s,®) to TJ(s) is conveniently done in the helicity

representation of Jacob and Wick'® ’

AT A > = 7 (3+%) d‘c"dITJl)‘a)‘b’ . d{“(e) , (62)
J

where © denotes the c.m.s. scattering angle, The magnetic quantum numbers of the d functions

are

A=A mh, = -A . (63)

The inverse formula of (62) will be needed for the Born terms:

1
J J
<xcxd|B Ixa)\b> = 217/ d cos @ <xcxd|B(@)|xaxb>- dM(@) . (627)

-1
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The absorption model consists of putting

J - oicd(J) J i3ap(J 6
AMIT A N> = e AN BTN > e 1, (64)

where sab and Bcd are the elastic scattering phase shifts in the initial and final states.

At high energies, the complex number 5(J) has a large positive imaginary part, as can be seen
from (61), so that in (64) each Born term is "damped" by a factor exp[- 25(J)], where 5(J) is
the average imaginary part of initial and final states.

There exist two derivations of equation (64), one in potential scattering23’24), the

other in S-matrix theory, using the eigenphases of the S matrix>°’., Both derivations involve
so many assumptions that at present it appears to be more appropriate to assume (64) as an

elegant ansatz, which is justified by its practical success.

The darkest point in both derivations concerns the range of the interactions:
except when §_, = 8_,, one has to assume that 8(J) extends to much larger values of J than does
BJ, But at least for pion exchange, the long range of Bﬂ is the very basis of the peri-
pheral model, so there is a plain contradiction, (I should, however, mention that in the
case of antiproton-proton scattering it appears that S(J) does extend further in J than does

Bﬂ.)

Nevertheless, let me at least indicate how (64) is derived in potential scattering.

6
Instead of J, one uses the impact parameter b, and writes2 )

oo

T, = / dzb/ dz eila-a’)b B(b+k z) eridilsz)  ise(b,z) o (gqy

=
o
X «+

Fig, 2

Here q and g' denote the incident and outgoing momentum, respectively, k is a unit vector in
the direction of q+q’, and the impact parameter vector b is perpendicular to k. The indices
i and f on the phase shifts stand for initial and final state:

z

u,(b+ke.z’) dz’

1
8;(b,z) = - o
1de

(66)

(-]

50(b,z) = -;'—-/ up(b+kez') dz/
¥4

f
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¢)

high energies and small scattering angle. Because © is supposed to be small, g,g' and k are

where u is the optical potential, This is Glauber's2 approximation to the DWBA, valid at
nearly parallel, and b+k+ z’ is the straight line on which a classical particle of impact
parameter b would move (see Fig., 2) and Si is the phase shift characteristic of that path,

ending at the point b+ke+ z, where the Born term induces the transition to the final state.

Notice that (64) implies that the elastic scattering does not change the helicities.
This assumption is always made in high-energy scattering. Also, it is customary to take §
purely imaginary (the real part does not contribute to the "damping" anyway). If the elastic

scattering is described by an exponential which goes through the optical point,

o® 2
do _ Ctotal (R .
aa® = Tiér exp( % A) ’ (67)
then
1
i5(3) _[7, _ Ztotal -23° & (68)
e S Hetel o (2 .

Since (68) is a real quantity, no polarizations can occur. Instead of J one should have the
orbital angular momentum L, but for high values of L the two quantities become equal, since in

most reactions they differ by * %, only. In fact, in the applications (62) is approximated by
the integral.

J )
<xcxle(e)|xaxb> ~ f JaJ <xcxd|T lxaxb>. I <2J sin 5> , (69)

where Jn is the Bessel function of the first kind of order n = p-A. This approximation
should be regarded with suspicion, since it turns out that the largest part of the absorption

occurs in the 3-4 lowest partial waves,

How does the model compare with experiment? In meson-nucleon scattering

olotal/ﬂRz is of the order of 0.75. For production processes the final-state scattering is
unknown, and therefore (o'total)f and Ri are parameters whose values are determined by the

differential production cross-section, The range of these parameters is, however, somewhat
limited: because of (68), c'total/ﬂR2 should not be greater than one. As a rule, no fit is

obtained when this ratio is smaller than one, therefore

(Utotal)f = 7R (70)

is the "standard choice". The only remaining parameter is then R;/Ri. In meson-nucleon

collisions, R;/Ri ~ 2-3, These numbers imply that both in all final

o
O-total and elastic
states are systematically three or four times bigger than in the initial state. This is a

somewhat unpleasant result, especially for charge exchange reactions where o} = 0} follows from
Pomeranchuk's theorem, In antiproton annihilation, (Ofotal)' = ﬂRi, and the situation is some-
i

what better. When the outgoing particles carry high spin, the absorption model gives a poor

fit to the differential production cross=-section. This seems again to be connected with the

factors (P 21, which diverge like (132)2}3 as A% o,

off)
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By increasing the parameter A\ in the form factor (13), one can get arbitrarily steep
differential cross-sections. The reason why one cannot get the same result by increasing R;
follows from (68): for big R?, the exponent varies too slowly for those values of J for which
the Born term is non-zero, and (64) does not decrease rapidly enough as a'function of J. From
the theoretical point of view this is no criticism of the absorption model, it merely'shows
that the Born term is wrong. This is confirmed by the K-matrix calculation, to be discussed

below.

In addition to the differential cross-section, the density matrix elements are also
changed by the absorption. This might appear surprising since Bi and Bf do not depend on the
helicities. But they do depend on J, which means that the Born term no longer "sees" the

original incident plane wave, but a distorted wave.

27)

this agreement is not easily judged. For the K-matrix model, the situation is the sameze).

The agreement with experiment is usually goddzz’ , although the significance of

The experimental points have large error flags.

3+ K=-matrix model

In the K-matrix model one writes

S = :jiﬁ = (14+2iK-K2)(1 +K2)™" (71)

and for K one puts
K= %3 , (72)

which automatically leads to a strictly unitary S matrix. This is so because the Born terms

are real and symmetric, which are exactly the requirements K has to fulfil.

Remember that all terms in (71) are again matrices, therefore you have to do matrix
inversion, This inversion is practically possible only when you invent a clever way of
handling the three-and more-particle states which enter the quasi-two-particle reactions only
indirectly through the unitarity conditions. This can be done by assuming that for given J
the elements of K corresponding to 2- 3 and to 3-» 3 transitions are distributed statistically
around zero meanza). In that case K® becomes diagonal in the quasi-particle number, such that
for the calculation of Sz» only K> and (K?),, are needed.

2K
1-iK

The final result for T = % (s-1) = is

Kop + iK3, + ib(b + 1)
(1 +b)% + K3,

Toz = 2 (73)

where

1

b= i3 77,

. K:;z (74)

is a multiple of the unit matrix. All this holds true for a given partial wave J.
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Because of the non-linear coupling between the different channels any unitary theory
is necessarily much more complicated than the absorption model, say, where one can treat one
channel at a time. Also, you have to insert the Born terms for such reactions as m+ N¥- p+ N*,

which involve the unknown N*¥N¥7 coupling constant.

On the other hand, you can,of course,calculate what you want: elastic scattering,
charge exchange, real and imagainary parts of elastic amplitudes, decay distributions,

polarizations, etc.

How does the model compare with experiment? Well, onc can get good agreement for
the inelastic processes, but then the total scattering comes out too big by a factor of 3 (for
K+p interactions at 3 GeV/c), and the elastic cross-section is too big by a factor 5- 10,

This is rather similar to the situation found in the absorption model,
We are led to the following tentative conclusions:
i) The unmodified Born terms are so enormously big that a unitary theory will give a strong
damping in the low partial waves.

ii) This implies an imaginary amplitude in the elastic channel which is much too big.

iii) 1In many cases the damping is still too weak to give a good fit to do/HAZ. Additional
damping is provided by the unitary effects of the three-and more-particle states. This,

however, makes the amplitude in the elastic channel even bigger,

4. High-energy behaviour and Regge poles

The most serious difficulty with Born terms other than spin-zero exchange is the high=
cnergy behaviour of these terms. For vector-meson exchange, B(s,t) diverges like s as s> ,
This is due to the metric tensor g“v in the vector-meson propagator, which contracts external

momenta from both vertices. Generally, the exchange of a spin-j particle gives rise to a term

proportional to sJ.

Jj=-1

In the partial wave decomposition, BJ will increase like s simply because

do _ _1 do
dA? T 2qq’ d cos @ (75)

In the absorption model, TJ could increase more slowly than BJ if the absorption increases with

energy. But for some reactions like charge exchange (where the exchanged particle has to be a

p meson), we need TJ» 0 as s>, This is only possible if R%? > », which means that Olotal goes

to infinity too! This follows from (70). Also Oélastic will become infinite in this case by
%1/4

integration of (67):

elastic %total”

The situation becomes even worse for spin-2 exchange (fo particle). Here R2 > js

already necessary in order to avoid that TJ increases beyond the unitary limit ITJ| = 2,

In the K-matrix model, TJ will not exceed the unitary limit for the exchange of any
spin. This is simply due to the exact construction of unitarity, and holds true in the N/D

method too. Unfortunately, the requirement of unitarity is not enough for a good description
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of high-energy physics. Let us consider the case of spin—2bexchange again, Here TJ = 2i
follows for the elastic channel by neglecting anything but Kzz in (75), provided that terms of
order s? occur in the diagonal elements of ng only. This implies that the inelastic scatter-
ing in each partial wave goes to zero, despite the fact that the Born term for one inelastic
process becomes infinite. (However, it does not imply that the total inelastic scattering
goes to zero, since the number of partial waves increases, too,) To say the least is that we
do not expect such high-energy behaviour merely because there happens to exist a resonance in

a spin-2 state [there appear, in fact, to be rather strict conditions on the magnitudes of the
K-matrix elementszs) for which (73) makes sense].

It appears, therefore, that at high energies one has to start with something else
than the usual Born terms. At present, the only model for this purpose seems to be the Regge
pole modelzg). There, one would replace j by the "Regge trajectory" a(A?), with a(-mi) = Je
The real part of « decreaseszﬁs A® increases towards positive values. The factor sj of the

BTM would be replaced by sa(A), which increases less than sJ, for all physical values of A%,

It is unlikely that a Regge pole model could dispense with a unitarization procedure.
The difference between peripheral proton and antiproton interactions, for example, seems to be
a direct consequence of absorption. But one has to take care that the amplitudes have
qualitatively correct s and t dependence before one starts unitarizing them, otherwise one is
wasting a good procedure on a bad object.
Except for A2 of the order of a few m;, the peripheral model is still rudimentary.,
This need not surprise us: if we knew what is going on at A% = 1 GeV® (at high energies this

is still in the forward cone), we would have a theory of strong interactions.
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HIGH-ENERGY ELASTIC SCATTERING

A.M, Wetherell,

Nuclear Physics Division, CERN,

I. INTRODUCTION

In this talk on the elastic scattering of the strongly interacting elementary
particles at energies up to about 30 GeV, I shall give a general picture of the established
experimental results in the field, and describe the current problems and the probable future

directions for research,

One of the main current interests in elastic scattering, namely the behaviour at
very small angles, has been studied recently at the CERN Proton Synchrotron and a discussion

of this work will form a substantial part of this report.

We may begin by asking the question, at a fundamental level, what do we expect to
learn from studying the elastic scattering of hadrons? Possible answers might be:
i) the shape of the strongly interacting charge distribution;
ii) something about the internal structure of the particles;
iii) the mechanism of scattering or the way in which momentum is transferred from one

colliding particle to another.

Such answers might be expected to result from a study of the scattering amplitude,
and experimentally one sets out to learn about that by performing angular distribution and
polarization measurements over the complete range of scattering angle available which is, of
course, 0 to 7 for unlike particles, but only O to n/2 for like particles, From the results
of such measurements one would hope to determine the structure of an amplitude, which in

general will be complex
F(s,t) = D(s,t) +iA(s,t) = Fo(s,t) exp i ¢(s,t)

and spin dependent

- >
D(O—‘I ’62)

o
]

A(g_l ,—&2 ) 4

>
[t}

The kinematic variables here are s, which is the square of the total energy, and t the four-

momentum transfer squared.
t = - 2p?(1-cos 8) =~ - p@® (for small angles).
These variables are often convenient to use rather than momentum (or wave number) and scatter-

ing angle, but I shall use all of them, as in some circumstances one set of variables suits the

discussion better than the other,
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At the GeV energies we are considering, the elastic scattering angular distributions
are dominated by a very strong forward peak. The peak can be mainly explained by diffraction
resulting from the absorption of the incident waves by the many open inelastic interaction
channels. In these circumstances one may believe, for small-angle scattering, that the
imaginary, or absorptive part of the scattering amplitude, A, is larger than the real, or

dispersive part, D.

A simple optical model of diffraction scattering’), which will be useful as a

phenomenological guide during my discussion, can be written down as follows. Spin is com-

pletely ignored.

The scattering amplitude may be expanded in partial waves

f(e) = 7(2“1) f,P,(cos ©) . (1)
2
As a physical assumption let us take
=i i <
£, = 2k[1 n, exp(218l)] for £ XL
(2)
f,=10 for £ > L .

The waves for which £ X L are equally absorbed and for which £ > L do not interact at all, in
other words an absorbing disc model is what we are discussing, In these terms we may write
L = kR, where k is the wave number of the incident wave and R the maximum impact parameter, or

radius.

As a physical approximation, based on ignorance, we now put

f, = g;(l- n) for £ 2L . (3)

This is merely to say that a sort of average over the absorbed amplitudes has been made. Then,

L
i
16) = (1= ) (2241) Pyleos 0) (4)
[:0
and this can be written exactly
£8) = A(1-n) | P(cos ©) + I (cos o):l , (5)

the primes indicating differentiation with respect to cos O. This form of the partial wave

optical model amplitude is rarely used; mathematically it is valid at all angles,
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An approximation valid at small angles may be written as follows. Consider L=kR >>1

so that the scattering is confined mainly to small angles. Then,

kR kR
y (22 +1) Pz(cos 0) = 2[ 2 Jo(£8)de = (K2R?) 2J,(kRO) |
Ea—

o

kR®

¢=0 (6)

Hence, in this approximation

kRO

£(6) = &(1- n) (k*R?) [__:2 3y (kRO)T) -

The cross-section is obtained from both (5) and (7) by
do, 2.
5@ = [r)] - (8)

From (7) therefore the angular distribution is
2
do, 2 J; (kRO
O = %o wewe [ 240000 | (9)

The characteristic oscillatory Bessel function angular distribution (9) is, of course,
just that first given by Airy in 1835 in discussions of the diffraction of light. It has been

much used in nuclear physics since the original discussion of Fernbach, Serber and Taylorz).

A further mathematical approximation to the Airy formula valid within the first

minimum of (9) may be made using

()l

X

For a diffracting radius of = 0,9f the first minimum is at t = - 0,7 GeV?/c.

In this approximation a neat formula for the forward diffraction peak may be written

in terms of the variable t(x _pz@z); this is

(#)-(g) =[-(8) ] o

do of tot
<d_t>°= 16;)7 . (12)

where

Thus, the forward diffraction peak on this model is exponential in ItI with a shape
depending only on the size of the diffracting object. There is no energy dependence in the
shape of the diffraction peak.
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It is interesting to note that in this optical model the assumptions which lead to a
forward diffraction peak also give a peak in the backward direction. This point was

originally discussed by Blokhintsev>’ and further by Perl et alf).

Putting ©/ = 7- 0 in equation (5) and applying the same approximations as for (6)

one finds
ORI SENC DN (13)

This angular dependence gives a peak steeper than that of the forward one and also much

smaller (I/Lz) in intensity.

These optical model formulae are, of course, specific to the model adopted,
[equation (2)]. A useful general quantum mechanical result which allows one, from experiment,
to say something about the phase and/or spin dependence of the scattering amplitude is the

optical theorem®) which states that

ko 2
Bo-oz(—=t), (14)

where the equality holds for a purely imaginary scattering amplitude without spin dependence.
If, in a measurement of scattering at very small angles, it is found that the differential cross-
section extrapolates to a value greater than the optical theorem value, it can immediately be
said that there is a real part in the scattering amplitude and perhaps also a spin dependence.
In this sense, then, small-angle measurements are sensitive to the phase of the amplitude: we

shall see later how other possibilities arise in this context,

So far, we have discussed a model for the imaginary part, which gives specific ideas
about diffraction scattering. For contributions from real part or as it is sometimes called
dynamical scattering, one may suppose that the particle exchange mechanisms, m,p, etc., which
form the basis of nuclear force considerations will play a role at high energies. Field theo-
retical and dispersion theoretical considerations lead, however, to the expectation that such
mechanisms should decrease relative to the diffraction processes at very high energies. Let
us now leave these preliminary remarks and look at some interesting elastic scattering data

collected during the past two years,

II. EXPERIMENTAL RESULTS ON THE DIFFRACTION PEAK AND LARGE-ANGLE SCATTERING

)

Beginning at the low end of the GeV range, some measurements of Damouth et alf on
ﬂi-p scattering at 2 GeV/c using optical spark chambers, exhibit interesting features relevant
to our discussion of diffraction, Figure 1 shows their angular distributions, which were
measured over the complete angular range. Outside of the sharp forward peak some structure in

the angular distribution is evident. The peak at cos ® ~ 0.2 was at first tentatively related
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to the bump (resonance) found in the 7 -ptotal cross-sections at 2.08 GeV/c by Diddens et alj).
Another explanation has been given by Simmonss who has fitted the angular distributions rather

well by the simple optical model discussed in the Introduction.

Using equation (5) with L = 3 the fits shown in the figure were obtained, the bump at
cos ® = 0,2 coming out simply as a secondary diffraction maximum. Perl et al.9 have recently
looked critically at the available ﬂi-p data and find that the secondary diffraction maximum is
evident, but more weakly, up to about 4 GeV/c. In terms of the variable t it peaks at
t ~ - 1.2 (GeV/c)2%. Moreover, taking the diffracting radius to be 0.9f,the secondary maximum,
using the high-energy form of our optical model (9), should be exactly at this momentum trans-

fer.

Much of the data is from bubble chamber measurements and is weak statistically;
future high-energy 7-p counter and spark chamber measurements should have interesting angular

distributions with which to deal,

It is at least amusing that discontinuities in the w-p angular distributions outside
the main diffraction peak can be qualitatively but naturally explained by the simple optical

model.

Information on the existence of a backward peak in Wi-p scattering has been obtained
from bubble chamber measurements by Aderholz et al.’o) at 4 GeV/c, and by Deutschmann et al.11)
at 8 GeV/c. Figure 2 shows the angular distributions with a distinct backward peak at
4 GeV/c. At 8 GeV/c and at the enormous momentum transfer of ~ 14 (GeV/c)? the CERN group
found two events exactly in the backward direction. Whether this behaviour in the backward
hemisphere can be characterized by an optical description is as yet impossible to say, but
again the fact an optical model can give some such behaviour leads to a hope that it may pro-

vide some sort of phenomenological description even outside the forward peak.

Returning to the region of the main diffraction peak and looking at higher energies,
detailed and extensive results on p-p, B—p, ﬂt-p, and Ki-p scattering have been obtainediz) by
a Brookhaven group using elaborate counter hodoscopes with computer on-line. Similar experi-
ments13) on p-p and ﬂt—p scattering have been performed by a CERN-collaboration group using

optical spark chambers.

The general appearance of the results of the BNL p-p experiment are shown in Fig. 3,
which gives the data taken at 6.8 and 19.6 GeV/c. The noticeable qualitative features are
that the differential cross-section fall almost three decades in a range of t of - 0.9 (GeV/c)?.
There is a distinct energy dependence, shown by the splitting of the curves for -t > 0.3 (GeV/c)z,
and considerable curvature at each energy. The energy dependence, the famous shrinking of
the p-p diffraction peak, and the departure from a pure exponential t dependence are, of course,
subtle features which are not obtained from the simple optical model. To discuss these

features the experimenters fitted the curves empirically with the formula

3—-€—~ exp(a +bt +ct?) (15)
the departure from a pure exponential coming from the t? term and the energy dependence

showing up in the variation of the coefficients b and ¢ with energy. One may note
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in passing that b/c > 1, and more strongly b2/c >> 1. Some ﬂi-p results are shown in Fig. 4.
The immediate striking feature is the difference from the p-p data in that there is no shrink-
ing. This result demolished the initial wave of enthusiasm for Regge pole theories of
scattering. The range of t covered in Fig. 4 does not extend, unfortunately, over the region
of the second diffraction maximum, but there is no clear sign of a minimum or change of slope
at -t =~ 0.7 (GeV/c)2. The results of this work on the other particles may be stated briefly as

follows:

i) S—p shows an energy variation opposite to the p-p, in other words an expansion of the

diffraction pattern;

ii) K+—p exhibits a shrinking but at a rate, with respect to energy, less than the p-p;

for K_-p no definite conclusion can be reached.

Further statements from these experiments are that the p-p and n+—p angular dis-
tributions show a +10% deviation from the optical theorem value when extrapolated to the
forward direction. Evidence for a considerable real part in the p-p and w+—p, and possible

spin dependence in the p-p scattering, is thus offered by this experiment.

The form of the diffraction peak angular distributions found in these high-energy

14)

scattering induced by the production of secondary particles. An interesting conclusion of

experiments has been discussed by Van Hove in a phenomenological calculation of the shadow
this discussion is that the momentum transfer dependence of the angular distributions (15) can
be accounted for if the secondaries created are numerous and emitted with weak dynamic

correlations.,

At momentum transfers larger than 1 GeV/c no extensive survey work has yet been done
apart from that of the Cornell-BNL group on p-p scattering's). Differential cross-sections
were measured, using counters, at scattering angles up to 90° (c.m.s.), and at energies up to
30 GeV. Systematic angular distribution measurements at fixed energy were not made due to
practical difficulties caused by the use of the internal beam of the accelerator. The results
of the large angle p-p measurements are shown in Fig. 5. An impressive feature is the
enormous range (a factor ~ 10°) of cross-section covered, The dashed lines show the trend of
fixed energy angular distributions from which it is clear that while the t dependence slows
down (as it must towards 90° c.m.s. for like particle systems) the energy dependence or shrink-
ing is rather strong. Several attempts‘s-'e) have been made to fit this large-angle

data with a simple empirical formula. A fit of Orear18 is shown in Fig. 6 in which a form

9= 2 exp - (an)) (16)

where pL = p sin ©
has been used. The fit was achieved with
A = 595+ 135 GeV2 mb/sr, and % = 158+ 3 NeV/c .

Considering the range of variation of the cross-section in Fig. 6 the fit is remarkably good.
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Various interpretations of these results have been discussed and are listed in
reference 15, The optical model which we have seen to show interesting possibilities for 7p
scattering at lower energies has been extended by Serber'q) for the conditions of the p-p
experiment. While the over-all rapid decrease with momentum transfer (~ t-s) is reproduced by
Serber's model, the energy dependence is not, and in this sense the optical description fails.
A statistical model for the large-angle scattering has been also discussedzo). In this model
the emission of two particles at large angles is supposed to result from the decay of a com-
pound state formed in the collision. The calculations using this model have been performed
in two ways. Hagedorn, Jones and Fast used the results of computer calculations of phase
space for particle production estimates, while the other authors in reference 20 discussed the
problem using thermodynamic arguments, It was found that the statistical model gave a rather
good description of the energy dependence of the very wide angle (90°) proton scattering data;

the angular dependence outside of the diffraction peak is not well explained, however.

A nice physical picture of collisions, which in a general way brings together the
various points of view, has been presented by Wu and Yang21). They remark that if the proton
is pictured as an extended object containing characteristic frequencies largely in the region
of ~ 100 MeV, then it is clear that a very rapid decrease of elastic cross-section with trans-
verse momentum is to be expected as it is difficult to accelerate pieces of the nucleon
violently without breaking it up. Exchange of pieces of nucleon matter longitudinally can
be rather easily made, however, as the internal motion in the nucleon leads to large

longitudinal components of momentum in the laboratory system.

So far extensive work on wide—angle very high-energy 7n-p scattering has not been
published; it will be interesting to see whether the general behaviour is similar to that of
the p-p scattering. Already we have seen a difference in the diffraction peak, namely the
non-shrinking of the w-p. Also, the existence of secondary diffraction maxima in the lower

energy 7-p data seems to constitute a difference from the p-p behaviour.

To summarize the above experimental results we may say that:

i) the 7-p and p-p scattering amplitude at momentum transfer less than 1 GeV/c is largely

imaginary but a certain amount of real amplitude is probably present;

ii) the scattering amplitude, in the main diffraction peak region, has an energy dependence

which depends on the particle system;
iii) the m-p scattering appears to show secondary diffraction maxima up to about 4 GeV/c;

iv) the wide angle (90° c.m.) p-p scattering appears to behave statistically rather than
optically.

It is clear that the over-all situation is quite complicated and that only rather

qualitative statements have been made, for example no definite phase for, say, the p-p scatter-
ing amplitude has been given. This problem has been taken up in the last year in measurements

of p-p and 7m-p scattering at very small angles,
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ITII. SCATTERING EXPERIMENTS AT VERY SMALL ANGLES

A general method to find the phase of a high-energy charged particle scattering
amplitude at small momentum transfers is to measure the interference between the essentially
real Coulomb scattering amplitude and the real part of the strong interaction amplitude.

The cross-section can be written simply, ignoring spin complications and small correction

terms, as
49 _ cyip+ial (17)
dQ
in which C is the Coulomb amplitude. Then,
49 2 1A% 4D 420D . (18)

dQ

After removing the known Coulomb contribution C? the two last terms in (18) give:
i) a deviation from/the optical theorem value, and

ii) a characteristic shape in the angular distribution,

The interference term varies essentially as @ 2 so that an experiment detecting such
a contribution to an angular distribution would give a direct measurement of the real part of
the scattering amplitude. This method works well at lower energies and Fig. 7 shows a p-p
angular distribution measured at about 0.8 GeV/c by Fischer and Goldhaberzz), using nuclear
emulsions in a forward camera-type of experiment, Figure 7 gives an idea of how destructive
Coulomb interference with the real nuclear amplitude can appear, As the Coulomb force in a
p-p system is repulsive, the destructive interference terms show that the nuclear force

corresponding to the real part is attractive at this energy.

At energies above, say, 5 GeV, the main experimental difficulties in detecting the
scattered particle arise from the very small laboratory angles at which measurements in the
Coulomb interference region have to be made; for example at 19 GeV/c the differential cross-
section has to be well measured at angles below 5-6 mrad. Another possibility is to detect
the recoil proton which emerges at almost 90° (1ab, system), but then a problem is presented

by the very low energy of the particle.

The recoil kinetic energy is:

2.2
Trec = lﬁl =P® ’ (19)
2M 2M

so that for 19 GeV/c and a scattering angle of 2 mrad the recoil energy is only about
O.8 MeV.

3)

The recoil proton method has been much used by the workers at Dubna® in p-p measure-

ments, using the very simple system shown in Fig. 8.
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The internal beam of the accelerator is incident on a very thin foil hydrocarbon
target, and particles emitted at essentially 90° were detected by nuclear emulsions in which
the angle and energy can be well measured. A similar experiment has been performed24) at
CERN, at 24 GeV/c, using an extracted beam and a H, gas target. Recently, the Dubna workers
have applied solid-state detectors to this type of experiment, which seems to be a progressive

and interesting development,

)

Experiments detecting the fast scattered particle have been recently done at CERN25 R
6 7
at Brookhaven2 ), and at the Rutherford Laboratory in Englandz ). The CERN and the British
experiments measured p-p scattering using sonic spark chambers, while the BNL group measured

both 7=p and p-p scattering with elaborate counter hodoscopes.

The layout of the CERN experiment is shown in Fig. 9. An elastically scattered beam
of protons from the accelerator was used. The directions and momenta of incident and scattered
protons were measured by a system of five thin-plate sonic spark chambers S; to Ss, a small
counter C4y, and four magnets. The amount of stray material in the beam was kept to a minimum
to reduce multiple scattering and background. The angular resolution of the system was
~ }Qo mrad and the momentum resolution ~ }Q%. This good resolution was possible because of
the accurate location (~ }Q-l mm) of particles in the spark chambers; for hodoscopes the pre-

cision is generally not better than %, cm.

In the original runs of the spark chamber experiments the digitized time-of-flight
information from the chambers was recorded on magnetic tape at a rate of 1-2 per synchrotron
cycle. More recently, a small (4K memory) fast computer has been put on-line, and rates up to
~ 10 per pulse can be achieved by using the computer memory as a store during the data acquis-
ition cycle and writing on tape between cycles. Moreover, the computer checks the data and
signals faulty operation of the spark chamber system. The calculations of momenta, scattering
angles, and cross-sections are always performed by a large central computer from the filled

magnetic tapes acquired during data taking periods.

In this respect, the BNL hodoscope system using an on-line computer is more advanced

as it provides immediately fully computed results from a sample of the raw material taken,

The angular distributions found in the CERN p-p experiment at 10, 19, and 26 GeV/c
are shown in Fig, 10, and clear deviations of the cross-section above the optical theorem value
are seen, For a quantitative discussion the cross-sections were analysed using two models.
First, fits were made on the assumption of a complex spin independent scattering amplitude fn

using the relations:

n

- (?—w‘;} >[p(t) exp(YsAgt) +i(exp '/zAIt)] (20)

-2e2 .
f, = Felt] (1+1ie€) (21)
¢ = 0.0073 1n 229451 (22)
do p?|f +f Iz +corrections (23)
dQ n c
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in which t is in units of (GeV/c)?, B is the laboratory velocity, and Oyt 1S the strong inter-
action total cross-section. For the very small values of t involved, the electromagnetic form
factor of the proton has been taken equal to unity. The expression for the Coulomb amplitude
was taken from the discussion of Bethe28 and contains a small imaginary part e. The inter-
ference of the latter with the large imaginary nuclear amplitude is always small and
contributes, for example, at t = - 1.8+« 1073 (GeV/c)?, 2.3% to do/dQ. At larger momentum

transfers this contribution is even smaller.

In the evaluation the following simplifications were made:A,; = AR = A, and p(t) = p
independent of t. Corrections amounting to about 1% were made to take account of multiple

scattering in the hydrogen target and the presence of small non-additive Coulomb terms29 .

The good fits found using this model are shown on the left-hand side of Fig. 10 with
an angle scale as abscissa. The amount of real part found over this energy range is sub-
stantial, about 30-40% of the imaginary. The sign of the interference here is positive,

corresponding to a repulsive force and opposite to that which we saw at 0.8 GeV/c in Fig. 7.

In the second model the characteristic shapes of the angular distributions were
attributed to spin dependence of the p-p interaction, Pure imaginary singlet-triplet spin

amplitude fits were made using the amplitude term:

=i (g2 [Fegtle, cotinn . [ U5 Bda eotian | L 0

n

and the optical theorem constraint (because both amplitudes are imaginary)

Yaas + Yoy = 1 . (25)

The exponential slopes A; and A3 for the singlet and triplet states, and the amplitude co-

efficients ay and as were varied to fit the experimental points.

The fits obtained are given in the right-hand side of Fig. 10, where the abscissa is
the four-momentum transfer squared. In this section of Fig., 10 the Coulomb cross-section has
been subtracted. The rapidly decreasing initial part of the angular distribution has then to
be fitted using a very steeply falling imaginary triplet amplitude. It was found that the fits
obtained from this model were not very good. In any case, the steep initial slope exhibited

by the data would appear to be most plausibly Coulomb-like in origin,

It was concluded, therefore, that a complex spin independent amplitude explains the
data better, although of course a more complicated situation, such as complex spin dependent
amplitudes, could not be ruled out. Polarization measurements of various kinds must be made

to study this possibility.

Some ﬂ--p data obtained between about 8 and 12 GeV/c in the BNL experiment are shown
in Fig, 11, A distinct destructive Coulomb interference is manifest in these curves, Spin
dependence can be essentially ruled out at very small angles in the m-p system as the only

possible spin dependent term approaches zero with scattering angle. The real part inducing
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a destructive Coulomb interference in the ﬂ_-p system corresponds, as in the p-p case, to a
repulsive force. The same is found to be true for ﬂ+;p at around 10 GeV/c and the ratio of

real and imaginary parts for both 7" and 7 is ® 25%.

Figure 12 shows the ratios of real to imaginary amplitudes (p or D/A) for forward
p-p scattering which were obtained from the various experiments, The interesting quaiitative
features are the rapid switch from positive to negative values (attractive to repulsive) in
the region (1-1.5 GeV/b) of the steep rise in the p-p total cross-section and the rather con-
stant behaviour up to 26 GeV/c. This general sort of behaviour was found by Sﬁdingso) from
an evaluation of the nucleon-nucleon dispersion relations of Goldberger, Nambu and Oehme31 .
Figure 13 shows the results of Sodings computation on a logarithmic momentum scale. The trend
of the experimental points is well reproduced; on the same basis the prediction is that the
p-p will show a much smaller negative D/A above 5 GeV/c. This will be an important experiment
to check on this application of the dispersion relations, The extension of these studies to
the 100 GeV region, in the rather distant future, also presents fascinating possibilities.

In Soding's evaluation D/A is set equal to zero and 0: at extremely high energies;

= q,
indications as to whether or not this is possible mighitbe f;::hcoming in the 100 GeV region.
The Coulomb interference experiments will be difficult at these very large energies, but it is
worth noting, in passing, that the present CERN small-angle experiment could rather readily
measure the diffraction peak region (say -t < 0.5 GeV/ca) at energies between 100 and 300 GeV,

The angular ranges would be about 7 and 2.5 mrad, respectively.
To summarize this brief discussion of the phase problem we can say that:
i) the p-p scattering amplitude has a considerable (= 30%) repulsive real part at momenta
between about 7 and 26 GeV/c;

ii) at around 10 GeV/c both 7t and nr-p amplitudes have repulsive real parts about 25% of

the imaginary;

iii) the p-p measurements show no strong evidence for spin dependence.

Point (iii) is a rather negative statement about such an interesting problem, and the
next section discusses briefly experiments on polarization which aim to find out about spin

effects,

IV. POLARIZATION EXPERIMENTS

The scattering matrix for a spinless meson and a nucleon has the general form:

M=N+FG. 1 , (26)
where n = Ei)<Ef (normal to the scattering phase). The two pieces of the matrix correspond to
non-spin flip and spin flip, respectively. For very small scattering angles Fen>0 and, as
remarked in the last section, the interesting small-angle effects in m=p scattering must be
caused by Coulomb interference with a real amplitude.
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For nucleon-nucleon scattering the situation is more complicated. Dalitzzz),

Wolfenstein and Ashkinzz) have given the general form of the scattering matrix as:

M=A+B(3, e 03-1) +C(3y +03) e n4+D(03 - 02) « n+E(Sy « K) (G » K) + F(Sy « B)(52 - B)
where (27)

4 =E.—Kf, and B =T<)i+I<)

i f

As the scattering angle approaches zero, terms drop out and one is left with:
M~fy+f5+5 3 - 5 (28)

which is ordinary singlet and triplet (complex) amplitudes and a spin flip amplitude, which
does not necessarily approach zero in the forward direction. As we have seen in the last
section, the possibility of complex singlet and triplet amplitudes operating in the p-p small-
angle scattering could not be excluded, and absolutely no information exists on the spin flip
term, A possible way to study these spin effects which may be present at small angles is to
measure the scattering of polarized beam protons on the polarized target. Up to now only the

latter exists; as yet no degree of polarization is known to exist in any GeV proton beam.

The p-p experiments which have recently measured polarization effects, away from the

. . > > .
forward direction, where 0. n terms operate, have been done in two ways:

i) the degree of polarization of the recoil proton produced in an elastic scattering has

been analysed by the asymmetry in a second scatter34 5

)

ii) the scattering on a polarized hydrogen target has been measured>” .

The second method offers by far the best possibilities and a series of measurements between

about 0.33 and 6.15 GeV has been made by the Berkeley group using this technique.

<3_g>pol ) (%)unpol [1+P(0) Pyl

where PT is the target polarization (~ 30%). At GeV energies P(®) is found to peak at

They measured:

t ® - 0.3 GeV/c?, and Fig. 14 shows the maximum value of P(®) as a function of energy.
The highest energy point on this graph is from a Dubna measurement using the double scattering
method.

It is interesting to see in Fig. 14 that the polarization rises to a maximum of
~ 50% at ~ 1 GeV and then falls slowly to ~ 10% at ~ 9 GeV., One may note also that the maxi-
mum occurs in the region of the steep rise of the p-p total cross-section and the slow
decrease on the flat plateau region of the cross-section. We have already noted the change
in the behaviour of the real part at around 1 GeV/c; this multiple production threshold
region seems to be very interesting and would be worth some study with the smaller proton

machines working now.
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The behaviour of P(®) at 10 GeV/c and above also presents an important challenge to

the experimenters and one would hope that in the next year some data will be produced.

To summarize the GeV energy polarization data, one can only say that up to ~ 10 GeV
spin effects can manifest themselves in a non-negligible way for angles away from the forward
direction. It is not yet clear how to fit this information into any complete description of

the scattering amplitude.

V. PROTON-NUCLEAR SCATTERING AT HIGH ENERGIES

In this section I shall describe briefly some new results on proton-nuclear scatter-
ing at 19.3 GeV/c which were obtained using the CERN sonic spark chamber set-up. The only

essential difference from the p-p experiments was the change of target.

The elastic momentum peaks obtained at each scattering angle measured contained con-
tributions both from coherent scattering and from quasi-elastic scattering; the ratio of the
two would be expected to be large at the very small angles studied. Also it should be
stressed that the energy resolution of the system was, of course, not sufficient to distinguish

scattering with nuclear excitation.

The angular distribution found for Pb and for Cu are shown in Fig. 15. The experi-
mental points are plotted in ¥, mrad intervals. A striking oscillatory behaviour is evident
in Fig. 15. The curve drawn on the Pb graph is the Airy diffraction pattern, equation (9) of
the Introduction, which, with a nuclear radius of 7.5f reproduces very well the periodicity of
the angular distribution, It may be concluded, therefore, that three subsidiary diffraction
maxima are visible in the Pb angular distribution. In the Cu only a secondary peak is seen
as the angular range available in the experiment did not fully cover the tertiary maximum,

It should be said that these data are quite preliminary; it is possible that the diffraction
minima evident in Fig. 15 are really deeper and more data will be taken with improved
resolution (less multiple scattering in the target) to study this question. For lighter
nuclei the subsidiary maxima occur at larger angles outside of the experimental range and,
moreover, they are probably overwhelmed by the dominance of quasi-elastic scattering. The
reason that the structure is so evident for the Pb and Cu nuclei also depends on the fact that
the edge or transition layer (~ 1.5- 2f) covers considerably less space than does the body of
the nucleus itself, R = 7,50 and 5.55f for Pb and Cu, respectively,

These elegant results on nuclear scattering also suggest that secondary diffraction
maxima in elementary particle interactions may be masked by the way in which the angular dis-
tribution falls off at larger angles, and an application of this way of thinking may be for the

7-p and p-p systems,
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VI, CONCLUSION

During the course of this talk it will have become evident that the physics available

from elastic scattering measurements is both extensive and complicated.

With respect to the questions asked in the Introduction, we can probably say that the
proton exhibits a rather extended loosely bound structure, without any profound momentum
components, An essential mechanism of high-energy scattering is diffraction but the dynamical

scattering manifested in the existence of the real part of scattering amplitudes is unexplained.

With the advent of the very small angle scattering measurements the quantitative
study of the scattering amplitudes has really begun. As will have become apparent, the com-
pletion of the task over the presently available energy range will present interesting work for

many in the next years.,
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The three graphs to the left with © as abscissa

show good complex spin independent fits, those on the right rather

poor purely imaginary singlet-triplet amplitude fits.

X is the

difference between the measured and the Coulomb cross-sections,

normalized to the optical theorem value,
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Fig. 15 Preliminary angular distributions for the scattering of 19.3 GeV/c
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