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Introduction

The first multiperipheral models have been developed ten years ago by
ABFST and others D - 3). Some general predictions of these models, as Regge
behaviour and Feynman scaling, are, at least qualitatively, in accord with the
most recent results of accelerator and ISR experiments. Other predictions, as the
weak increase of correlations with energy, will be tested soon at ISR, permitting
possibly a choice between the multiperipheral ideas and other possibilities, as
the one or two fireball models and the diffractive excitation models, which pre-

dict a strong increase of correlations with energy.

Other general features of the simplest multiperipheral models, as the
dominance of an isolated Pomeron pole and its consequences (factorization and short
range of inclusive correlations) are expected to hold only approximately and do

not. follow necessarily from multiperipheral models of a more general kind.

More detailed features, as the shape and the energy dependence of the
inclusive distributions, have been successfully interpreted by means of particular

multiperipheral models, making use of specific phenomenological inputs.

In this situation, in order to facilitate the interpretation of the
forthcoming experimental data, it is useful to re-analyse in detail the assumptioms,
the structure and the mathematical formalism of multiperipheral dynamics. In these
lectures, I shall summarize some partial contributions in this direction, contained

4 - 6), adding when necessary a short exposition of

in some recent papers
previously known results, in order to get, as far as possible, a self-contained

treatment.

I shall deal only with a particular aspect of multiperipheral physics,
which can be summarized as follows: make suitable assumptions on the production
amplitudes and derive, by integration over the momenta and sum over the multi-
plicity, the total cross section and the inclusive distributions. We shall see

that this problem is not so simple as it could seem.

The new contributions which will be treated with more details are
essentially a proposed characterization of the multiperipheral amplitudes by means
of a factorized upper bound and some improvements in the 0(3.1) projection of the

multiperipheral integral equation based on the properties of a semi-group.



A Characterization of Multiperipheral Production Amplitudes

The mathematical formalism and the general results of multiperipherism
are based on some general assumptions on the production amplitudes

Mh(PA’ P . PO) for the processes

8> Poepr o

A+B 5 (m+1)+m)+...+ ) +(0) | m=0,1,2,...

We are assuming for simplicity that all the particles are identical and spinless,
so that the functions M are symmetrical with respect to the permutations of

the (n+2) final particles.

We introduce, as usual, the four-momentum transfers

A

Q,;"'PA‘Z__P;} s (2.2)
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the corresponding invariants

b, - (Q&)l , 4=04,.,m, (2.3)

1"y

which, in the equal mass case we are considering, are necessarily negative, and

the subenergies

2 1
A = ( PA'.M t Rb) = (Qi-f Q.i,-m) , 40,1, N, <.

In order to get a complete set of (3n+2) invariants, we may consider also the

subenergies

T
V) (P4}+1+ 4‘.-4) y A3 AL, N (2.5)

We remark that in the definition of these invariants a special ordering of the

final momenta has been assumed.



A first characteristic feature of the multiperipheral amplitudes is
that they can be large only in the kinematical configurations in which, after a
suitable permutation of the final particles, all the momentum transfers
Eos +ovs tn are small (in absolute value). This requirement can be stated more

precisely by means of the inequality

I, ,...,PO)I%MM(B,,@,gﬂw, i Br) 5 o

where we have indicated by 17' a permutation of the (n+2) final particles and
fn is a function which decreases in a suitable way when some momentum transfer
ti increases (in absolute value).

It is convenient to indicate by x a set of (3n+2) kinematical

invariants and by GZT x the set of invariants obtained from x by means of the

permutation ‘I of the final particles. Then Eq. (2.6) takes the form

H\’I.,\,\I)[é ’),}‘TM‘”fm(@WI) . 2.7)

. oo . . . cq s 4
This condition is discussed in detail in Ref. ). For our present

purposes, it is sufficient to consider the weaker condition

Hvlm,(x),zé g (4@”\,(6)"1))1‘- (2.8)

We remark that, if this condition holds, it is always possible to

decompose the modulus square of the amplitude as follows

IMM(IHI:ZW:?M(@WI) ) (2.9)

where

0« }M(I) £ (%m(x))z . (2.10)
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A possible choice of the function .}n(x) , Which is not necessarily the most

convenient one, is

"Sm(xk [M,.. (x)ll (’FM(I))L [g(f’“(%x»z]-i . (2.11)

In general, multiperipheral models are based on an explicit expression
for the functions ?Fn(x) , which have a peculiar factorization property, which

7)

was studied in the most general case by Chew, Goldberger and Low ,» who called

it "short range correlation". In order to avoid confusion between this exclusive
short range correlation and the inclusive short range correlation, which is a
completely different concept, we call this property "Q-factorization'". A sequence
of functions ?Fn(PA, PB’ Pn+1’ cee s PO) is called Q-factorized of order k

if all these functions can be written in the form

T, () = B, Qs O gr) TR (B o Ot ..

oo BlBpt s Qo) Qe s @0y P) @2

Remark that the functions @ . T& and a do not depend on n, so that the
whole sequence of functions ﬁ;; is described in terms of these three functionms.
In general, it is more convenient to express 65 ,’;ﬁvand CL in terms of

invariants than in terms of four-vectors.

Many physically important contributioms to the amplitude, as multiple
pion exchange or multiple Reggeon exchange, are Q-factorized. However, one can
show that any Q-factorized representation of the amplitudes is necessarily

approximated.

For this reason, we prefer to found the multiperipheral formalism on a
weaker assumption, which has some chance of being really true. Our assumption
is that the functions fn, which appear in the upper bounds (2.7), (2.8) and
(2.10) are Q-factorized. For general purposes, it is sufficient to assume a

simple Q-factorized upper bound, which takes into account only the decrease in



the momentum transfers ti and the polynomial boundedness in the subenergies s; .

We shall use the explicit assumptioh

}IZ%(JC) = cﬁ ld/(t,é) ('%:;z)k} ; (2.13)

where d(t) is a suitably decreasing function of |[t| and the exponent A is

one or slightly larger in order to allow for logarithmic factors.

More complicated and restrictive upper bounds can be useful in order
to take into account more detailed properties of the production amplitudes, but

they are not necessary for the construction of a multiperipheral formalism.

In conclusion, the formalism that we shall develop is completely based
on the assumptions (2.8) and (2.13) plus some condition on the function d(t).
The more restrictive assumption (2.7) would be useful in the treatment of other

problems, as the study of the elastic diffraction peak based on unitarity.

3. Total Cross Section and Multiplicity Distribution

Substituting Eq. (2.9) into the cross section formula, we see that the

total cross section for a process with (n+2) final particles is given by

o (s) = A @) o thamt)] T

m+1

f '}m(Pn,Ps,EM,,,...,R,) gq([’“PB-iZ;’Pd) .

(208, ¥ P - (2P2)7 ol?P

LI

(3.1)

Substituting into this formula the inequality (2.10) and Eq. (2.13),
5)
)

after suitable majorizations we get (see Ref.
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n
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(we assume that this integral converges).

The inequality (3.2) contains a very important and characteristic
feature of multiperipheral physics: due to the factor (n!)_l , the cross section
G:l(s) is a very fast decreasing funfzion of n in the region n >> log s .
Of course, O“ﬁ(s) =0 for n >s?m  , but Eq. (3.2) implies that G'n(s) is

negligible for much smaller values of n (at high energy).

Starting from Eq. (3.2) and from the very weak assumption that the total
cross section O (s) does not decrease faster than any negative power of s ,

one can derive the inequalities

(nty = (@) 206, 0) & cpltog )™ L

The detailed proof for p = 1 can be found in Ref. 3) and the generalization to

arbitrary p 1is straightforward.

The Bali-Chew-Pignotti Variables

For the further developments of the formalism, it is convenient to
describe the production amplitudes in terms of Bali-Chew-Pignotti (BCP)

. 8 . . .
variables ). In order to introduce our notations, we give here a short account

of this argument.



If a is an element of the group SL(2C) ,

namely a 2 X 2 complex

matrix with determinant equal to one, we indicate by L(a) the & x 4 Lorentz

trans formation matrix defined in such a way that, if V and V' are four

vectors, the relation

Vi= L(a) V
is equivalent to the relation

VotV,  V/ -4V,
V,+4V,  V,-V,

V0+V3
Vite Vs

VA" 4 Vl +
a
Vo‘ V; (4.2)

(4.1)

As well known, L(a) spans the proper orthochronous Lorentz group. We indicate
respectively by uzgfl) and az(7() the elements of SL(2C) which correspond

to a rotation of an angle /ﬂA around the z axis and to a boost of rapidity )(_

along the z axis. We use also similar notations with

z replaced by x or y.

For each final particle, we introduce a frame of reference connected

with a given arbitrary frame by means of the Lorentz transformation L(ai). The

simplest procedure is to define the group elements

the formulae

PB :L(a‘MM) (/‘M;O/ 010) 1

O o 2
S, >,
" n "

The condition that the outgoing particles have mass

quantities 7( ;

L(ai)(0,0, 0 V=E;),
L (aer, @a(X i) (0,0, 0, V"_t_z)

l_(ao a-z(Xo)) (/Wt,o’O,o) ) (4.3)

In this way we get

implicitly by means of

y 4=0,1,..,m,

m permits to compute the



i Xomay = (2m) T
(2”‘")-4 V- to

\ XA« = 1 (t""t't“'l) l 't = 4,7-, e, M ) (4.4)

i

where

(4.5)

coohX (tt) = (m-t-t')(4tt) % Altt) 0

If we put

-1
.= Az ih0]

A irqg X4 4:=04. M, (4.6)

from Eq. (4.3) we see immediately that L(gi) does not act on the 2z component
of a four vector. It follows that g; belongs to the subgroup SU(1,1) of

SL(2C) and can be parametrized as follows
g, = Ma(mi) Ax (85) Ma (W),
0€ M CUT , %0 , 0L Y LT .7

We see also that the Eqs. (4.3) are not affected by the substitution

ay - a, Ma(y) (4.8)

)

which, in terms of the elements g; takes the form

% > % A%(X) )

Fp-q Mz (-Y) % g1 . (4.9)



The BCP variables ti’ g; (1 =0, «.. , n) determine univocally all
the kinematical invariants and therefore the amplitudes can be expressed in terms
of them. In the spinless case we are considering, the amplitudes are invariant

under transformations of the kind (4.9).

From Eq. (4.3), we get immediately the following expression for the

subenergies
4 2 1 ;%_
D=0 +t4:+1 - ?E;[(T(/‘M ,ti-1,t»€)—r(”".to€,tdl+4)) '

cohg, + (Nwl-tz-q-t;)(ml-t‘i 't4'+1)] y

(4.10)

where

N 1
t - t - ,W‘ ) (4.11)

Tl(a4,c)= a+lisct—2ab-21bc-2ac . @

It is convenient in the following to express Q-factorized functions in
terms of BCP variables. For instance, we shall replace the Q-factorized upper

bound (2.13) by the following expression which is Q-factorized in a different way

1 () = A(Sm,t) R (Em Smen, Erry) -oo

o R(E, % b)) alt) , tico, € %0, G

If we put, for instance,



_]_o_

4 Ry
4 =z

[dta] (4222 ) (41 o, )4
k(t/j-m ) g.{ ,t,i) = ('E%‘;) 1 OHti) 0‘ (tA'M]]zi ‘

1~(A~}yt~+4,ti)_ i . J
(wrt%T (4+ ook £4)

| alte) < | [ ie) ¥ ()T

We see, using Eq. (4.10) that the expression (4.13) is greater than the

(4 (5. )= ()" c

N

(4.14)

expression (2.13). In the following we shall use the less restrictive upper bound

defined by Egs. (4.13) and (4.14).

Operator Q-Factorization

The Q-factorization property (2.12) is essential in the mathematical
treatment of the multiperipheral models, as it permits an iterative procedure
which reduces the integration over the final momenta and the sum over the multi-
plicity to the solution of an integral equation. The group-theoretical analysis
of this multiperipheral equation provides a natural approach to complex angular

momentum.

It could seem that if one starts from the weaker assumption of a Q-
factorized upper bound, all these formal developments have to be abandoned.
Fortunately, it is not so, because one can show that, if a sequence of amplitudes
satisfies a Q-factorized upper bound, these amplitudes possess an exact Q-factorizecd
representation of the kind (2.12) with the new complication that the quantity °X¥(
Ais an operator valued function, the quantities ® s Cx, are vector valued functions
and the right-hand side of Eq. (2.12) has to be interpreted as the matrix element

of a product of operators.

The same result holds if we express our amplitudes in terms of in-

variants or of BCP variables. The special form of this result which we shall use



_11_

. . . 4) . .
and which is proven in Ref. ) is the following:

Proposition: If the sequence of continuous functions ‘?n(x) satisfies the
inequality (2.10) with fn(x) given by Eq. (4.13), for every n =20, 1, ... we

can write the operator Q-factorized representation

Bt 9o 60)= (BlG )y BR (Em, Gy Eury) o
cor TR (€4, 90,t0) (l(to)) :

(5.1)

where a, is a vector belonging to a suitable Banach space,% is an operator
in this space and Q) is a vector of the dual space. The norms of these

quantities satisfy the conditions

T (t)ll ¢ (altn)"

B (i, 9, E)ll € (R (e, 82, 1))
1@t ¢ (605, ,t0) 6.2

. 4 .
For a more exact formulation and a complete proof, see Ref. ). Here, in order
to clarify the structure of the proof, I consider a simpler case in which the

functions ?n depend on n + 1 real variables and satisfy the inequalities

ITM(%M,--',%°H é’&(%’“)’&(iA y m=1,2, (5.3)

200

Considering the ratios between the left— and the right-hand sides, we can reduce

the problem to the simpler case in which

l.gm(%”‘:'"r%*’)‘ é /1 .

(5.4)

We consider the Banach space ’Yﬂ, of the sequences of bounded complex

measures

L)y Q,(2,2), (fz(zz,%‘u%f))a"‘ ]

(5.5)



_12_

with the norm

190= 2 (19 (i, m2e)] 2o ol 2,

i=0 (5.6)

Then we define the bilinear functional

@(q’,?) = E S?’t".}k_ﬂ(%l”l""%;i %4: )y 2:‘)) L'J(z"’l""%:’l) ’

i,‘k-‘:O

P24, 20) 2o mdey d2; wol2z, - 5.7)

From Eq. (5.4) we get

[ (v, 9)] < Iyl Il .

~
We consider also the operators H(z) and H(z) defined by

{[H ) 9], (2e) = O,
[HRIPLi (2e,020) = 8(2-22) §, (2, 20) , 470, (5,

[AeIfl, () =0,
[H@9L; (i.,20) = 924,02 §(2-20), 420, 6o

One can easily show that

Q:)(‘P, H(i)"f) = (P(ﬁ(%)q/,(f’) : (5.11)

If we define also the vectors A (z) € m given by
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[d@)],(20) = S(2-2.) |

[J\(%)]L(%g,...,?:o) =0 , A0 , (5.12)

we easily see that

Tl O (AR, HE,) - Hiz) d(22) .

(5.13)

This formula already looks like an operator factorized representation,
but it is not economical, as the space m is in general "too large". In order
to eliminate this redundancy, we consider the closed subspace @ of m con-

taining the vectors (-P such that

(I)(q/:('f) =0

(5.14)

for any q/ G_m. Then we consider the quotient space

/Y\/ = /Wl/@ . (5.15)

Using Eq. (5.11), we see that the operators H(z) transform (9 into itself and
therefore they define the new operators e&k(z) in the quotient space 'n/ . We

see also that the mapping

¢ - §df),q) 516

is a linear functional on IVVL which vanishes on (9 and therefore defines an

’
element B(z) of the dual space /n, . If we indicate by a(z) the element of
/n, which corresponds to @k (z), from Eq. (5.13), by successive passages to the

quotient, we get

T2y 20) = (B)s TR (2cs) - TR (24) EL(20)) |
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which is just the required operator factorized representation.
It is interesting to remark that if the functions ?;n are numerically

factorized, the space (YL turns out to be one-dimensional and Eq. (5.17) is

indeed a numerical factorized representation.

The Chew-de Tar Multiperipheral Integral Equation

Now we use the Q-factorized representation (5.1) in order to derive the
multiperipheral integral equation, following essentially a very elegant procedure
introduced by Chew and de Tar 9). For simplicity, we consider the case of
numerical Q-factorization, but it is easy to see that exactly the same procedure

holds for operator Q-factorized amplitudes.

We start from the total cross section formula (3.1). The analogous

treatment for r particle inclusive distributions can be found in Ref. 4). First

we introduce as new integration variables the four-momenta Qi . Then we intro-
duce the fictitious integration variables Qi s P; and Pé together with suitable
S functions which identify them with the corresponding unprimed variables. We

get in this way the formula

Snla) = & G 0] T [, ()

- §4(Pa-Ps) S((R@-m) 0 (Ppo+ Q%) AP o Qo *
5 (0 Qu)SUQ,-Q.)-m) 0(Q-Q%) d*Qa 'R, -
e §9(Q5Q,) S ((P-Qu)- ) O (P Q%) ', d*Py -
. 9 (P-P,) .

In agreement with Eq. (4.3), we put

(6.1)
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{Ps = L (£5) (m,0,0,0)

L (0tmsa) (/"‘4',0,0:0) 3 (6.2)

-
N >
"

ia,; = L(ag) (0,0,0, V=t;) |,
Q;, = L(axﬁu a’%(XAZM)) (0/0, 0, \/-‘_t',,} 1 (6.3)

Pp= L(a,as(X)) (m"00,0),
b= L{L,) (mo0,00) . (6.4)

4)

In Ref. , the following two lemmas have been proven:

Lemma 1 : For every value of the variables t1 and t2 we choose two four

vectors f%. and aé with the properties
~ 1 NG\ A A 1 1 A el
(Q4) = £ 1 (QL) = tz ’ (Qﬂ' Ql) =m Q:' Qg 70, (6.5)

and we put

A\

G,,: L(a) a,. ; le L(OL) Q‘l . 6.0
H(Q“QL) §((Q-Q,)-m)0(as-a) d'Q,d"Q, = (am) "

06 t,0) [Tl BT £ )] At dit, d .

(6.7)
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where

’?’(t"pti.q) = {(Qd 1Qv.) y

(6.8)
and d a is a properly normalized invariant measure on SL(2C)
Lemma 2 : If we put
(}'t = ( V'ET', ()r ol 0 ) 1 t 77 C’ !
Qe = (0,0,0, V=€), t<0, o
for t # 0 we have the identity
4 - (-t a'a
S(L(“)Qt (O.)Q(;) [tl g( )g ( ) ) (6.10)
where + 1is the sign of t and S i(a) are measures on SL(2C) defined by
[ HeaSewdia - | AR L4
sL(2c) Hs

We have indicated by H the group SU(2), by H_
3

the group SU(l,l1) and by
d’h the invariant measure on these groups.

After a repeated use of these two lemmas, the Eq. (6.1) takes the form

0, (4) =4 (em)>" [/s('s-z.'v\n‘)]JT 5'§m (x) -
2 G ) () [Tt b % ooty -

2mt

= §2 (9 (4w [TOW, o b)) Z ddtm odf @y <+

- 2 - $2 (9 )(QW)'i[T(fm to/m)] dt, d‘a, -
z‘n'l S+ (a' (-x ) )

(6.12)
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where g; is given by Eq. (4.6). If we introduce the Q-factorized expression

for ';n and we put

@_(artw)"’ §'1TTE:"[ 'WL m t ] g (ait 1M+1)a’)
: 8 (a%('xma)a, tm) )

(6.13)

Tt 0, t) = g [Tl 6] 75 (aatate)a)

“fﬁ(c a.(-1(t)t))a, t),

(6.14)

@ (t2) < 2 [T (i o, 0) 1% 0L (E

(6.15)

the Bq. (6.12) takes the form
O (4) = L[ata-am)] S,,Mz §+ ((r—;am,)
B (@ Ep) TR (Em, X Aoy s Emea) o

R (t,,07 a0,ts) @ (t) 26 x.)a‘o‘l’m)'
.déa,,, - d'a, dtmedts . (6.16)

We remark that the integrals over the group elements a hel’ "0t ? 30
are of the convolution type. Summing over n the expressions (6.16), we get the

total cross section 0’(3). It is clear that it can be expressed in terms of the

quantity

&(t',a,t) T&(t at) g t a, t")
. ?ﬁ_(t”, a«"1a,,t) déa’ olt" + « - . (6.17)
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As shown in Ref. 4), also the r particle inclusive distributions can be written
as finite sums of integrals containing the expression (6.17). 1In conclusion, we
see that the most difficult step in the calculation of the total cross section
and of the inclusive distributions is the treatment of the series (6.17). It
already contains, as we shall see, the complex angular momentum singularities

which determine the asymptotic behaviour of the measurable quantities.

We see easily that the series (6.17) is, if it converges, the per-

turbative solution of the multiperipheral integral equation

R(ta,t)= B (ta,t)e | Rt t)
.&(t”’ ala, t) dio dt”. (6.18)

One has to keep in mind that 95: is uniquely defined by Eq. (6.17), while the

equation (6.18) could also have different solutions.

Diagonalization of Convolution Products on SL(2C)

In the Eqs. (6.17) and (6.18) we find integrations over the "radial"
variables t, t' ... and over the "angular" variables which are represented by
the group elements a, a' ... . The integrations over the angular variables can
be interpreted as convolution products. We remember that the convolution of two

functions defined on a group (e.g. SL(2C)) is defined by

[ﬁ*ﬁ](a} = {Fﬂ («) F, (a'"a) dia’ . .19
st(ac)

* . . .
If, as in our case, the quantities Fi are measures ) or distributions, Eq. (7.1)

has to be interpreted as

*)

. g . 6 .
We indicate a measure on SL(2C) by the notation F(a) d a , where F 1is
a generalized function, which for the sake of brevity will also be called a
measure.
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j[ﬁ*ﬁ](a)ﬁf(a)d‘a = |E@)F, (o) $(aa’) d'a’ d'a”,

(7.2)
where (f (a) 1is a test functionm.

As well known, the Fourier or Laplace transformations transform the
convolution product into an ordinary product. If Gb(a) is a continuous re-
presentation of SL(2C) by means of bounded operators in a Hilbert or Banach

space, if we define the projection integrals

®(F) = [ Fla)®(a)dfa ,

sL(ic)

(7.3)

from Eq. (7.2) and from the representation property

Olaa’)= Pla) Dla) 7.4)

we have

&(Fq*ﬁ,) = M(F/n) 6)“:2) .

(7.5)

Applying this procedure to the equations (6.17) or (6.18), we get the
corresponding projected partial wave equations, which are in general simpler and

have interesting properties. This procedure has been discussed in detail in
Refs 9 - 1D

The critical point of this treatment is the convergence of the integral
(7.3). A sufficient condition for the existence of an integral of an operator

valued function of this kind is

[IF@] 10@déa < oo
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In order to discuss this condition, we have to remember some properties
of the irreducible representations of SL(2C) and of the corresponding norms.

A complete account can be found in Refs. 12) - 14).

We choose as representation space the space of the measurable functions

of the complex variable 2z such that the expression

1l = [ 4™ (1 e M gz [P

(7.7)
A*2 = o Rez d Tmz |
' (7.8)

is finite. With respect to this norm, the representation space is a Banach space,
and even a Hilbert space if p = 2. The different representations are labelled
by the complex parameter )L and by the integral or half integral parameter M.

The representation operators are defined by

[@Mk(a):ﬂ(%) = (ant "‘azzy\“M-'J

(s, 2 +azz)A+M - 18 ) 1

(7.9)
where
% - a41%+ Q'Z'l . , )
[~ 7.10
A2 + Qg
From Eq. (7.10) we have
Al2 = [ay -y, 2 |-4 otz
= 11 11 ¢ a (7.11)

and from Eqs. (7.7) and (7.9) we get
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107 @ 2L, = [ [ [l ™ (12-anzal +

~2-p(ReA-1) 1
+Iazz%q‘az4(l) 0{1 Z:a T
(7.12)
From the definition of the norm of an operator, we have finally
MA ) ( 1+]2|* a
“G) (a)”,fl.— 0‘;’"’ ’a41_a42%ll+la21%_q24’l ) (7.13)

where

v = sz\-’]_+?.z,1:1 . (7.14)

If we use the parametrization

a = M, as(§) M, , Mg, My € SUL) |, 415

we obtain from Eq. (7.13) after some calculation

I &MA(Q)”I,L= M/,LI’U"Sl 21 . (7.16)

We see that the condition (7.6) can be satisfied only if F represents
a bounded measure. If we apply this condition to the kernel (6.14) at fixed
values of t and t', we see, using Eq. (6.11), that the function t}f{(t',g,t)
must be integrable on SU(1,1). This is ensured by the bound (5.2) with
k given by Eq. (4.14), only if A < -1/2 , which is a condition too restrictive

for physical purposes.

Of course, one has to remember that the condition (7.6) is not necessary

for the existence of the integral (7.3). Nevertheless, one can see that there is

biA‘

no hope to project a physically interesting kernel on the representations G)
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Fortunately, the analysis given in Refs. 10), 11) of the Chew-de Tar

15) =17 of the simpler multi-

equation (6.18) and the treatment given in Refs.
peripheral equations of the ABFST type suggest that there is some way to avoid
these difficulties.

In the following we summarize a systematic approach developed in Ref. 6).
It is based on the remark that the existence of the projection integral (7.3) is
strictly related with the existence of the convolution integral (7.1). In fact,
if the main property of a Laplace transformation is to transform a convolution
product into an ordinary product, it is natural to expect that this Laplace
transform is well defined only for functions which satisfy some conditions which
ensure the existence of the convolution products. More exactly, the domain of
definition of a Laplace transform should be a convolution algebra, i.e. a linear
space of functions or measures which is closed under the convolution product.
Different "natural" Lapace transforms should correspond to different convolution
algebras. The bounded measures form a convolution algebra and the projection on
the representations 6)}1A , with p chosen in such a way that v = 0, is the

corresponding Laplace transform.

Now we note that the convolutions which appear in Eq. (6.17) are well

defined for physical reasons even if the kernel ej*k is not a bounded measure.

As we shall see in the next section, the existence of these convolutions is due

to the fact that the kernel izg:, due to the positivity of the mass and the
energy of physical states, vanishes outside a given subset of SL(2C). Analysing
this property, we shall find a convolution algebra to which the kernel belongs and

the corresponding natural Laplace transform.

8. A Semi-Group Contained in SL(2C)

From Eq. (6.14) we see that the kernel ﬁ;ﬁ. does not vanish only if its

argument a 1s an element of SL(2C) of the form

a=a:(x)g , X>0 , g9e Sul1,1).

(8.1)
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It is easy to show that the elements of the form (8.1) have the
properties

Z

\ L}O(a)=%(la44lz"laull +'au'l’[a“ll) >/ 0

( Ln[a)= jz'([a«ll’flau‘l‘lanlz‘ lau|l} w1,

Loa[a)zjz'(,a"‘l‘,aull"la"lr"'laull) 7 0,

(8.2)

We indicate by S the set of all the elements of SL(2C) which satisfy the
inequalities (8.2). We want to show that S 1is a semi-group, namely that if a

also their product ab belongs to S. If L 1is any matrix
of the orthochronous Lorentz group, we have

Loo >/ 1
Lzoo*l—zodl—{}oz_ Yoy = 1
L

and b belong to S,

~
~
o
!
'_
vJN
(<]
]

1

)

I ~
)
(=
I
e
W
LY
I
e
)
~
I

32 33 =-1
1 ] ]
L.o3“[_1_4-5"Lz'5”__;3 =—1 .

If a and b belong to S , using these equations and the Schwarz inequality,
we have

(8.3)

L, (ad)= Lyola) Loy () #1540 Ly (4) # Lsa (@) Loy ()
Ly @)Ly (6% Lyp@) Log (£) #Lg3(a) L4 (£) -
14 (Lol =Ly @) ¥ 140y (8))% (L33 10)"] 7
v Ly (@)L, () 41,

Y

(8.4)
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[yolat) = Lyo(@)Loo(t)+ Lsg(@)Lgolt) + L4 (@) Lop(2) +
tly () Lyp (&) 7 Lyola) Lop () + Ly @) Ly, (4) -
A4 @) (Lo @) TE [(Lanlt (Lo (00} -1]F

7 Lyla) Ly (k) 20

(8.5)

In a similar way we get also

L., (ad) ¥ Lo (a) L, (&) %o

(8.6)
From these inequalities we see that ab belongs to S.

We see also that the set S° defined by the inequalities

L33(a)>1 , L;o (@) >0 , L03 (a) >0 ) (8.7)

is a semi-group. One can show that s® is the interior of S and that S is
the closure of Ss°. The elements of the kind (8.1) belong to s®. Also the

elements of the more general form

4,9’ € SU(4,1)

/

a=qg azlx)g , x>0

(8.8)

o . .
belong to s®. We want to show that any element of S can be written in the

form (8.8).

From the Eqs. (8.3) and (8.7) we see that the Minkowskl three-vectors

{ (Los(@) , La(a) Loy(@))
(Lsol@), Lya(@), L4, () (8.9)
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are time-like. Therefore, we can find two elements h, h' of SU(1,1) such that

(/\oo Aoy Ao vmdy X

A A Ny 0

Ao Ny Nn 0 ’
om0 0 wh

L(hak) = X0 .

(8.10)

From the properties (8.3) and

L00L03-L40 L,j} -Lza LZS -Lzo L;; =0 ' (8.11)

of the Lorentz matrices we get

>

Aoo" 00147( ) Noy = /\01:/\40

I
®)

20 (8.12)

and therefore from Eq. (8.10) we obtain

hat' = az(x) Ma(9)

(8.13)

and the representation (8.8) follows immediately.

Linear Representations of the Semi-Group S

In this section we define and study an important class of Banach space
representations of S . First of all, we consider the transformation (7.10) and

we show that if a€S$S and |z] > 1, we have Iza| > 1. This is clear in the

X 0
e L0

! .

0 2 (-12) (9.1)

special case

a = az(?() =
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In the case

N ¢
= _ e Su(411
a g X > ) (9.2)

we see immediately that the transformation (7.10) maps the circle |z]| =1 onto
itself and has therefore the required property. It is easy to extend the proof to
any element of SO, as it can be decomposed according to Eq. (8.8). The general

result follows from a continuity argument.

From the property proven above, it follows that if a€&S the operator
mM}\(a) defined by Eq. (7.9) transforms a function £(z) which vanishes outside
the circle |z| < 1 1into a function which has the same property. Therefore we

MX

can define the operator &MA (a) which is the restriction of Q (a) to a space

of functions which vanish for |z| > 1. It can also be defined directly by means

of the formula

[B™ @) f](2) = (@ 2+a) "

_ — = ZA+M-1
:(a,n% "'azz) i JF[z%) v OL&S . (9.3)

In this case it is useful to introduce, instead of the norms (7.7), the

norms

el | I Gerar) ™ otta |

[R1<4

~AY4 , A0 . ©.

Proceeding as in the derivation of Eq. (7.13), we get the operator norms

1- (2[* 2
I &H'\(a)”,f Y [(,aﬁ_ 2 .

1zl<q Ap2|t-[A2 - Ayt

n-v) | -
'laﬂ'aalz%l )] - ?/L’U' (a') " aeS . (9.5)
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where v is given by Eq. (7.14). It is easy to show that this expression is
finite.

We have obtained in this way a class of representations of S by means
of bounded operators in Banach spaces. For p = 2 we get Hilbert space represen-
tations. Representations which are labelled by the same values of M and A
but correspond to different values of p or r are not essentially different,

as they coincide on some dense subspaces of the representation spaces.

From the representation property it follows that the norms (9.5) satisfy

the inequality

?nf(q‘(r)\< Prw (@) Fuw (L) . (9.6)

The explicit calculation of these norms is very difficult, but it is easy to get

the following partial results

?n«r(’ui(/‘)) =1, (9.7

Opo(@z(X)) = 2xp (-vX) . X770

(9.8)

O (@2 (¥)) = £xp|(v-)¥] . o
From Eqs. (9.6) - (9.9) we get

Qoo () = W\’(‘VX) , aes’, (9.10)

where a 1is parametrized as in Eq. (8.8). 1In particular we have

(, 1- 13| :W\-(-X) .

au'a'znzlz" lau}‘aull

g

2l<4 (9.11)
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and introducing this result into Eq. (9.5), we obtain the inequality

?lz-fc,'v-a,c (a) £ xp(-%c) ?/L‘\r(a’) , €0

(9.12)

We are mainly interested in group elements of the kind (8.1) and we
shall only need the following result which can be obtained from Eq. (9.5) after

complicated calculations.

Prv(220)g) < Laplv-mE] §, (X) | vy, o

where g is parametrized as in Eq. (4.7) and

@,w.(x) = O (XZ(V-’L)) ) X—0 (9.14)

(I)w(x) :O(E-Vl) , A— o0 . (9.15)

Convolution Algebras and Laplace Transform on 3§

Now we consider a measure F(a) with support in S. A sufficient

condition for the existence of the projection integral

R"(F) = [ 8"(a) Fla) da

S

(10.1)

is that the quantity

1F = { IF@] gre @ dfa
S

(10.2)

is finite.
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The measures with support in S such that the norm (10.2) is finite
form a Banach space Mrv . They form also a convolution algebra and we have the

following inequality

IF,#Ellaw = | [[R @R d%] fav (@) dlfa ¢

S

£ gle.,(a')”ﬁ(a")l ?,w.(a') ?,w_(a") dfa’ déa" =
Ss

IE N aw TP oy | e

We have uséd the inequality (9.6). The inequality (10.3) shows that Mrv is a

Banach algebra with respect to convolution.

The measures belonging to Mrv have the fundamental property

B M FF) = B™(F) 8™ (F.) .

(10.4)

In order to show that this formalism is suitable for the treatment of
multiperipheral equations, we have to show that the kernel (6.14) for fixed values
of t, t' belongs to the algebra MrV with some choice of the parameters r and

v. From the inequalities (5.2) and (9.13) we get

”:Cﬁ tt ” 461r7-|l:| [T (w ¢’ t)]i-
(D) m[(«r-m)s] B (X(E)0) Lowh} d¥ ¢
¢ )™ (e T E [Tm )]%n.*

)

. d(t)d(t') @w X(¢ t)) (2-v-2d-1

(10.5)
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if the parameters r and v satisfy the inequalities

0 <2d+4 < n-v L VU .

(10.6)

Comparing with Eq. (7.14), we see that, with a proper choice of the

parameters p and r, the projected kernel exists in the half plane

Re A > 24 .

(10.7)

This is just the result expected from previous treatments 7, 9) - 1D, 18).

More-
over, the results proven above show that all the convolutions which appear in

Eq. (6.17) exist and belong to Mrv if r and v satisfy the condition (10.6).

Discussion of the Multiperipheral Equation

In order to complete our analysis, we have to discuss the integration
over the radial variables and the convergence of the series which appears in
Eq. (6.17). For this purpose it is convenient to consider the kernel TS@L and the
resolvent ﬁi; as functions of the variables t, t' with values in the-:;;volution
algebra Mrv . We always assume that these functions satisfy some measurability

condition. Then the existence of the integrals over t'' ... 1is ensured if the

following sufficient condition is satisfied

(11.1)

Now (8)= [ [Igie el ot oLt']il oo |

This expression has all the properties of a norm and satisfies also the

inequality

Ntw'(“g_ﬁ" ‘}_@_‘) < Nﬂ»‘"’(.&'l) Nn«r(&z) ’

where we have used the notation

(11.2)
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[1’3@4 "}}_gl] (£'t) = f T_ff—@ (Et") % TR, () ddt”.

(11.3)

It follows that if

New () <4

(11.4)

the series (6.17) converges and we have

wa‘(&)é N’L"(E) (4- Nﬂ""(zﬁ))~1 . (11.5)

Moreover,‘§$. satisfies the integral equation (6.18).

In order to see whether the condition (11.1) is satisfied, we have just
to use Eqs. (10.5), (9.14) and (9.15). 1If the function d(t) decreases for
large Itl faster than any negative power of ltl , one can easily show that the

integral (11.1) converges if the condition (10.6) is satisfied. The case in

6)

which d(t) decreases as a power of |t| is treated in Ref. .

In order to prove Eq. (11.4), we remark that from Eqs. (6.14), (9.12)
and (10.2) it follows

IBR(E 0 e € op &) [T, 30,
and from Eq. (11.1)

Liren N/uc,'v'a«c(_gé) =0 ,

c->00 (11.7)

if r and v satisfy the condition (10.6).

It follows that, if v 1is sufficiently large and r is properly chosen,
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the resolvent G{- defined by Eq. (6.17) has the property

Nmr ((R’) < o0 ‘ (11.8)

and satisfies the Eq. (6.18). Moreover, if Re‘A~ is sufficiently large and p,
r are suitably chosen, the Laplace transform SM)‘(R,(t,t')) exists and satis-

fies the "partial wave' equation

BMR (L) = @ (F(tLD) 4
B Skt t7) B ((R (t") dt"

(11.9)

One can show that ﬁ;bLA(a) are entire operator valued functions of

)\ and that the operators GS (gk(t t')) are analytic in ;K, in the half
plane defined by Eq. (10.7). The operator GS (g&ft,t')) is analytic in the

smaller half plane mentioned above, but, if one has a specific model, one can
often use Eq. (11.9) to get its analytic continuation in a larger region and to

study the nature of its singularities.

Summarizing, we have shown that very general assumptions are sufficient
for a éompletely satisfactory definition of the multiperipheral integral equation
and of its partial wave projection. 1In this procedure, the four—-dimensional
complex angular~momentum }\ and the other Lorentz quantum number M appear in

a natural way.

In order to complete the treatment summarized above, one has to invert
M .
the Laplace transform ® )\(Gk(t t')) to get the resolvent G{ , and to derive
the explicit expressions of the asymptotic behaviours of the observable quantities

in terms of the singularities in the complex )\ plane.

A problem which is equivalent to the inversion of the transformation

11)

(10.1) has been treated in Ref. , while the analogous problem for the three-

19)

dimensional case is treated in Ref. We think, however, that some work is still

necessary in order to get a completely clear treatment.
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