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Phase transitions in q-deformed 2D Yang-Mills theory and topological strings
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We analyze large N phase transitions for U�N� q-deformed two-dimensional Yang-Mills theory on
the sphere. We determine the phase diagram of the model and we show that, for small values of the
deformation parameter, the theory exhibits a phase transition which is smoothly connected to the Douglas-
Kazakov phase transition. For large values of the deformation parameter the phase transition is absent. By
explicitly computing the one-instanton suppression factor in the weakly coupled phase, we also show that
the transition is triggered by instanton effects. Finally, we present the solution of the model in the strongly
coupled phase. Our analysis suggests that, on certain backgrounds, nonperturbative topological string
theory has new phase transitions at small radius. From the point of view of gauge theory, it suggests a
mechanism to smooth out large N phase transitions.
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I. INTRODUCTION

In certain cases, nonperturbative completions of string
theory can be obtained by considering a holographic de-
scription in terms of a D-brane gauge theory. Recently, in
the case of topological strings, Ooguri, Strominger, and
Vafa [1] made a proposal for such a nonperturbative com-
pletion based on the connection to the black hole attractor
mechanism. According to [1], the nonperturbative descrip-
tion of topological string theory on a Calabi-Yau back-
ground is encoded in a D-brane gauge theory living on
some appropriate cycles of the manifold.

In [2,3] this proposal was made more concrete by con-
sidering Calabi-Yau backgrounds of the form

L1 � L2 ! �g; (1.1)

where �g is a Riemann surface of genus g and L1; L2 are
line bundles such that deg�L1� � deg�L2� � 2g� 2. In
this case, the relevant D-brane gauge theory reduces to a
q-deformed version of two-dimensional Yang-Mills (YM)
theory on the Riemann surface �g. q-deformed 2D YM can
be regarded as a one-parameter deformation of the stan-
dard 2D YM theory. As we will explain below, the defor-
mation can be parametrized by a real, positive number p, in
such a way that as p! 1 one recovers the standard YM
theory. The q-deformed theory is exactly solvable and one
can compute its partition function on any Riemann surface.
This partition function has a strong coupling expansion as a
sum over representations of the gauge group, which can be
written, following [4], in terms of a product of a chiral and
an antichiral sector. The perturbative topological string
partition function, which was computed in [5] for this class
of geometries, is given by a certain limit of this expansion
in which the antichiral sector decouples. Once we have a
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nonperturbative description of the theory, it is natural to
ask what new phenomena emerge in this description and
what their implications are for string theory. For example,
in [6] the fermionic description of 2D YM on the torus was
used to study baby universes in string theory.

2D YM theory on the sphere exhibits an interesting
phenomenon: as shown by Douglas and Kazakov [7], there
is a large N, third order phase transition at a critical value
of the area A � �2 between a large area phase and a small
area phase. From the point of view of the small area/weak
coupling phase, the phase transition is triggered by instan-
tons [8]. From the point of view of the large area/strong
coupling phase and its string description in terms of
branched coverings [4,9], the transition is triggered by
the entropy of branch-point singularities [10]. Because of
the Douglas-Kazakov transition, the large area expansion
of 2D YM theory on the sphere has a finite radius of
convergence [10].

In this paper we will study the possibility of large N
phase transitions in q-deformed 2D YM. Since as the
deformation parameter p goes to infinity we recover the
usual theory, it is natural to expect the transition to occur at
large enough values of p. In fact, our result show that the
transition persists for all p > 2, and we find a critical line
smoothly connected to the Douglas-Kazakov transition of
the standard 2D YM theory. We also show that for p � 2,
in the regime of strong q-deformation, the phase transition
does not occur. We also perform a detailed instanton
analysis which shows that, as in the standard YM case
studied in [8], the transition is triggered by instanton
effects.

Most of the analysis of this paper are done in the small
area phase. In 2D YM theory this phase is described by a
Gaussian matrix model. In the q-deformed case, this phase
is essentially described by the Chern-Simons or Stieltjes-
Wigert matrix model introduced in [11] and studied in
-1 © 2006 The American Physical Society
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[12–14]1. This model, albeit complicated, is exactly solv-
able (in terms of, for example, orthogonal polynomials),
and this is the underlying reason that we can make exact
statements about the location of the critical line and the
instanton contributions. The large area phase turns out to
be more difficult to handle. In this paper we present some
preliminary results and derive the equations that determine
the full solution (including an explicit expression for the
two-cut resolvent). We expect the phase transition of the
q-deformed theory to be of third order for p > 2, since it is
smoothly connected to the transition of Douglas and
Kazakov, and indeed we give indirect evidence that this
is so.

As in the standard 2D YM, the existence of the phase
transition in the q-deformed version indicates that the large
area expansion has a finite radius of convergence.
According to [2], this theory provides a nonperturbative
description of topological string theory on certain Calabi-
Yau backgrounds. This suggests that the large area expan-
sion breaks down in the full topological string theory, and
there is a phase transition between a small area phase and a
large area phase. From the gauge theory point of view, our
analysis shows that when the q-deformation is strong
enough, the model exhibits a single phase. This suggests
that q-deformations give a mechanism to smooth out large
N phase transitions.

The structure of this paper is as follows: in Sec. II we
briefly review the Douglas-Kazakov transition in 2D YM
theory. In Sec. III we determine the phase diagram of the
q-deformed theory and we find a line of critical points
parametrized by p, for p > 2. In Sec. IV we adapt the
analysis of [8] and study the phase transition of the
q-deformed theory in terms of instantons in the weakly
coupled phase. We find an explicit expression for the one-
instanton suppression factor which indicates that, indeed,
the transition is triggered by instanton effects. In Sec. V we
analyze the large area phase, which can be encoded by
standard techniques in a two-cut solution to an auxiliary
matrix model. Finally, in Sec. VI, we discuss the implica-
tions of our results for topological string theory and outline
some problems opened by this investigation.

As this paper was being completed, we became aware of
the work [16], where the same problem is studied. After
submission, another paper appeared [17] addressing the
same issues.
II. A REVIEW OF THE DOUGLAS-KAZAKOV
TRANSITION

2D YM theory is an exactly solvable model. In particu-
lar, the partition function of the U�N� theory on the sphere
is given by a sum over representations of U�N� (see [18]
1Connections between Chern-Simons theory and q-deformed
2D Yang-Mills theory have been made, from a different perspec-
tive, in [2,15].
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and references therein)

Z �
X
R

�dimR�2e�AC2�R�=2Nei�C1�R�; (2.1)

where dimR is the dimension of the representation R, A is
a real and positive parameter that can be identified with the
area of the sphere, and C1�R�, C2�R� are the first and
second Casimir of R. We will represent R by a set of
integers fl1; l2; � � � ; lNg satisfying the inequality

1 	 l1 	 l2 	 � � � 	 lN 	 �1: (2.2)

In terms of these integers, the Casimirs have the expression

C1�R� �
XN
i�1

li; C2�R� �
XN
i�1

li�li � 2i� N � 1�:

(2.3)

Although the above partition function looks rather simple,
this theory turns out to have a very rich structure. In [4,9] it
was shown that at large area the partition function (2.1)
admits a string representation in terms of branched cover-
ings of Riemann surfaces (see [18] for an excellent re-
view). Douglas and Kazakov found that the planar free
energy on the sphere exhibits a third order phase transition
at the critical value

A
 � �2: (2.4)

This large N transition is a continuum analogue of the
Gross-Witten-Wadia phase transition for 2D YM theory
on the lattice [19,20]. Since in this paper we will be
considering a generalization of the Douglas-Kazakov
phase transition, we will briefly review how this transition
is found. For the rest of this section we will set � � 0.

At large N it is natural to introduce a distribution of
Young tableaux

n�x� �
li
N
; x �

i
N
: (2.5)

Defining the shifted distribution

h�x� � �n�x� � x�
1

2
; (2.6)

one finds that the planar free energy is given by

F0�A� � �SG�h�; (2.7)

where the functional SG�h� reads

SG�h� � �
Z 1

0
dx
Z 1

0
dy logjh�x� � h�y�j

�
A
2

Z 1

0
dxh�x�2 �

A
24
�

3

2
: (2.8)

Let us now introduce the density function

��h� �
dx
dh
; (2.9)
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which is normalized to unity,Z
dh��h� � 1: (2.10)

One crucial observation of [7] is that, because of the
inequality (2.2), this density has to satisfy

��h� � 1 (2.11)

for all h. We can now write (2.8) as

SG��� � �
Z
dh

Z
dh0��h���h0� logjh� h0j

�
A
2

Z
dh��h�h2 �

A
24
�

3

2
: (2.12)

This is (up to the �-independent terms) the saddle-point
functional for a Gaussian matrix model with ’t Hooft
parameter t � 1=A. It then follows that the density ��h�
is given by Wigner’s semicircle law,

�G��; t� �
1

2�t

����������������
4t� �2

p
; (2.13)

and we find

��h� � �G�h; 1=A�: (2.14)

However, it is clear that this solution can be valid only for
A � �2, since after this point the inequality (2.11) is
violated. This indicates that there is a phase transition at
the critical value (2.4).

For A 	 �2 the Gaussian solution is no longer valid, and
Douglas and Kazakov argued that one could obtain a
solution for the large area phase by considering a density
of eigenvalues of the form,���h� � ~��h�; �a � h � �b; b � h � a;

1; �b � h � b;
(2.15)

where b < a are points in the real positive axis. From the
point of view of the density ��h�, the Douglas-Kazakov
transition can be represented as in Fig. 1: for A< �2 the
Gaussian density gives a good description, but as A 	 �2

one finds a new density of the form (2.15). It is easy to see
that finding ~��h� amounts to finding a two-cut solution for
a modified matrix model with a logarithmic potential. The
explicit solution to this problem was worked out in [7], and
this allowed them to verify that the phase transition at A �
−a a −a a−b b

A < π2 A > π2

11

FIG. 1. This figure shows the density ��h� before and after the
Douglas-Kazakov transition. The solution for A 	 �2 can be
interpreted as a two-cut solution of an auxiliary matrix model.
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�2 is of third order. It was also verified that the large area
solution agrees with the string expansion of [4].

The mechanism behind the Douglas-Kazakov phase
transition was further elucidated in [8,21,22]. In particular,
it was shown by Gross and Matytsin in [8] that the
Douglas-Kazakov phase transition is driven by instantons.
The small area phase is dominated by the perturbative
vacuum, and instantons are suppressed with an exp��N�
factor. The one-instanton suppression factor at leading
order in N was computed in [8] to be given by

exp
�
�
N
A
�GM�A�

�
; (2.16)

where

�GM�A� � 2�
����������������
�2 � A

p
� A log

�
���

����������������
�2 � A
p

�2

A

�
:

(2.17)

Since �GM�A � �2� � 0, as we reach the critical
point instantons are not anymore suppressed and they
trigger the phase transition, which is then a consequence
of exp��N� effects which are not visible in the 1=N
expansion.
III. THE PHASE DIAGRAM OF q-DEFORMED
2D YM

The q-deformed two-dimensional Yang-Mills theory
arises as a natural deformation of the usual model. This
model has been considered in [23,24] and more recently, in
the context of topological string theory, in [2]. The parti-
tion function of the q-deformed theory on the sphere can be
obtained by replacing the dimensions of representations in
(2.1) by their quantum counterpart, in the sense of quantum
group theory. The resulting partition function depends on
the rank N of the gauge group, two real parameters, p; gs,
and an angle �. It reads,

Zq �
X
R

�dimqR�2qpC2�R�=2ei�C1�R�; (3.1)

where the quantum dimension of R is given by

dim qR �
Y

1�i<j�N

�li � lj � j� i�

�j� i�
; (3.2)

and the q-numbers appearing here are defined as

�x� � qx=2 � q��x=2�; q � e�gs : (3.3)

The free energy of the model is defined as

Fq �
1

N2 logZq: (3.4)

It is convenient to define the parameter A as

pgs �
A
N
: (3.5)
-3
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As we will see in a moment, A corresponds to the area of
the sphere in (2.1). As in 2D YM, we will require A to be
positive. Notice that the q-deformed theory is symmetric
under p; gs ! �p;�gs. Therefore, we can restrict our-
selves to the range of parameters p > 0, gs > 0.

An important property of the q-deformed theory is that
in a suitable double-scaling limit, one recovers ordinary 2D
YM. This limit is defined as follows:

p ���! 1; gs ���! 0; A; N fixed: (3.6)

As gs ! 0 with N fixed, the quantum dimension becomes
the classical dimension:

dim qR ���! dimR; (3.7)

and

qpC2�R�=2 ���! exp
�
�
AC2�R�

2N

�
; (3.8)

which is the standard weight factor for 2D YM. We then
recover the partition function (2.1) for a sphere of area A.
The q-deformed theory can then be regarded as a one-
parameter deformation of 2D YM.

In this paper we will be interested in the large N dy-
namics of the deformed theory. It is useful to introduce the
’t Hooft parameter, which is defined as

t � Ngs; (3.9)

and we will consider the ’t Hooft large N limit in which
N ! 1 and t and p are fixed. The planar free energy

Fq0 �t; p� � lim
N!1

Fq (3.10)

will then be a function of t and p. Notice that the limit (3.6)
that gives ordinary Yang-Mills theory can be implemented
order by order in the 1=N expansion by taking

p ���! 1; t ���! 0; pt � A fixed: (3.11)

In this way, we recover planar 2D YM on the sphere. We
will check many of our results for the q-deformed theory,
by verifying that in the limit (3.11) one recovers the known
results in 2D YM.

In order to compute the planar free energy, we follow the
steps outlined in the previous section for the undeformed
theory and represent the planar free energy in terms of a
functional of a distribution h�x�, which is defined as in
(2.6). It is easy to see that in the large N limit the planar
free energy derived from (3.1) is given by

Fq0 �t; p� � �S�h�; (3.12)

where the functional S�h� reads
026005
S�h� � �
Z 1

0
dx
Z 1

0
dy logj2 sinh

t
2
�h�x� � h�y��j

�
pt
2

Z 1

0
dxh�x�2 � i�

Z 1

0
dxh�x� �

pt
24

�
Z 1

0
dx
Z 1

0
dy logj2 sinh

t
2
�x� y�j; (3.13)

and in (3.12) S�h� is evaluated on the configuration h�x�
which minimizes the above functional. The last term in
(3.13) comes from the denominator of the quantum dimen-
sion and it is given byZ 1

0
dx
Z 1

0
dy logj2 sinh

t
2
�x� y�j �

2

t2
FCS

0 �t�; (3.14)

where

FCS
0 �t� �

t3

12
�
�2t
6
� Li3�e

�t� � ��3�: (3.15)

This function is the planar free energy of Chern-Simons
theory [25], and we recall that the polylogarithm of order n
is given by

Li n�x� �
X1
k�1

xk

kn
: (3.16)

If we redefine

h�x� ! h�x� �
i�
tp
; (3.17)

the functional (3.13) becomes

S�h� � �
Z 1

0
dx
Z 1

0
dy logj2 sinh

t
2
�h�x� � h�y��j

�
pt
2

Z 1

0
dxh�x�2 �

pt
24
�
�2

2pt
�

2

t2
FCS

0 �t�: (3.18)

Since the inclusion of � only leads to an additive term in
the planar free energy, we will set � � 0 from now on.
After introducing a density function ��h� as in (2.10), the
�-dependent part of the effective action can be written
(3.13) as

S��� � �
Z
dh

Z
dh0��h���h0� logj2 sinh

t
2
�h� h0�j

�
pt
2

Z
dh��h�h2: (3.19)

As explained in the previous section, to see if there is a
phase transition one first solves for the ��h� that extremizes
(3.19), assuming a one-cut structure. In order to compute
��h�, we have to solve the integral equation derived from
(3.19),

ph � P
Z
dh0��h0� coth

t
2
�h� h0�; (3.20)

where P denotes principal value. The density ��h� is
supported on a symmetric interval ��a; a�. A similar in-
-4
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FIG. 2. This figure shows the deformation of the contour
needed to compute the resolvent in (3.29). We pick a residue
at z � �, and we have to encircle the singularity at the origin as
well as the branch cut of the logarithm, which on the left hand
side is represented by the dashed lines.
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tegral equation appears in the saddle-point analysis of the
Chern-Simons matrix model on the three-sphere [11–13].
In fact, after the change of variables � � th, (3.19) be-
comes the planar functional for the Chern-Simons matrix
model

ZN �
Z YN

i�1

d�i
2�

Y
i<j

�
2 sinh

�i � �j
2

�
2

exp

(
�
N
2�

XN
i�1

�2
i

)
;

(3.21)

with ’t Hooft parameter � � t=p. This connection suggests
an effective way of solving (3.20). As in [12–14], we
change variables

� � eth�t=p; (3.22)

and we introduce the density for the new variable �,

���� �
dh
d�

��h� �
1

t�
��h�: (3.23)

The integral Eq. (3.20) becomes

1

2

p
t

log�
�
� P

Z
d�0

���0�
�� �0

: (3.24)

This is exactly the saddle-point equation for the Chern-
Simons/Stieltjes-Wigert matrix model, and we can solve it
in a variety of ways [12,13,26]. The direct computation
performed in [13] is the most convenient one in view of the
two-cut solution that we will introduce later, so let us
briefly review it. As usual, we introduce a resolvent

!0��� �
Z
d�0

���0�
�� �0

; (3.25)

which due to the normalization (2.10) and the redefinition
(3.23), satisfies the following asymptotic behavior

!0��� �
1

�
�O���2�; (3.26)

as �! 1. The density ���� is recovered from the resol-
vent !0��� through the standard equation

���� � �
1

2�i
�!0��� i	� �!0��� i	��: (3.27)

We are looking for a one-cut solution to the problem,
therefore we assume that the density of eigenvalues is
supported in the interval �a�; a��, where

a
 � e
ta�t=p: (3.28)

It is well known that !0��� can be computed as [27]

!0��� � r���
I
C

dz
2�i

g�z�
��� z�r�z�

; (3.29)
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where C is a contour around the cut �a�; a��, and

g��� �
p
2t

log�
�

; r��� �
��������������������������������������
��� a����� a��

q
:

(3.30)

The standard way to compute an integral like (3.31) is to
deform the contour. Since the logarithm has a branch cut,
we cannot push the contour to infinity. Instead, we deform
the contour as indicated in Fig. 2. We pick a pole at z � �,
and then we surround the cut of the logarithm along the
negative real axis and the singularity at z � 0 with a small
circle C	 of radius 	. A similar situation appears in, for
example, [28]. The final formula for the resolvent is

!0��� �
p
2t

log�
�
�
p
2t
r���lim

	!0

�
�
Z �	
�1

dz
z�z� ��r�z�

�
I
C	

dz
2�i

logz
z�z� ��r�z�

�
: (3.31)

The integrals in the second line have log	 singularities as
	! 0, but they cancel each other, and after some compu-
tations one finds for the resolvent:

!0��� � �
p

2t�
log

�
�
������
a�
p ����������������

�� a�
p

�
������
a�
p ����������������

�� a�
p

�2

�
����������������
�� a�
p

�
����������������
�� a�
p

�2�2

�

�
p

2t�
r���

1������������
a�a�
p log

�
4a�a�

2
������������
a�a�
p

� a� � a�

�
:

(3.32)

In order to satisfy the asymptotics (3.26) the second term
must vanish, and the first one must go like 1=�. This
implies

4a�a� � 2
������������
a�a�
p

� a� � a�;������
a�
p

�
������
a�
p

� 2et=p;
(3.33)

and from here we obtain the positions of the endpoints of
the cut a�; a� as a function of t=p:

a� � 2e2t=p � et=p � 2e�3t=2p�
�����������������
et=p � 1

p
;

a� � 2e2t=p � et=p � 2e�3t=2p�
�����������������
et=p � 1

p
:

(3.34)
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FIG. 3. This figure represents the phase diagram of
q-deformed 2D YM theory. The horizontal axis represents the
parameter p, while the vertical axis represents A. The curve
shown in the figure is the critical line (3.41), which separates the
phases of small and large area. The horizontal dashed line, which
is the asymptote of the curve as p! 1, represents the A � �2

critical point of Douglas and Kazakov.
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The final expression for the resolvent is then

!0��� � �
p
t�

log
�1� e�t=p��

�����������������������������������������
�1� e�t=p��2 � 4�

q
2�

�
;

(3.35)

and from here we easily find the density of eigenvalues

���� �
p
�t�

tan�1

� �����������������������������������������
4�� �1� e�t=p��2

q
1� e�t=p�

�
: (3.36)

We can now go back to the original variable h, to find

��h� �
p
�

tan�1

� ��������������������������������������������������
eA=p

2
� cosh2�Ah=�2p��

q
cosh�Ah=�2p��

�
; (3.37)

which has its support on ��a; a� with

a �
2p
A

cosh�1�eA=�2p
2��: (3.38)

As a test of this result, notice that in the double-scaling
limit (3.11) one finds

��h� � �G�h; 1=A� �O�1=p2�; (3.39)

therefore the leading term is exactly the Wigner semicircle
distribution obtained by [7].

In order to assess the possibility of phase transitions, we
have to verify the condition (2.11). Notice first that
jtan�1�x�j � �

2 , therefore

��h� � p=2 (3.40)

for all h. A first conclusion is that there is no phase
transition for p � 2. For p > 2 there is indeed a phase
transition which occurs when the value of A is such that the
maximum of the distribution reaches the value 1. Since the
maximum occurs at h � 0, we immediately find the fol-
lowing line of critical points:

A
�p� � p2 log
�

1� tan2

�
�
p

��
; p > 2: (3.41)

As p! 1,

A
�p� ! �2; (3.42)

in agreement with the result of Douglas and Kazakov (2.4).
Notice that A
�p� is a decreasing function of p for p > 2,
and as p! 2�, the critical area increases to infinity. For a
given p, the small area phase occurs for A � A
�p�, and in
this phase the planar free energy is well described by the
distribution (3.37).

We then have the phase diagram represented in Fig. 3.
The horizontal axis represents the parameter p, while the
vertical axis represents A. The critical line, described by
the function (3.41), has two asymptotes, represented by
dashed lines: as p! 1 it approaches the horizontal
dashed line A � �2, which corresponds to the Douglas-
Kazakov phase transition. As p! 2� it approaches the
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vertical asymptote. For p 2 �0; 2� there is no phase tran-
sition. Notice that, if we parametrize the planar
q-deformed theory in terms of p and A, the region p!
1 corresponds to a small deformation, while the region
p < 2 corresponds to a large deformation. We then see
that, if we start with ordinary 2D YM and we turn on the
deformation parameter 1=p, the Douglas-Kazakov phase
transition persists although the critical area increases. At
p � 2 there is a ‘‘barrier’’ where the critical area becomes
infinite. Therefore, when the deformation parameter is
large enough, the large N phase transition is smoothed out.

To find the free energy in the small area phase, we have
to compute the functional (3.19) evaluated on the density
(3.37). Since this functional is closely related to the func-
tional describing the planar Chern-Simons matrix model,
we can borrow the results from [13,25]. From [13] it
follows that, at large N, the matrix integral (3.23) is given
by

exp�N2F0����; (3.43)

with

F0��� �
1

�2 F
CS
0 ��� �

�
12
: (3.44)

Since � � t=p in our example, we finally obtain

Fq0 �t; p� �
1

t2
�p2FCS

0 �t=p� � 2FCS
0 �t�� �

t
12p
�
pt
24
:

(3.45)

As a further check of this expression, notice that, after
using the expansion,
-6
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Li 3�e
�t� � ��3� �

�2

6
t�

�
3

4
�

1

2
logt

�
t2 �O�t3�;

(3.46)

one finds in the double-scaling limit (3.11)

Fq0 �t; p� !
A
24
�

1

2
logA�

3

4
; (3.47)

which indeed is the free energy of the usual 2D YM theory
in the small area phase.
IV. INSTANTON ANALYSIS

Since q-deformed 2D YM theory is a one-parameter
deformation of the standard one, we expect the phase
transition discovered in the previous section to be triggered
by instantons as well. In this section we will verify this by
computing the one-instanton suppression factor in the
q-deformed case. This will also give an intuitive explana-
tion of why the phase transition is absent for p � 2.

The starting point of the discussion is to write the
partition function of the theory in a way that makes mani-
fest the instanton content of the model. Since q-deformed
2D YM theory has the same action as standard 2D YM, but
differs in the measure [2], we expect the partition function
to be expressed in terms of a sum over instantons,

Zq �
X
nj

w�nj� exp

 
�

2�2N
A

XN
j�1

n2
j

!
; (4.1)

where nj, j � 1; � � � ; N, are the instanton numbers char-
acterizing a classical solution [8], and w�ni� is the weight
of such a configuration in the semiclassical expansion. In
order to compute the weights w�nj�, we follow the tech-
nique used by Minahan and Polychronakos [22] in standard
2D YM and perform a Poisson resummation of the original
expression (3.1). This can be regarded as a duality trans-
formation which takes us from the large A phase where the
expansion (3.1) is valid, to the small area phase where the
semiclassical expansion (4.1) is valid. The partition func-
tion can then be written as

Zq � C
X
nj

F2�2�nj�; (4.2)

where F2�xj� is a Fourier transform with respect to the
variables pj � lj � j� 1=2:

F2�xj� �
Z Y

j

dpje
�i
P
j

xjpjY
j<k

�
2 sinh

t
N
�pj � pk�

�
2

� exp

 
�
A

2N

X
j

p2
j

!
; (4.3)

and we are setting the � angle to zero. This transform can
be performed by first computing
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F1�xj� �
Z Y

j

dpje
�i
P
j

xjpjY
j<k

�
2 sinh

t
N
�pj � pk�

�

� exp

 
�
A

2N

X
j

p2
j

!
; (4.4)

and then doing a convolution. The integral (4.4) reduces to
a Gaussian after using Weyl’s denominator formula for a
general Lie algebra,X

w2W

	�w�ew����u �
Y

>0

2 sinh

 � u

2
; (4.5)

where 
 are the positive roots, w 2W are the elements of
the Weyl group, and 	�w� is the parity ofw. We find, up to a
multiplicative constant,

F1�xj� � exp

 
�
N
2A

XN
j�1

x2
j

!Y
j<k

2 sin
t

2A
�xj � xk�; (4.6)

and using convolution we finally obtain

F2�xj� � exp

 
�
N
2A

XN
j�1

x2
j

!
�
Z YN

j�1

dyj

�
Y
j<k

�
4 sin

t
2A
�xjk � yjk� sin

t
2A
�xjk � yjk�

�

� exp

 
�
N
2A

XN
j�1

y2
j

!
; (4.7)

where we introduced the notation xjk � xj � xk. The in-
stanton weight has then the expression

w�nj� �
Z YN

j�1

dyj
Y
j<k

�
4 sin

t
2A
�2�njk � yjk�

� sin
t

2A
�2�njk � yjk�

�
exp

 
�
N
2A

XN
j�1

y2
j

!
; (4.8)

which is a q-deformed version of the result in [22] for
standard 2D YM.

As it was pointed out in [8], a precise way to evaluate the
importance of instanton contributions to the partition func-
tion is to compare the contribution of the one-instanton
term in the semiclassical expansion (4.1) to the contribu-
tion of the perturbative vacuum. The relative weight of
these contributions defines a function ��A; p� as follows

exp
�
�
N
A
��A; p�

�
� exp

�
�N

2�2

A

�
w1

w0
; (4.9)

where the exponent in the right hand side involves the
instanton action for n1 � 1; ni>1 � 0, and we have de-
noted

w1

w0
�
w�1; 0; � � � ; 0�
w�0; � � � ; 0�

: (4.10)
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We call the function in (4.9) the one-instanton suppression
factor. Notice that, as long as ��A; p� is different from zero,
instantons will be suppressed in the large N limit. The
suppression is bigger the larger ��A; p� is. In the remaining
of this section, we will compute ��A; p� in the small area
phase of q-deformed 2D YM, and we will study its
properties.

Let us first define the partition function

ZN �
Z YN

j�1

dyj
Y
j<k

�
2sin

t
2A
�yj� yk�

�
2

exp

 
�
N
2A

XN
j�1

y2
j

!
:

(4.11)

This is very close to the partition function of the Chern-
Simons matrix model, although it has a sin interaction
between eigenvalues instead of a sinh interaction. We can
then use the results of the previous section after changing

p! �i
p
A
; A!

1

A
; (4.12)

and doing carefully the analytic continuation of p to the
imaginary axis. Equivalently, we can change variables y �
�iA�=t in (4.11) to obtain the matrix model (3.21) with
� � �A=p2. One can then see from the formulae pre-
sented in the last section that the planar limit of (4.11) is
controlled by the following density of eigenvalues,

��y� �
p
�A

tanh�1

� �����������������������������������������������
cos2�y=�2p�� � e�A=p

2
q

cos�y=�2p��

�
; (4.13)

with endpoints located at

Y � 2pcos�1�e�A=�2p
2��: (4.14)

As p! 1, one can easily check that ��y� ! �G�y; A�.
We can now evaluate (4.10). Notice first that w0 � ZN .

On the other hand, as in [8], one has

w1 � ZN�1

Z 1
�1

dy1e
��N=2A�y2

1

*YN
j�2

�
4 sin

1

2p

� �2�� �yj � y1�� sin
1

2p
�2�� �yj � y1��

�+
N�1

;

(4.15)

where the correlator is computed in the model (4.11) with
N � 1 variables. Since we are interested in the large N
behavior of the one-instanton suppression factor, we can
compute the different integrals in the saddle-point approxi-
mation. This, in particular, means that we can set y1 � 0
inside the correlator in (4.15). We find,

w1

w0
�

�
2�A
N

�
1=2 ZN�1

ZN
exp

�
�N � 1�

Z
dy��y�

� log
�
4 sin

1

2p
�2�� y� sin

1

2p
�2�� y�

��
: (4.16)
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We have first to evaluate the quotient ZN�1=ZN in the large
N limit. It is easy to see that, at leading order in N, this
quotient is

expf�N�2F0��� � �F
0
0����g; (4.17)

where F0��� is given in (3.44). Here, � � �A=p2, and
after an analytic continuation �! �� we find,

2F0��� � �F00��� �
p2

A

�
Li2�e�A=p

2
� �

�2

6

�
; (4.18)

up to an overall sign ��1�N in ZN�1=ZN . Putting every-
thing together, we obtain the following formula for the
function ��A; p� defined in (4.9):

��A; p� � 2�2 � p2

�
Li2�e�A=p

2
� �

�2

6

�
� A

Z
dy��y�

� log
�
4 sin

1

2p
�2�� y� sin

1

2p
�2�� y�

�
:

(4.19)

The integral in (4.19) can be evaluated analytically. Notice
first that in any matrix model one has

F�v� �
Z
d����� log�1� �=v�

�
Z v

1
dv0�!0�v0� � 1=v0�: (4.20)

This follows directly from the definition of the resolvent in
(3.25). Taking into account the redefinition (4.12), we find
that the integral in (4.19) is given by

2 ReF�e�A=p
2�2�i=p�; (4.21)

where F�v� is obtained as in (4.20), and the relevant
resolvent is (3.35). After some work, and using standard
identities for the dilogarithm, one finds the following ex-
pression:

��A; p� � 2�2 � p2

�
Li2�e

�A=p2
� �

�2

6

�
� 2p2ReG�f��p; A�; f��p; A��; (4.22)

where

G�x; y� �
1

2
�logx�2 � logx log�1� y� � Li2�1� x�

� Li2�y�;

f
�p; A� � exp�
A=�2p2� � i�’� �=p��;

’ � tan�1

� ������������������������������������������
e�A=p

2
� cos2��=p�

q
cos��=p�

�
:

(4.23)

In order to understand the properties of the instanton
suppression factor, we have studied (analytically and nu-
merically) the properties of (4.22) as a function of A and p
-8
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for p > 2, A � A
�p�. The main results of this analysis are
the following:

1. As p! 1, the function ��A; p� becomes the function
�GM�A� introduced in (2.17). This is a consistency check of
the solution.

2. For any fixed p > 2, ��A; p� takes the value 2�2 at
A � 0 and then it decreases monotonically as the area is
increased. At the critical area (3.47) one has

��A
�p�; p� � 0: (4.30)

The vanishing of ��A; p� at the critical area can be proved
analytically, since at A � A
�p�,

f
�p; A
�p�� � �cos��=p���1e�i�=p: (4.31)

For arguments of this form (which are algebraic numbers)
the dilogarithm satisfies nontrivial identities [29] that can
be easily shown to lead to (4.30).

3. For p < p0, one has that ��A; p�>��A; p0� in their
common range A � A
�p

0�.
These properties are illustrated in Fig. 4, which shows

the function ��A; p� as a function of the area for the values
p � 2:1; 3;1, from top to bottom. The above properties
show that the one-instanton suppression factor in the small
area phase decreases as the area grows, until it vanishes at
A
�p�. Therefore, at the line of critical points found in
section 3, the instantons are not suppressed anymore and
they become favorable configurations. This shows that the
phase transition for the q-deformed theory is indeed trig-
gered by instantons, and follows a mechanism similar to
the one studied in [8]: for A > A
�p�, the entropy of the
instantons dominates over their Boltzmann weight. The
above analysis also shows that, as p decreases, the instan-
ton suppression factor becomes bigger and bigger, pushing
the critical value of the area to ever larger values. This
indicates that the smoothing out of the phase transition for
p � 2 is due to the fact that the instantons are suppressed
5 10 15 20

2.5

5

7.5

10

12.5

15

17.5

20

FIG. 4. This figure shows the function ��A; p� appearing in the
one-instanton suppression factor, plotted as a function of A, and
for the values p � 2:1; 3;1, from top to bottom. For each p it is
a decreasing function of the area and vanishes at the critical
value A
�p�.
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for all values of A and we only have one phase dominated
by the perturbative vacuum ni � 0.
V. THE TWO-CUT SOLUTION

In this section we give some preliminary results about
the large area phase of the theory. After the phase transition
found in section 3, we expect a distribution ��h� a la
Douglas-Kazakov, with the shape shown in the right-
hand side of Fig. 1 and characterized by two points â; b̂.
The distribution governing the large area distribution is
then of the form�

��h� � ~��h�; �â � h � �b̂; b̂ � h � â;

1; �b̂ � h � b̂:
(5.1)

After changing variables � � exp�th� t=p� as in the pre-
vious section, the new density of eigenvalues ~���� �
1=�t��~��h� has support on the two intervals �a�; b��,
�b�; a��, where

a
 � et=p
tâ; b
 � et=p
tb̂: (5.2)

This density satisfies the following integral equation,

g��� �
p
2t

log�
�
�

1

t�
log
�=b� � 1

�=b� � 1
� P

Z ~���0�
�� �0

d�0:

(5.3)

As in the one-cut case, we introduce a resolvent

~! 0��� �
Z ~���0�
�� �0

d�0: (5.4)

This can be again computed by the contour integral (3.29),
but now

r�z� �
�������������������������������������������������������������������������
�z� a���z� a���z� b���z� b��

q
; (5.5)

and C is the union of the contours surrounding the cuts
�a�; b��, �a�; b��. To perform the integral (3.29) we de-
form the contours in the way shown in Fig. 5: we now
encircle the branch cut along ��1; 0�, coming from log�,
and the branch cut of the integrand along �b�; b��. The
answer for the resolvent is
a− b− b+ a+
b− b+

FIG. 5. This figure shows the deformation of the contour
needed to compute the resolvent in the two-cut solution. We
have to encircle the singularity at the origin, and the two branch
cuts denoted by thick lines on the left.
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~!0��� �
p
2t

log�
�
�

1

t�
log
�=b� � 1

�=b� � 1

� r���
p
2t

lim
	!0

�
�
Z �	
�1

dz
z�z� ��r�z�

�
I
C	

dz
2�i

logz
z�z� ��r�z�

�

�
r���
t

Z b�

b�

dz
z�z� ��r�z�

: (5.6)

The above integrals can be expressed in terms of elliptic
functions. We will change notation a�; b�; b�; a� to
d; c; b; a. Define

I��; u� �
Z d

u

dz
�z� ��r�z�

�
2

��� c���� d�
�������������������������������
�a� c��b� d�

p
� f�c� d����; n; k� � �d� ��F��; k�g; (5.7)

where ���; n; k� and F��; k� are incomplete elliptic inte-
grals of the third and the first kind, respectively, and

sin2� �
�a� c��d� u�
�a� d��c� u�

; n �
�a� d���� c�
�a� c���� d�

;

k2 �
�b� c��a� d�
�a� c��b� d�

: (5.8)

In what follows it will be convenient to introduce the
following angles �1, �2 and variables n1 and n2:

sin 2�1 �
a� c
a� d

; sin2�2 �
d
c
a� c
a� d

;

n1 �
a� d
a� c

; n2 �
c
d
a� d
a� c

:

(5.9)

In terms of these variables one finds,

I��;�1� �
2

��� c���� d�
�������������������������������
�a� c��b� d�

p
� f�c� d����1; n; k� � �d� ��F��1; k�g;

I��; 0� �
2

��� c���� d�
�������������������������������
�a� c��b� d�

p
� f�c� d����2; n; k� � �d� ��F��2; k�g;

I�0;�1� �
2

cd
�������������������������������
�a� c��b� d�

p
� f�c� d����1; n2; k� � dF��1; k�g: (5.10)

The first integral in the second line of (5.6) is given by

1

�
�I��;�1� � I��; 0� � I�0;�1� � I�0;�	��: (5.11)

The second integral in the second line is simply a residue
and it can be computed immediately:
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�
1

�
1�����������
abcd
p log	: (5.12)

We now compute I�0;�	� at next-to-leading order in 	.
This will have a logarithmic singularity which will cancel
(5.19). In order to do that, we need the following identity
[30]:

���; n; k� � ��n�
�
1

2
log
#1�v� ��
#1�v� ��

�
# 04���
#4���

v
�
; (5.13)

where

��n� �
�

n

�1� n��k2 � n�

�
1=2
; v �

F��; k�
2K�k�

;

� �
F�sin�1�n�1=2�; k�

2K�k�
;

(5.14)

and the 
 parameter in the theta functions is given as usual
by

q � e2�i
 � exp���K0�k�=K�k��: (5.15)

Notice that, when

sin 2� �
1

n
(5.16)

we have a logarithmic singularity in the elliptic integral
���; n; k�. This is immediately checked in the integral
representation of the elliptic function2. We can now use
(5.13) to extract the next-to-leading behavior. Since

sin 2� �
a� c
a� d

d� 	
c� 	

; n � n2; (5.17)

the leading behavior of ���; k; n2� is given by

��n2�

�
��2

# 04��2�

#4��2�
�

1

2
log
#1�2�2�

#01�0�
�

1

2
log

�
c� d
4cd

��n2�

�

�
1

2
logK�k�

�
�
��n2�

2
log	�O�	�; (5.18)

where �2 is given by

�2 �
F��2; k�

2K�k�
: (5.19)

This leads to the following expression

I�0;�	� � �
1�����������
abcd
p log	� I�0; 0� �O�	�; (5.20)

where
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I�0; 0� �
1�����������
abcd
p

�
�2�2

# 04��2�

#4��2�
� log

#1�2�2�

#01�0�

� log
�
c� d
4cd

��n2�

�
� logK�k�

�

�
2

c
�������������������������������
�a� c��b� d�

p F��2; k�: (5.21)

From the above result we see that the singularities as 	! 0
cancel, as wished.

We now consider the remaining integral. Define

J��� �
Z b

c

dz
�z� ��r�z�

�
2

��� a���� b�
�������������������������������
�a� c��b� d�

p
� f�a� b���m; k� � �b� ��K�k�g; (5.22)

where

m �
�b� c���� a�
�a� c���� b�

: (5.23)

We then haveZ b

c

dz
�z� ��zr�z�

�
1

�
�J��� � J�0��; (5.24)

where J�0� is given explicitly as

J�0� �
2

ab
�������������������������������
�a� c��b� d�

p f�a� b���m�0�; k� � bK�k�g:

(5.25)
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Putting everything together, we find the following expres-
sion for the resolvent:

~!0��� �
p
2t

log�
�
�

1

t�
log
�=b� 1

�=c� 1

�
pr���
2t�

�I��;�1� � I��; 0� � I�0;�1�

� I�0; 0�� �
r���
t�
�J��� � J�0��: (5.26)

As �!1, this is indeed a Laurent series in �: using again
(5.20) it is easy to see that I��;�1� contains a term of the
form � log���=r��� that cancels against the first term in
(5.26). In order to derive the conditions for the endpoints of
the cut, we must impose the asymptotic behavior

~! 0��� �
1� 2b̂
�

�O���2�: (5.27)

We find three conditions. First of all, notice that there is a
term of order � coming from the integrals I�0; 0�,
I�0;�1�, and J�0�. Imposing the cancellation of this
term, one obtains the condition

p�I�0; 0� � I�0;�1�� � 2J�0� � 0: (5.28)

The vanishing of the constant term leads to the condition

p�F��2; k� � F��1; k�� � 2K�k�; (5.29)

Finally, the fact that the 1=� term has the coefficient 1�
2b̂ leads to a third condition,
p
�
�a� b� d� c��F��1; k� � F��2; k�� � 2�c� d����2; n1; k�

�
�������������������������������
�a� c��b� d�

p �
�2�1

#04��1�

#4��1�
� log

#1�2�1�

#01�0�
� log

�
c� d

4
��n1�

�
� logK�k�

��
� 2�b� d� c� a�K�k�

� 2�d� b���m1; k� � t; (5.30)
where

�2 �
F��2; k�

2K�k�
; m1 �

b� c
a� c

: (5.31)

These conditions determine the endpoints â; b̂ as functions
of the parameters t; p. We seem to have three conditions for
two unknowns, but since we started with a symmetric
problem and we just changed variables, one of the con-
ditions is redundant. This is not easy to verify from the
above expressions, but can be checked, for example, by
doing a small t expansion of the equations, and assuming a
power series ansatz for the endpoints:

â�t; A� �
X1
n�0

ân�A�t
n; b̂�t; A� �

X1
n�0

b̂n�A�t
n: (5.32)
The ansatz is justified by the fact that, as t! 0 with A
fixed, we must recover the standard YM result obtained in
[7]. One can see that, at leading order in t, the three
conditions above lead to the same equation, namely

â0 � b̂0

2
A � 2K�k0�; (5.33)

where

k2
0 �

4â0b̂0

�â0 � b̂0�
2
: (5.34)

Using standard properties of elliptic functions, one can
easily check that this condition becomes
-11
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A �
4

â0
K�b̂0=â0�; (5.35)

which is precisely one of the equations found in [7]. Notice
that, by making use of (5.28), we can simplify the expres-
sion of the resolvent to

~!0��� �
p
2t

log�
�
�

1

t�
log
�=b� 1

�=c� 1

�
pr���
2t�

�I��;�1� � I��; 0�� �
r���
t�

J���:

(5.36)

In principle, the above conditions for â; b̂, together with the
explicit expression for the resolvent in (5.36), determine
completely the solution for the large area phase. These
conditions are rather intricate to be treated analytically, but
one could study them numerically.

The most important question to address is the order of
the phase transition for different values of p. This of course
can be seen, as in [7], by computing the free energy in the
large area phase that we have just analyzed. Since the line
of critical points is smoothly connected to the Douglas-
Kazakov transition, we should expect the transition in the
q-deformed theory to be of third order for any p > 2.
Indeed, one can find indirect evidence that this is the
case by using an argument in [8] based on double-scaling
limits. If we consider a theory with a large N n-th order
phase transition at a critical area A � A
 between phases I
and II, the free energy has the following behavior

FI
0�A� � F

II
0 �A� � �A
 � A�

n: (5.37)

To define a double-scaling limit of such a theory, one
should introduce a string coupling constant �s through

��2
s � N2�A
 � A�

n: (5.38)

The nonperturbative effects of such a theory are expected
to be of the form exp��1=�s�. But this means that the
instanton effects in the original theory should have the
behavior exp��N��A��, with

��A� � �A
 � A�
n=2: (5.39)

Indeed, in [8] it is found that the function (2.17) appearing
in the instanton suppression factor has exactly the behavior
(5.39) with n � 3 near the Douglas-Kazakov transition
point, as required for the existence of a double-scaling
limit at a third order phase transition. According to this
argument, the behavior of the instanton suppression factor
near the critical point can be indeed regarded as an indirect
way to probe the order of the phase transition. We have
checked numerically that the function ��A; p� that we
found in (4.22) behaves indeed as

��A; p� � �A
�p� � A�
3=2 (5.40)

near A
�p�, for various values of p > 2. This is indeed
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consistent with the large N phase transition of the
q-deformed theory being of third order for all p > 2.

We should also mention that, in [31], general criteria
have been formulated to determine the order of a phase
transition for a model based on a distribution of Young
tableaux. These criteria only depend on the behavior of the
density (3.37) in the small area phase. It can be easily seen
that according to these criteria, the phase transition of the
q-deformed theory is of third order for any p > 2.

VI. IMPLICATIONS FOR TOPOLOGICAL STRING
THEORY AND OPEN PROBLEMS

In this paper we have shown that q-deformed 2D YM
theory exhibits an interesting phase structure, with a
Douglas-Kazakov phase transition smoothly connected to
that of the standard YM theory, and a barrier at p � 2. One
of the original motivations of this analysis was the appear-
ance of the q-deformed theory as a nonperturbative com-
pletion of topological string theory on certain Calabi-Yau
backgrounds. q-deformed 2D YM on the sphere has been
proposed in [2,3] as a nonperturbative, holographic de-
scription of topological strings on the local Calabi-Yau
manifold

O ��p� �O�p� 2� ! P1; (6.1)

where the integer number p > 0 corresponds to the pa-
rameter p appearing in (3.1). Explicit computations in [2]
show that the perturbative partition function computed in
[5] appears as a certain decoupling limit of the large area
expansion of the q-deformed theory. However, the fact that
this theory exhibits a phase transition suggests that, for
geometries of the form (6.1) with p > 2, the large area
expansion has a finite radius of convergence which, in
terms of the ‘t Hooft parameter t, is given by t
�p� �
A
�p�=p. As p becomes larger, the radius of convergence
becomes smaller. Therefore, the conjecture of [1] suggests
that for the geometries (6.1) with p > 2, there will be a
phase transition at small radius in the full, nonperturba-
tively completed topological string theory. What are the
possible interpretations of this phase transition in the to-
pological string theory context? We will mention here three
possibilities, although a better understanding of the impli-
cations of the phase transition of q-deformed YM to non-
perturbative topological strings will require a more
detailed treatment3:

1. A first possibility is that the phase transition in the
q-deformed theory indicates a topology change in the
Calabi-Yau background. After all, the small and the large
area phases are described by different master fields of the
two-dimensional theory, corresponding to the one-cut and
two-cut solutions discussed above, and it is known that in
large N dualities the master field encodes the geometry of
-12
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the target [12,32]. This topology change might be also
interpreted, as in [6], in terms of a process involving a
splitting of baby universes.

2. A second possibility is that the small area phase does
not have a geometric interpretation. One indication of that
is the string description of standard 2D YM: the analysis of
[4,9] shows that the large area expansion has an interpre-
tation in terms of branched coverings of the sphere.
However, it has been argued that the existence of a large
N phase transition suggests that this geometric picture does
not hold for the small area phase [8]. In the same vein, it is
likely that the small area phase of the q-deformed theory is
not described appropriately by topological strings with a
geometric target. This is in fact very reminiscent of the
analysis of [33] (see also [34,35]), where it was shown that
the large N phase transition of the unitary matrix model
corresponds, in AdS/CFT at finite temperature, to the point
where the horizon of the small AdS black hole becomes
comparable to the string scale. At this point, the supergrav-
ity/geometry picture breaks down. The situation we are
considering here could be a topological string analogue of
the large N transition of [33].

3. A more conservative possibility is that the conjecture
of [1] does not fully apply to the local geometries (6.1)
when p > 2, or at least does not apply to the small area
phase. The original conjecture was formulated for compact
Calabi-Yau threefolds, and there may be subtleties when
applying it to the noncompact case. It turns out that pre-
cisely for p > 2 there are obstructions for contracting the
P1 inside (6.1) to a point [36,37], and because of this reason
one can expect these geometries not to arise as a decom-
pactification limit of a compact Calabi-Yau. It is intriguing
that the barrier p � 2 that we found in this paper is the
same that occurs in the geometric setting.

In extracting the consequences of our analysis for the
nonperturbative physics of topological strings, there is
another point that should be mentioned. In our analysis
we considered the saddle-point solution of the functional
S�h�, and we found that this leads to a distribution where
hhi � 0 and the dependence on the � angle is trivial.
However, it has been argued in [16], by studying the
instanton weight factors, that the presence of a nonzero �
changes the location of the critical line. This is an interest-
ing possibility and deserves further study. Also, we have
restricted ourselves to solutions with zero U�1� charge.
This is indeed the true vacuum of the theory [38], but
one could also consider saddle-point solutions like those
in [22]: one imposes the constraint hhi � Q, whereQ is the
U�1� charge, solves for the density, and then finally sums
over all integer charges with a weight exp�iQ��. It may
happen that, in order to compare our results with those of
[2], one should use this prescription to include the U�1�
charges.
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It is also worth pointing out that the instanton weight
factors considered in section 4 are closely related to the
degeneracies of BPS states analyzed in [2]. It is likely that
the techniques of [8] that we used and extended to the
q-deformed case in order to compute these weights lead to
a useful technique to obtain the degeneracies.

From the point of view of the two-dimensional gauge
theory, the results of this paper indicate that, when the
deformation parameter is sufficiently large, the large N
phase transition is smoothed out already at the planar level.
This is an interesting, new mechanism for smoothing out
large N transitions which may have implications in other
contexts (the other mechanism we are aware of to smooth
out these transitions requires performing a double-scaling
limit, as in [33,39], and involves a resummation of the 1=N
expansion).

There are also various open questions concerning the
gauge theory aspects of our analysis. Of course, the two-
cut solution that we presented in this paper should be
investigated in more detail. One could also investigate
the phase structure and free energy of the chiral version
of the q-deformed theory (in the 2D YM case, this has been
done in [40,41]). Since the chiral sector makes a more
direct contact with the perturbative topological string am-
plitudes, this may help in understanding better the holo-
graphic description proposed in [2,3]. It would be also very
interesting to analyze the subleading 1=N corrections to
the planar result in the small area phase. In [8] this was
done for the standard YM case by using a discretized
version of orthogonal polynomials, but it is not obvious
how to generalize this to a discrete model with a sinh
interaction. Such a generalization would make it also
possible to define a double-scaled theory near the critical
line of the q-deformed theory, as we briefly discussed in
the last section.
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ARSIWALLA, BOELS, MARIÑO, AND SINKOVICS PHYSICAL REVIEW D 73, 026005 (2006)
[1] H. Ooguri, A. Strominger, and C. Vafa, Phys. Rev. D 70,
106007 (2004).

[2] M. Aganagic, H. Ooguri, N. Saulina, and C. Vafa, Nucl.
Phys. B715, 304 (2005).

[3] C. Vafa, hep-th/0406058.
[4] D. J. Gross and W. I. Taylor, Nucl. Phys. B400, 181

(1993).
[5] J. Bryan and R. Pandharipande, math.ag/0411037.
[6] R. Dijkgraaf, R. Gopakumar, H. Ooguri, and C. Vafa, hep-

th/0504221.
[7] M. R. Douglas and V. A. Kazakov, Phys. Lett. B 319, 219

(1993).
[8] D. J. Gross and A. Matytsin, Nucl. Phys. B429, 50 (1994).
[9] D. J. Gross, Nucl. Phys. B400, 161 (1993).

[10] W. Taylor, hep-th/9404175.
[11] M. Mariño, Commun. Math. Phys. 253, 25 (2005).
[12] M. Aganagic, A. Klemm, M. Mariño, and C. Vafa, J. High

Energy Phys. 02 (2004) 010.
[13] M. Mariño, hep-th/0410165.
[14] M. Tierz, Mod. Phys. Lett. A 19, 1365 (2004).
[15] S. de Haro and M. Tierz, hep-th/0501123.
[16] D. Jafferis and J. Marsano, hep-th/0509004.
[17] N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti,

D. Seminara, and R. J. Szabo, hep-th/0509041.
[18] S. Cordes, G. W. Moore, and S. Ramgoolam, Nucl. Phys.

B, Proc. Suppl. 41, 184 (1995).
[19] D. J. Gross and E. Witten, Phys. Rev. D 21, 446 (1980).
[20] S. R. Wadia, Phys. Lett. B 93, 403 (1980).
[21] M. Caselle, A. D’Adda, L. Magnea, and S. Panzeri, hep-

th/9309107.
[22] J. A. Minahan and A. P. Polychronakos, Nucl. Phys. B422,

172 (1994).
026005
[23] E. Buffenoir and P. Roche, Commun. Math. Phys. 170,
669 (1995).

[24] C. Klimcik, Commun. Math. Phys. 217, 203 (2001).
[25] R. Gopakumar and C. Vafa, Adv. Theor. Math. Phys. 3,

1415 (1999).
[26] N. Halmagyi and V. Yasnov, hep-th/0311117.
[27] N. I. Muskhelishvili, Singular Integral Equations (Dover,

New York, 1992).
[28] V. A. Kazakov, M. Staudacher, and T. Wynter, Commun.

Math. Phys. 177, 451 (1996).
[29] A. N. Kirillov, hep-th/9212150.
[30] H. Bateman, Higher Transcendental Functions, Vol. 2

(McGraw Hill, New York, 1953).
[31] M. Alimohammadi and M. Khorrami, Nucl. Phys. B597,

652 (2001).
[32] R. Dijkgraaf and C. Vafa, Nucl. Phys. B644, 3 (2002).
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