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ABSTRACT

Experiments on mm scattering determine only the
modulus of the amplitude in the inelastic region. Fixed
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1. Introduction

An understanding of strong interaction dynamics requires knowledge of
the elements of the S-matrix. These elements alone determine experiment.
The construction of these scattering amplitudes from experimental data is
however fraught with ambiguity, even for a spinless particle process. That
such ambiguities occur has nothing to do with experimental errors and
would arise even if we had infinitely accurate data. In other words,
while a given element of the S-matrix uniquely defines a set of experi-
mental data, a given set of experimental data can equally well be described
by a large number — in general, an infinity - of possible scattering
amplitudes. Since each of these will have different physical properties,
it is clear we must try to limit the range of possible ambiguities in
translating experimental data into elements of the S-matrix if we are ever
to reveal the basic properties of the strong interactions from data.

Now the elements of the S-matrix satisfy a trinity of fundamental
properties, namely analyticity, crossing and unitarity, which it is clear
an arbitrary function describing the data will not satisfy. By requiring
that our scattering amplitudes should also satisfy these properties, we
may hope to limit the range of possible candidates for elements of the
S-matrix, if not to a unique choice, at least to just a few.’ The study of
such a possibility in a practical situation is the purpose of this work.

Of these general properties, unitarity, or at least its single channel
content, is the simplest to impose. It is the object of phase shift
analysis to construct amplitudes describing the data and to find those
solutions which are unitary and to discard the rest. However, and most
importantly by beginning his analysis with a basic simplifying assumption,
the phase shifter restricts his attention to a particular subclass of all

possible scattering amplitudes describing the data and seeks unitary solu-



tions only within this subclass. He obtains unitary amplitudes but what
about analyticity?

At this point, the phase shifter makes a further step. He notes that
his resulting phase shifts, being directly related to data, are subject to
many fluctuations, most of them of a random statistical nature. Knowing
that the true amplitude should not have such statistical fluctuations he
smooths the phase shifts in some way, either before or after performing
his analysis of the data. Such a smoothing procedure has no theoretical
basis whatsoever except for a belief in a smooth amplitude. Indeed, such
'ad hoc' smoothing procedures obviously cannot distinguish dynamical
structures in the data from random statistical fluctuations — all are
smoothed away. Since our aim is to understand the dynamics of strong
interactions it is clear we must find a way to remove (hopefully) most
of the random statistical fluctuations and yet preserve local dynamical
structures, which are the very substance of the dynamic S-matrix.

The phase shifter arrives at a set of solutions which are smooth and
unitary; we wish to find those that are analytic and unitary. These are
not the same. Indeed, we shall see that the analyfic amplitudes do not
lie in the restricted subclass of possible scattering amplitudes the phase
shifter searches, but in the more gemeral class of all possible amplitudes.
However, since the phase shift analyst follows part of the path that we wish
to, and how he, or she, proceeds is more familiar, it is convenient for us
to base our discussion on the analysis of the phase shifter and only to be
more general later.

Since our aim is to study the imposition of the general properties of
analyticity and unitarity, not in the abstract, but in a practical situa-
tion we will consider a particular scattering process given by a particular
set of experimental data. The physical process we study is mm scattering,

spinless and seemingly simple, the data for which is obtained from pion



production experiments. The specific data we consider is that produced by

F o+ 1,2
T n a, ). We do not concern our-

] F
the CERN-Munich group on both m p =~ 7
selves here with any uncertainty in the extrapolation to the pion pole,
but assume that these experiments provide us uniquely with data on

+ + + + . . . . .
mwm - 7w m scattering. This is despite the fact that a recent polarized

(3)

target experiment by this same group has revealed a significant amount
of non-m exchange, since preliminary analysis of these results indicates
there to be little change in the 7m amplitude at least in the limited
energy region so far investigated(a). We take this as suggestive that the
results of our extensive treatment of the original CERN-Munich data will
survive further refinements. Moreover, in the energy region we study the
data from the Omega spectrometer(s) are in good agreement with that of
CERN-Munich. Our aim given these data is to construct the amplitude for
mm scattering. We will concentrate on the mor channel.

In section 2 we define the ambiguities which arise in constructing
an amplitude for such a channel from experimental data. In section 3
we explicitly form mm amplitudes describing experiment which are analytic.
We shall see that this implementation of analyticity provides us with two
basic amplitudes both equally consistent. On partial wave projecting
these we find, in section 4, that each produces a phase shift solution
which is unitary. These two basic solutions, o and B, equally analytic,
unitary and perfectly describing experiment in the ot channel have quite
different physical properties.

In these solutions, the leading partial waves are rather similar,
with the D and F waves being dominated by the f and g resonances, respec-
tively. Moreover, the G wave is completely consistent with expectations
from the tail of the spin four h(2025) resonance, having an elasticity

of 20 to 25 percent. It is however the structure of the daughter waves

that distinguishes these solutions. Indeed, it is the unravelling of



these structures in lower partial waves that is an outstanding question

of meson spectroscopy. Solution o has a highly inelastic S wave resonat-
ing around 1350 MeV with a fairly structureless P wave showing no evidence
for a p' coupling to wm at either 1250 or 1600 MeV at the 27 level. 1In
contrast, solution B has a much more elastic S wave, once again resonating
in the f region with the P wave also showing a clearly resonant p'(1600)
having a 30% coupling to mm. The fact that a strong p'(1600) signal

(6)

exists in e+e— annihilation experiments will shortly allow its coupling
to mm to be checked outside of mm>mTm experiments.

For the first time evidence is presented for a significant structure
in the D wave amplitude around 1550 MeV. 1In solution o, particularly,
this structure is suggestive of a resonance. Since it is rather close to
the limit of the energy region explored by the CERN-Munich experiment a
conclusive discussion of this structure will require future data in the
A and/or other channels. Nonetheless its appearance is unmistakable.

Though amplitudes a,B are those we explore in most detail, there
exist other analytic amplitudes which we also investigate. In particular,
close to solution B, we find another amplitude B', rather similar to 8,
but with different physical properties. This we also discuss in section 4.

This analysis has a number of rather unique features, which have not
only revealed new phase shift solutions noticeably different from any
seen.before, but also, within each solution, uncovered structures, which
only such an analytic phase shift analysis can provide. We compare our

analysis with other related work in section 5. We close with our con-

clusions (section 6).



2. Defining the amplitude

(A) A question of phases

Data from pion production experiments are expressed in terms of moments
of the final state mrm angular distribution. On extrapolating to the pion
pole it is the M=0 spherical harmonic that contains all the information on
physical mass 7m scattering. From these moments AL(s), with M=0, we can

construct the square of the modulus of the mm amplitude by

|F(s,cos6) |? = I};(ZL+1)AL(S) P, (cost) | (1)

With s and t the Mandelstam invariants for the four-pion process and 6 the
usual centre of mass scattering angle, we have zZcosf = 1+2t/(s-4u2), i
being the pion mass. The dipion mass Mnn for the pion production process
is then just Vs.

(1)

. - -+ .
From the CERN-Munich data on the channel 7 p>m T n, we are given

moments* on ﬂ_ﬂ++ﬂ—n+ scattering in 20 MeV bins from 0.6 to 1.8 GeV. The
dominant feature of the moments in this channel, to be seen particularly in
the L=0 moment (which is essentially a reaction cross-section), are three peaks
identified with the p, f and g resonances. That these have the expected
spins, one, two and three, and form the states on the leading Regge trajectory
is easily checked by looking at the higher L#0 moments. Moreover their spin
four recurrence, the h, is already known to couple to 7mm from preliminary

10)

m°1° data at higher momentum at 2.035 GeV ~’. The leading trajectory shows

no surprise.

(1)

*Since the CERN-Munich group have not published moments extrapolated to

the pion pole, we are forced to reconstruct these using the energy independent

(7,8,9)

phase shift analyses of their data. 1In this way we take account of,

and hopefully remove, the non-m exchange effects in the observed moments.



However, it is what is happening at the daughter level on the Regge
trajectories that is an outstanding question of meson spectroscopy. To
understand this is much more complicated. It requires a detailed analysis
of the moments;in fact, the construction of the mm amplitudes themselves.
To this end it is our aim, given the data, to determine the possible
amplitudes for ﬂ+ﬁ_+ﬂ+n— scattering.

Now the experimental data on the moments, AL(S), only allow us to
fix the modulus of the amplitude, eq. (1), and so the amplitude itself is
given by

F(s,z) = |F(s,z) | ei¢(s’z),

(2)
where the phase ¢ as a function of both s and z=cosf is completely undeter-
mined by experiment. We have an infinity of possible amplitudes corresponding
to the infinite number of choices of ¢, all describing exactly the same data.
Each of these amplitudes will have a different daughter structure, though
very similar p, f and g resonances - in terms of masses, widths and elasti-
cities. It is clear that we must try to resolve these ambiguities if we are
ever to have a hope of determining the daughter spectrum.

The situation is not quite so bad at all energies, since in the
elastic region (as we shall discuss) unitarity uniquely defines the phase
of the amplitude from its modulus, aside from some rather specific and
perhaps unlikely ambiguities. Nonetheless, above the first inelastic
thresgold we have the complete continuum ambiguity of eq. (2) with ¢(s,z)
quite unknown.

Now it is found experimentally that in the mm mass range Vs<1.8 GeV
of the CERN~Munich datal), those moments with L>6 are vanishingly small

within errors. We shall take it as an exact statement of experimental

fact that the moments with L>6 are zero. It is, at this point, that the



phase shift analyst, whose objective is to construct scattering amplitudes
describing the data too, makes his crucial, though quite unjustified,
assumption. He assumes that since, at each energy, the modulus squared of
the amplitude is a polynomial in cos6 of order Lmax=6’ the amplitude
itself must by a polynomial of order %Lmax=3 and so have partial waves
only up to lmax=3. This assumption greatly restricts the class of ampli-
tudes studied since it is only for very specific choices of the phase
¢(s,z) in eq. (2) that the amplitude will have partial waves up to gmax=3
and not an infinite number. The phase shifter finds just two ambiguous
amplitudes to be contrasted with the infinite number produced by the con-
tinuum ambiguity, eq. (2).

With this in mind, let us see how we can translate the experimental
information embodied in eq. (1) into something about the scattering
amplitude to use more readily in eq. (2). It is clear that we want to
factorize the right hand side of eq. (1), like the left hand side, into
the product of a function and its complex conjugate. The simplest and
physically intuitive way to proceed is to re-express the Legendre sum as
a product of its zeros, as suggested by Gersten and by Barreletll). Since
for s real (strictly s+ie) the sum is a polynomial of order six in cos®9,
it will have six complex zeros. As it is a real function only three of
these will be independent and the other three their complex conjugates.

We then have with N=3

2 = *
|F(s,2)|" = £(s) T{ (z=z;(s)) (z-2,(s)). (3)
i=1

It is convenient to replace the proportionality constant f(s) by the

modulus of the forward amplitude and write «
N (z=z.(s8))(z-z.(s))
|F(s,z)|2 = IF(S,2=1)|2 T( - i

) i=1 (l-zi(s))(l-zi(s))

(4)



The truncation of the expansion of eq. (1) at L=6 means the modulus squared

of the amplitude has at most three (complex conjugate) pairs of zeros near

the physical region (i.e. with Imz small and Rez|<l) at the energies
reached in the CERN-Munich experiment, so N=3. The remaining possibly
infinite number of zeros are far away from the physical region in phenomen-
ologically inaccessible domains. They effectively have their products
(z—zi(s))(z—zz(s)) constant at each value of ze[}l,il and hence only contri-
bute to f(s), eq. (3). Eq. (4) is just a convenient representation of the
data, where at each energy, the seven non-zero experimental quantities -
the moments from L=0 to 6 — are translated into seven other quantities:
|F(s,z=1)| and the three complex zeros zi(s). Having re-expressed the data
of eq. (1) in the form of eq. (4) so that we have the amplitude multiplied
by its complex conjugate equal to a product of a function and its complex

conjugate, we can factorize this expression into an equation for the

amplitude. Then implementing the phase shifter's assumption of & =3 we
max

have
N=3 z-z.(s)
F(s,z) = F(s,z=1) T 1__211;-) (5)
i=1 i

which certainly satisfies eq. (4) and has partial waves up to Qmax=3'
However, this representation immediately exposes an ambiguity in con-
structing the amplitude. For it is clear in factorising eq. (4) that we
do not know whether the zero at z=zi(s) belongs to F(s,z) or F*(s,z).
Thus for each zero, while Re zi(s) and |Imzi(s)| are determined, the sign
of Imzi is not. We cannot tell zi(s) from z:(s).

Now in principle this 2N—f01d ambiguity exists at every value of s,

but since we believe physical quantities to be continuous in energy, this

number is considerably reduced. The reason for this is that continuity



only allows a doubling of the number of solutions at well-defined energies.
When a zero enters the physical region - for ﬂ+ﬂ—+ﬂ T scattering this
entrance is made through the forward direction only - its imaginary part
is in general known. Only when its imaginary part can vanish (within
experimental errors) is there any uncertainty as to whether Imzi has
changed sign or not. In the case of mn st scattering Imzi(s) become
vanishingly small twice for i=1 and once for i=2 in the energy range up
to 1.8 GeV. So there is just an 8-fold ambiguity in this whole energy
region. Indeed we first have a 2-fold ambiguity up to where Imzlﬁo

(i.e. at Vs = 1.25 GeV), this produces a four-fold ambiguity until

Imzzzo (at Vs=1.45 GeV) when a further doubling occurs. So at this stage
we have an eightfold multiplicity of possible scattering amplitudes
describing one set of experimental data. Moreover, for each of these,
their overall forward phase ¢O(s) is unknown since in eq. (5) we do not

really know the forward amplitude, only its modulus. The phase shifter's

amplitude is therefore

3
(¢] —
FPS(s,z) = |F(s,z=1) |e ]T- l—zi(S) (6)

with eight possible products of zeros each with ¢o(s) unknown. The situa-
tion would not normally be quite so bad since the phase ¢0(s) would usually
be determined through the optical theorem from a measurement of the total
cross—section. However, for wm scattering no reliable measurements of

ot exist in the energy range below 2 GeV and so ¢0(s) is experimentally
unknown. All we know is that ¢, [@,i] since the total cross-section must

be positive. Thus each discrete solution has a continuous ambiguity as to

its overall phase.
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But where is the complete continuum ambiguity of eq. (2)? Eq. (4) is
just a representation of the data, of the moments AL(s). The factorisation
of this equation is only eq. (6) if we require Qmax=3; in general, the
correct factorisation in this equation of IF(s,z=1)|2 is |F(s,z=1)| times
an arbitrary phase factor which is not just a function of s but also of

cosb . Once again conveniently separating out the forward phase we have

i¢ (s)

; 3 z-z.(s)
F(s,z) = |F(S,Z=1)| e o e]'X(S,z) 1

N e %

where X(s,z=1)=0 defining ¢o(s) to still be the forward phase. This ampli-
tude thus has an experimentally unknown phase not just at every energy but
at every value of cos6 too. Eq. (7) is in fact just eq. (2) in which our
knowledge of the seven non-zero experimental moments has been re—expressed.
Unlike the phase shifter's restricted amplitude of eq. (6), the true ampli-
tude of eq. (7) has in general an infinite number of partial waves. This,
of course, is perfectly allowed, since all we know is that |F|2 has effect-
ive moments up to L=2N, which does not imply F must have all waves with

2>N vanishingly small, but only exponentially decreasing with £ so that the
Legendre expansion converges in appropriate domainslz).

As already argued, the phase shifter has a discrete number of products
of zeros he can write down to construct his amplitudes in eq. (6). However,
the true continuum ambiguity allows us to include all these simultaneously.
This is because we can transform eq. (7) from one discrete amplitude of the
phase shifter's to another by replacing x(s,z)=0 by

*
eiX(S,Z) ) z—zi(s) l—zi(s)

for i=1,2,3 (8)
- % ? LR R
2=2;(8) 1, %(e)
i
This phase factor (it is only a phase for z real) takes us from one discrete
*
solution with a zero at z=zi(s) to one with a zero at z=zi(s) both with

L =3.
max
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It is perhaps appropriate at this point to make a cautionary remark
on the interpretation of these zeros. We have rather naturally called the
complex parameters zi(s), obtained from real data on the real z axis from
the polynomial of eq. (1), which appear in eqs. (6,7), the zeros of the
amplitude. However, strictly speaking, the identification of the parameters
zi(s)>thus determined ,with the positions of the complex zeros of the ampli-
tude as a function of z complex,requires an analytic continuation away from
the real z axis to be performed - a continuation known to be quite unstable

except in rather special circumstances. This is of no concern here. The

* . . .
z;, z, are just parameters conveniently representing the data, which we
colloquially call "zeros".*

The continuum phase y(s,z) being non-zero will be seen (in section 3)
to be crucial for constructing analytic amplitudes. However, x (s,2)#0 does
take us away from one of the phase-shifter's amplitudes with zmax=3. It is
therefore not unnatural to believe that the larger the phase x (s,z) the
larger the higher partial waves with g>3. That this intuition may be quite
misleading is provided by the example of eq. (8), which takes us from one
amplitude with zmax=3 to another with gmax=3’ despite the fact that the
phase variation between forward and backward directions given by eq. (8)
can be very large indeed, for example with i=1 x varies from 0° to 300° in
crossing the physical region from forward to backward direction at a typical
energy of 1.5 GeV (see fig. 1 of ref. 13). Nonetheless, x(s,z) is a measure
of how far an amplitude is from a particular phase shift solution, of
eqs. (6,7).

*We are grateful to Dr. S. Ciulli for a discussion which prompted these

remarks.
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Despite the fact that the phase shifter's solutions of eq. (6) form a
highly restricted subclass of the amplitudes of eq. (7) it is useful to follow
the phase shifter one step further and check which of his eight possible
amplitudes are unitary.

(B) Unitarity introduced, partial waves defined

Since unitarity is most simply expressed in terms of partial wave
amplitudes, let us first deal with the partial wave projection of our w T
amplitudes. While the odd waves contribute only to isospin one as a result
of Bose symmetry, the even partial waves of this amplitude involve both

isospin zero and two:

P(s,t) = 2 F%(s,0) + 3 Fl(s,0) + ¢ F (5,0), )

. * . + +
In order to separate the I=0,2 amplitudes we introduce the ™ m dataj
which in principle determines the I=2 partial waves. We use the data of

) 14)

Hoogland et al? and of Durusoy et al. up to 1.8 GeV. We then define

. . .. . . I
the partial waves with definite 1sospin, fg(s), by

Fl(s,2) = J (2041) £,(s) Py (2) (10)
2=0

where fi(s)=0 if (-1)I+Q =-1. For the phase shifter's amplitudes of eq. (6)
(that is x=0), this is in fact just a re—expression of the product of zeros
of eq. (6). The f;'s are then determines by the zeros zi(s) which have been
fixed by the moments AL(S).

This separation into partial waves completed, we can easily impose the

single-channel content of the unitary nature of the S-matrix by requiring

2
e ()3 /S [£1 () | (11)

*
This separation is necessary as unlitarity 1s diagonal in the partial wave

amplitudes with definite isospin.
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The most important fact about this relation is that it is an equality in
the region of elastic unitarity. Rigorously, this region runs from 27
threshold to 4w threshold, but phenomenologically it extends much further.
There is no evidence for any inelasticity below KK threshold, close to 1 GeV,
so that this energy rather than vs=4y marks the limit of the elastic region.
In this domain, unitarity completely defines the amplitude knowing its
modulus: there are no discrete ambiguities, no continuum ambiguity. The
signs of Imzi are determined, the forward phase known. The amplitude is
. *

unique.

In the inelastic region, the single channel content of unitarity is
much weaker being an inequality, eq. (11). It is in this region that we
have the full continuum ambiguity to resolve. It is useful then to express

each partial wave in terms of a phase shift GE(S) and an inelasticity ni(s)

to simplify the unitarity condition, eq. (11), where

2i6t

I '3
(n e -1)
I s 2
£,() = [ 5T _ (12)
s-4u

. . . . I . . .
Then unitarity simply requires n2=1 in the elastic region and Osni

the first inelastic threshold. By plotting the partial waves (actually

s—4u2
s

<1 above

fi) in their argand circles it is easy to check whether unitarity is
satisfied.

In the elastic region the partial waves are guaranteed to be on their
argand circles. This fixes the sign of the imaginary part of the only
nearby zero in this region and so reduces the number of phase shifter's

possible amplitudes. We have just one amplitude below 1.2 GeV; there

* . e . . e .
Aside from rather specific Crichton-type ambiguities, for which see the

admirable work of ref. 15.
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Imz1 may change sign or perhaps not giving solutions A, B respectively.

The second bifurcation occurs around 1.45 GeV where Imz2 may change sign;

if it does solutions A, B become C, D. However, these latter solutions

16) 10)

with preliminary 7°n° data from Serpukhov

E))

appear to be in disagreement

and so we will not consider them further. The phase shifter”’ then has just

two possible amplitudes A and B corresponding to whether we have z, or zI
in the product of eq. (6) for Vs>1.2 GeV. But are both these amplitudes
unitary?

In the inelastic region the phase ¢o(s) is not determined by single-
channel unitarity and so the orientation of the partial waves (though not
their lengths) in the argand plane is free. In order to check whether the
partial waves lie within their appropriate unitarity circles in the inelastic
region, the phase shifter must fix the phase ¢0(s) by some (hqpefully)
physically reasonable guess. The peaks seen in the zeroth moment AO(S)
identified with the f and g are assumed to occur too in the imaginary part
of the amplitude, as one would expect for resonances. Away from these
positions, ¢o(s) is described by assuming the leading waves to be given by
Breit-Wigner forms, i.e. defining ¢O(s) = ¢Bw(s). Though, of course, not
exact, this is certainly a reasonable, physically motivated assumption.

We too will take this as our forward phase at least at the beginning when
we start to construct analytic amplitudes.

With this choice of ¢0(s) and with lmax=3, the phase shift analysts
can check whether unitarity forbids one solution or other. However, both
solutions A and B have partial waves lying within or close to their
unitarity limits though the S wave in solution B does wander far out of its
circle. But with such a crude choice of phase, we cannot be more definite.

However, the phase shifter canmnot fail to notice that his phase shifts

wiggle all over the place as a function of energy particularly for the S
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and P waves. This is because the moments being experimental quantities are
subject to fluctuations mainly of a random statistical nature. These
random fluctuations are passed on in turn to the zeros via eq. (3) and then
to the phase shifts by translation from eq. (5) to eq. (10). Believing the
scattering amplitude not to behave in a random fashion, the phase shifter
finds this amplitude unacceptable and so he smooths his results either
directly, or by returning to smooth the data from which he begins, or as
done in ref. 9 to smooth the intermediate zeros zi(s) of eqs. (3-6). This
particular smoothing of ref. 9 is clearly highly dangerous since several
types of local dynamical structures are known to produce rapid variations
of the zero trajectories, for example the S* effect. But other 'ad hoc'
smoothing methods are little better. Nonetheless, this smoothing highlights
the violation of unitarity of the S wave for solution B - for now this wave
has n=1.3 for several hundred MeV around 1.4 GeV. Nevertheless, this solu-
tion cannot be ruled out since this wave has the largest uncertainty, the
overall phase is only guessed, the partial wave sum artificially truncated
at £=3 and the amplitude arbitrarily smoothed: the violation of unitarity
is then not particularly significant.

It is important to note that we have only considered unitarity for the
phase shifter's amplitude of eq. (6) with no continuum ambiguity, that is
x=0. For the true amplitude with the complete continuum ambiguity we cannot
even expand the amplitude in partial waves without knowing x(s,z). The
partial wave vectors then not only have an unknown overall orientation but
unknown relative orientation and undetermined lengths too. That is why the
phase shifter assumes x=0.

We have seen that to make progress in constructing unitary mn ampli-

tudes, the phase shifter has been more or less forced into making three
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critical assumptions: (i) that the maximum number of partial waves is half
the number of non-zero moments, (ii) to guess the forward phase in the
inelastic region, (iii) to smooth the resulting amplitude in some arbitrary
fashion that cannot distinguish local dynamics from random fluctuationms.
All these problems we hope to resolve by requiring that the scattering

amplitude describing the data should be an element of the analytic S-matrix.

3. Analyticity

(A) Its Implementation

In order to impose analyticity on our amplitudes describing the ﬂ+ﬁ—
data it is essential that we allow the full continuum ambiguity. As we
shall see, the restricted class of amplitudes studied by the phase shifter,
whether smoothed or not, are not analytic.

Our aim is to use analyticity to determine the experimentally unknown
phase ¢(s,z) of the amplitude, eq. (2). We will base our analysis on the
representation of eq. (7) since this embodies our experimental knowledge of
the moments eq. (1).

At values of t,u fixed in the range -28u25t,u54u2 it has been rigor-
ously proved that the mm amplitude is analytic in the cut s plane and
satisfies twice subtracted dispersion relationslz). It is these properties
that we wish to use. ‘

So as to make our treatment as straightforward as possible, we will use
a simple Cauchy representation for the scattering amplitude at fixed values
of t,u to impose the required cut s-plane analyticity. How can this be
expected to determine the phase of the amplitude? Dispersion relations
relate the real part of the amplitude to its imaginary part,and hence the

phase to the modulus. However, they do this in a very specific global

manner. They determine the real part of the amplitude at all values of
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the energy (at a fixed momentum transfer) provided one knows the imaginary
part of the amplitude at all energies. They thus determine the phase if
we know the modulus everywhere. Of course, we do not know the modulus
everywhere; from experiment it is only known up to 1.8 GeV. Above this we
must make some assumption. We will assume Regge behaviour in a sense to be
defined below. The global manner in which analyticity relates the phase
to the modulus is to be contrasted with the local way elastic unitarity
determines the amplitude from its modulus. 1In the elastic region, eq. (11)
is an equality at each energy separately for each partial wave. The fact
that we know the elastic amplitude locally at each energy in the elastic
region will be crucial in allowing us to use analyticity to determine the
phases in the inelastic region.

To see how our method works let us consider a simple illustration.
Let us assume that the amplitude only has a right hand cut and write a
Cauchy representation for this amplitude in the cut s-plane. We choose the
contour of integration to envelope the cut up to some finite but large
energy where s=soiie.and then to close the contour by the almost complete

circle [s|=so. So we have at fixed t (or equally fixed u)

_l ' F(S"t)
F(s,t) = p é ds — s (13)

The contributions to this contour integral are divided into the integral
along each side of the cut and that around the circle. We assume that
s=s is so large that Regge behaviour has set in for the amplitude in all

complex directions. Then having only a right hand cut

ImF (s;t) , 1 gt E(s',0)

ot 27l s'-s (14)
S ]

41,1 S| =8

1 (°
F(s,t) == J ds'
2
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This equation determines the real part of the amplitude along the cut
knowing its imaginary part, since it is an identity for the imaginary part.
Let us now divide up the integration region along the cut into 3 parts:

(a) In the region of elastic unitarity from wrm threshold to KK threshold,
both the real and imaginary parts of the amplitude are known. Strictly
this is not true since the data on ntn scattering only goes down to
0.6 GeV and not to threshold, 2u=0.28 GeV. However, we can reliably
determine the amplitude in this region by combining other dispersive

equations, namely the Roy equationsl7) 18)

, with Ke4 results and the data
in the rest of the elastic region and so fix the amplitude down to
threshold.

(b) The so-called inelastic region runs from KK threshold to where the
data ends at 1.8 GeV. Here we only know IFI at each 20 MeV data point.
This is where eq. (14) is to be used to determine the unknown phase.

(¢) 1In the region from where the data ends to where Regge behaviour sets
in for the whole amplitude at $=8 , We expect, from the success of
finite energy sum rule duality in other processes, that on the average
Regge behaviour has set in for the imaginary part. The real part is
then whatever it is required to be by analyticity via eq. (14). By

o.(t)

Regge behaviour we mean ImF(s,t). = % Bi(t)(a's) t , where we know

which trajectories ai(t) to include, but for which their residues have
simple forms with parameters to be fitted. For example, for near for-
ward oM scattering, Regge behaviour is assumed given by pomeron, f
and p exchanges with free residues to be fixed by the dispersion rela-
tions from the data, but with trajectories known within limits.

Armed with this information we now set about determining the phase of

the amplitude in the inelastic region (1-1.8 GeV). Clearly, we need an
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imaginary part for the amplitude in this region to put into the dispersion

relation. We guess this by assuming we know the correct phase in the

inelastic region - let us call this wo(s,t). These are numbers, not a

function, guessed at each chosen fixed value of t or u at each 20 MeV data

point from 1 to 1.8 GeV. Then ImF=|F|sinwo in this region is to be sub-
stituted into the dispersion relation.

With this input, we first fix the few (n) Regge residue parameters by
requiring that at some n points in the elastic region the output of the
dispersion relation agrees with the known real part of the elastic amplitude.
This fixes the Regge parameters. Then if the phases wo(s,t) are the true
phases of an analytic amplitude two criteria must be satisfied:

(i) at other energies in the elastic region the output real part of eq. (14)
should equal the known real part of the elastic amplitude with the (now)
given Regge residues. This agreement checks that the global properties
of the phases wo(s,t) above 1 GeV are correct.

(ii) At each 20 MeV data point in the inelastic region the output real part
should reproduce the expected phase by being equal to |F|coswo. This
checks that the phases are locally self-consistent.

If both these criteria are satisfied the phases, wo(s,tL are the phases
in the inelastic region of an analytic amplitude.

Of course, we cannot guess the phases wo(s,t) exactly, but let us
assume we can at least approximately. Then the output in the elastic region
will only roughly reproduce the known elastic amplitude énd the output in
the inelastic region will not replicate the input, but let us call this

output® |F| cos wl. We assume, and it is just an assumption at this stage,

*
This requires that at any point where ReFout|>|F| we set w1=0 or T as

appropriate.
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that the phases wl(s,t), so defined at each data point in the inelastic
region, are closer to the true analytic phases than the wo were. We then
repeat the procedure, inputing the phases wl as our guess instead of wo.

We redetermine the Regge parameters, check how well the output real parts
in the elastic and inelastic regions reproduce what they should be and
define the new output real parts above 1 GeV to be !F| coswz. Hopefully
the wz are closer to the ¢1 than ¢1 and wo were and the elastic amplitude
better replicated. The cycle is continued until wkzwk—l at each data point
and at each momentum transfer. We then have a self-consistent amplitude in
the inelastic region. If it is to converge this will in practice take only
5 to 8 iterations. Then these self-consistent phases ¥ (s,t) will be the
true phases of an analytic amplitude provided (criterion (ii) is already
satisfied) the output of the dispersion relations in the elastic region
does agree with the known elastic amplitude (criterion (L)) *.

It is important to note that this iterative procedure is designed to
preserve the experimentally known modulus in the inelastic region with its
error bars at every step. As outlined, such a procedure will only converge
if we have a good starting guess for the phase wo(s,t). However, the phase
shifter feels he knows the allowed amplitudes, eq. (6), and so provides us
with suitable starting points.

In practice the procedure is a little more complicated because the

amplifude has both right hand and left hand cuts. This important fact takes

It is, of course, quite possible for the amplitude in the inelastic region
to be self-reproducing without eq. (14) giving the elastic amplitude satis-

factorily. This is not an analytic amplitude.
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into account some of the requirements of crossing symmetry, namely the fact
that both the s and t channels are n+n—+n+n—. Then the input in the integra-
tion regions (a), (b), (c) of our simple example above are divided into
domains (I,II), (III,IV), (V,VI), respectively, detailed below and displayed
in fig. 1.

I) From threshold up to Mﬁﬂ=0.6 GeV we use the solution of the Roy equations

for the S, P, D, F and G wavesl7)

having an I=0 S wave scattering length
ag=0.3 (in pion mass units), since this matches on with the CERN-Munich
data most easily and agrees with recent Ke4 data of the Geneva-Saclay
grouplg). We will discuss below why, in this threshold region, we
include up to 2=4.

II,III) For 0.6<Mﬂﬂ<1.8 GeV in the s and t channels we have |F(s,tj for
o scattering constructed from the moments of refs. 1, 7, 9 by eq. (1)
in 20 MeV bins. This region is divided in two (II,III):

II) 1In the elastic region below the KK threshold the amplitude is formed
from the S, P, D and F wave phase shifts fixed by unitarity.g)

III) Above this inelastic threshold only IFI is known and it is here the
representation of eq. (7) is conveniently used, with ¢o(s) and x(s,z)
to be determined.

IV) In the u-channel from 0.6-1.3 GeV we input the n+ﬂ+ data of ref. 2, and
beyond that up to 1.8 GeV either a smooth interpolation to the Regge
form is used or the data of ref. 14. Since the ntat amplitude only
contributes to the fixed t dispersion relation and then only to the
left hand cut, despite its large uncertainty, it thus gives only a very
small contribution to the dispersive integral for vs>0.6 GeV.

V) For an>1'8 GeV we assume that simple Regge pole behaviour has set in

"on the average", as finite energy sum rule duality for other processes

would suggest, for the imaginary part of the amplitude. Then at some
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M1T1T finite, but as large as necessary, this same Regge pole behaviour
is assumed to hold for both the real and imaginary parts in all complex
directions (away from the cuts) and there the contour of integration is
closed in both the upper and lower half planes by semicircles.

At fixed t, in region V, the Regge contribution is given by pomeron, f

and p exchanges:

Ty Pt a, (t)
0 (o)e gP (a'v) P

Fv,t) = 32ma’ +
0tf(t)

' af(t)
£ E;TBT g, (a'v)

Hh

B

+
wir

o (t)
B Pt
o} ap(O)

(a'v)ap(t) (15)

<+
N =
I ©

. -2 . .

with v=(s-u)/2, a'=0.9 GeV =, and where the standard trajectories
. 2
= = ' i =1

aP(t) 1 + 0.2t, up’f(t) ay +a't with t in GeV™ . We take a =2
throughout the present discussion, but will comment on other choices
later. The signature factors are normalized so that Img=1, with

R . T
E_._— 1 COtE

the range (1.5, 4.5) GeV_z. The asymptotic cross section, Gﬂﬂ(w), and

aR(t) and gE = i+tan-% uR(t). The slope b is chosen in

Bf are free parameters to be determined by the fit. The p exchange
having odd signature contributes to ReF much less than the even-
signatured pomeron and f exchanges for s below (1.8 GeV)2. Therefore,
;ather than let it go free we first of all fix its residue Bp=0.75

(with ao=%) to agree with duality and FESR expectations*, and only later

consider other values. The factor ap(t)/ap(O) in eq. (15) approximates

the desired t dependence of the p Regge residue* in the near forward

*

see, for example, ref. 19, and references therein.



direction we consider. It should be remembered that between the end

of the data and V=V (some large value) just the imaginary part of

eq. (15) is assumed to hold - the corresponding real part is just given
by eq. (13).

VI) The high energy contribution for the fixed u dispersion relation is
calculated using a Regge paramerisation for some effective "exotic"
exchange,

a_ (u)

F(v,u) = y(I+y'w)g, (a'v) © (16)
with v = (s-t)/2. We choose the exotic trajectory to have its inter-
cept in the range (-1.5, -0.5) and canonical slope, a'. The residue
parameters y and y' are to be determined by the fit. Our results
depend only weakly on the exact choice of the exotic trajectory,
though of course the fitted values of y and y' are strongly o
dependent. Once again it is only the imaginary part of eq. (16) that

2

is assumed to hold for v<vo. Typically v, can be regarded as 20 GeV'.

The real part is given by eq. (13).

The regions in which the various contributions occur are sketched in
Fig. 1. For some momentum transfers under heading I, the amplitude must be
known in regions which are unphysical. Care must be taken in constructing
the amplitude in such a region. The absorptive part can be formed from its
partial wave series for —28u2<t<4u2, though an increasing number of waves
contribute as lt! increases. However, the real part, with which we check
the output of the Cauchy representation, can only be evaluated from its
partial waves outside the physical region for Itl or |u|<4u2. We avoid
this problem by only evaluating the dispersion relation for s>-u for fixed

t and sz-t for fixed u. Since the CERN-Munich datal) only reliably begins
2

at 0.6 GeV, we avoid such unphysical regions by restricting t, uz-0.3 GeV
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By keeping to the range —15u2<t,u<0, rather than the full interval (—28u2,
4u2) only waves up to £=4 will be needed to evaluate the absorptive part
in region I.

(B) Analyticity Imposed

Having discussed the input we are going to use in our dispersion rela-
tions, we now proceed to the determination of the unknown phases ¢O(s) and
x(s,z) in our representation of the amplitude of eq. (7). Our aim will be to
fix these phases,so as to construct analytic amplitudes explicitly, using the
iterative method we outlined above for a simple example. Before actually
performing this construction let us briefly answer the question of whether
the phase shifter's rather arbitrary, highly restricted amplitudes A, B are
by chance analytic in addition to being smooth and roughly unitary.

To answer this we proceed no further than the first step in our method
as outlined above since no iterations are necessary. The phase shifter's
amplitudes are just those of eq. (6) with ¢0(s) guessed to be ¢Bw(s) defined
in ref. 9 and discussed informally above. Now if the solutions A and B, as
thus defined,were analytic they would simply satisfy the Cauchy representation
of eq. (13). We would just input the imaginary parg of each amplitude along the
cuts and out would come the correct real parts to satisfy our criteria (i) and
(ii) of section 3A with no iterations.  This is not the case, so let us use
forward dispersion relations to determine the forward phase for each discrete
solution as an improvement on the educated guess ¢Bw(s). The only, though
nonetheless appreciable, difference between the two discrete solutions A and
B is whether Im zl(s) has changed sign or not around 1250 MeV. Since this
possible sign change occurs when the zero is near the backward direction, it
is not surprising that forward dispersion relations, eq. (13), determine the

forward phase ¢o(s) to be very similar for the two solutions. As we begin
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here with the smoothed amplitudes of Estabrooks and Marting) (discussed
in the previous section) we do not need to associate a phase wo(s,t=o)
independently at every data point in the inelastic region, but we can simply
express ¢o(s) for 1<vVs<1.8 GeV in terms of a 3 or 4 parameter form added to
the first guess ¢Bw(s). Its determination is then quite straightforward.

While solutions A and B then have very similar forward amplitudes, they
are quite different near the backward direction, close to where z=Re zl(s),
and so we can expect that fixed-u dispersion relations may prefer one rather
than another or perhaps neither of these solutions. 1In ref. 13 we showed
that having determined the forward phase from fixed-t dispersion relations,
fixed-u dispersion relations overwhelmingly favoured solution B to solution A,
the latter showing a strong disagreement with analyticity around 1300 to
1400 MeV in particular. The phase shifter's amplitude B is thus rather
close to an analytic amplitude and A not. If Zmax was really 3 and not
infinite, we would conclude, like the phase shifter, that amplitude B is
the correct amplitude being smooth, roughly unitary and approximately
analytic and A disfavoured.

0f course, y(s,z)#0 and the amplitude is not arbitrarily smoothed,
nonetheless we begin our construction of analytic amplitudes expecting there
will be an analytic amplitude with a phase structure similar to that of
solution B (viz. Im zl>0) having a small continuum phase x(s,z). Moreover,
we do not expect to find an analytic amplitude with x(s,z) small close to
the phase shifter's amplitude A. Perhaps the only analytic amplitude will
be that close to B, or perhaps some other analytic amplitudes exist descri-
bing the very same data. We shall see.

We will use the general iterative procedure we have already outlined.

So as not to artificially smooth our amplitudes we will associate, as



- 26 -

discussed above, a phase wo(s,t) with each data point and at each momentum
transfer independently as numbers not functions. It is clear our method
will certainly converge if we have a suitable starting point close to an
analytic amplitude — we shall explore how close "close to" is below: it
is in fact quite far. Since the phase shift analyst provides us with one
amplitude (at least) which we believe is close to an analytic one, let us
begin there. Our method will certainly converge if the difference between
the phase of the true analytic amplitude and that of starting amplitude,
[w(s,z)—wo(s,z)], is small. It is therefore convenient to define, as our
iteration parameter, the phase difference between the result of the Kth
iteration and our starting amplitude (initially a phase shift solution) to

be

My, (s,2) = ¥ (s,2)-¥ (s,2) = [§.()=¢5,(s)] + x(s,2) (17)

so that on convergence Awk = Awk—l = Ay when wk = y, the true analytic phase.
Rather than leave this phase difference Ay(s,z) to be determined at all

40 data points from 1 to 1.8 GeV at once, we divide this range into N
intervals where to remain tractable N is between 8 and 24. In each of

these intervals at its central energy s=si(i=1,...,N) - always chosen to

be a data point - we associate the phase angle wo(si,t) at each fixed value
of t or u. We overlap these bins so as to be able to obtain this phase
every 20 MeV at every data point after 2, or sometimes 3, runs. We will have
some 320 phases to determine,clearly a more complicated task than the 3 or

4 numbers we had to find to check whether solutions A or B were themselves
analytic. However, we do expect that there will be an analytic amplitude
close to solution B with yx(s,z)=0. It is with this expectation that we
begin.

We take Awo(s,z)=0 as our starting point so that the initial amplitude
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is just the phase shifter's solution B with ¢o(s) = ¢Bw(s) and x(s,z)=0.

We evaluate the real part of the amplitude as the output of the Cauchy
integral, eq. (13), for t,u = 0, -0.05, -0.1, -0.15, -0.2, -0.3 GeV2 for
values of ,/s in the range (0.6, 1.79) GeV. We then iterate to convergence
determining Awk(s,z) at each value of the energy from 1 to 1.8 GeV after

2 or 3 runs and at each value of momentum transfer. At each step the four
Regge parameters, Oﬂﬁ(w), Bf, Y, Y' of eqs. (15,16), are fitted by demanding
the best possible agreement (in the sense of x2) between the input and
output real parts at some hundred separate points for both the forward and
backward Regge residues.

Starting with amplitude B convergence is complete after some 5 itera-
tions with Aw(si,z) rather small. This means the resulting amplitude is
not too different from solution B - differences we explore below. This we
call analytic amplitude B. In the forward hemisphere, for 0xt2-0.3 GeVz,
AY(s,z) is typically t4°, with 20° being an extreme value. In the backward
hemisphere the angles are somewhat larger typically +15°. The largest
values occur in the energy range 1.29 to 1.41 MeV and for t,u=-0.3 GeV2,
where |F| is smallest anyway.

Now if this amplitude B were to be the only analytic solution that
exists, if we start from solution A of eq. (6) - which is about as extreme
as we can get - analyticity should then force the Ay(s,z) to be so large
that the amplitude beginning with the 'non-analytic' phase of one discrete
solution (A) should become like the other (B,g8) - the Aw(si,z) would then
be like y in eq. (8) with i=l. 1In principle, this can, of course, happen.
In this search for analytic amplitudes the discrete solutions A and B

just act as previously charted reference points to help us find our way.

However, one may be concerned that, by its very nature, our particular
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iterative procedure can only cope with very small angles and so this
hypothetical check couldnot work. So before proceeding from solution A,
let us explore some details of the method we have used starting from B.

In eqs. (7,17) we used the phase ¢BW as our first '"guess" at the
forward phase. The introduction of this particular phase into the ampli-
tude is not essential to the method. This particular phase has the
advantage that it already contains the gross features of the forward
phase and so its introduction shortens the minimisation and simplifies
the determination of the several hundred values of Aw(si,z). If we remove
these gross features of the initial forward phase and replace it by a
constant m/9, say, so now A¢(s,z)=[¢o(s)—”/2] + x(s,z), then Aml(s,t=o) is
much larger ~+30° for certain values of s and the overall convergence 1s
slower. Nevertheless, we find that we do obtain just the same amplitude
from such a starting point. That this does happen is a prerequisite for
considering solution A for which we expect the angles, Ay(s,z), to which we
apply our iterative procedure to be similarly large.

Let us now begin with amplitude A (see eq. (6)) and repeat the pro-
cedure already discussed. At each step Awo+Aw1+Aw2 etc., we move further
from the original solution, but the procedure quickly converges with
Awk+Aw(s,z). In this way we obtain an amplitude as completely self-
consistent as amplitude B. The additional phase, Ay, in the forward
hemispﬁere is just *# 1 or 2°, while in the backward region it is typically
25°. In this case it is for u=0 that the phase Ay is consistently large.
Not surprisingly, this implies that this analytic amplitude is different
from the non-analytic starting solution A. However, a quick glance at
these backward phases indicates it is not amplitude B. It is a new
amplitude o, distinct from A and far from B, revealed only by the imposi-

tion of analyticity.
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In figures 2a,b the argand diagrams are displayed at t,u=0, -0.2 GeV2
for these two amplitudes a,B in the energy range 1.15 to 1.71 GeV. It is
seen that while the forward amplitudes are essentially identical, they are
very different in the backward region. Before discussing these results in
detail in section 4, let us consider some general points first (subsection
3C) and then elaborate on our technique in subsections 3D-G.

(C) A first look at the analytic amplitudes

Despite the fact that from 1 to 1.8 GeV, in region III, we have input
the data on [FI for the n+n_ channel in 20 MeV bins just as given by eq. (1)
with all their random statistical fluctuations, our resultant analytic
amplitudes of figs. 2a,b are remarkably smooth at each momentum transfer.
This smoothness has come about solely from the demands of analyticity. It
is seen that this "analytic" smoothing in energy has removed much of the
statistical variations; yet hopefully the structures of dynamics remain.
It is important to note that methods of implementing cut s-plane analyticity
other than ours tend to yield ultra-smooth amplitudes, in which even local
"dynamical" structure is washed out. We will comment on this "analytic"
smoothing in energy, as well as smoothing in cos6, again in later sections.

A striking feature of the argand plots, Figs. 2a,b is the tightly
wound loops of the forward amplitude, while the backward amplitude hardly
completes a single circuit of a large diameter loop between 1 and 1.8 GeV.
This distinctive behaviour is to be contrasted with that expected from the
Lovelace-Shapiro modelzo). In this model, when unitarisedZL), the forward
argand amplitude executes loops moving ever further from the origin along
the imaginary axis, while the backward amplitude curls rapidly round the
origin in ever decreasing circles.

In order to understand why the physical amplitude is so different it
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is necessary to partial wave project our amplitudes to see the interplay
between the leading resonant waves and their daughter waves, which may,
or may not, be resonating too. It is to this we turn in section 4 after
considering some necessary technicalities.

(D) Technicalities: Regge Parameters and their Variation

The fact that the amplitude is known in the low energy region (since
elastic unitarity completely defines the amplitude from its modulus) is
crucial in determining the phases above the inelastic threshold. Moreover,
the phases in the forward and backward hemispheres above KK threshold
though determined separately are not really independent, but are correlated
by the fact that in this same region of elastic unitarity, there is con-
siderable overlap between the fixed t and fixed u bands we use [for example,
at Vs=0.69 GeV, t=-0.2 GeV2 is u=-0.2 GeV2],and the same known amplitude
must be reproduced. This appears to impart a remarkable stability to our
approach despite the fact that the phase has to be determined at several
hundred points in the physical region.

All our fits with different numbers of energy bins, different values
of t and u, different weights given to certain energy ranges all yield
stable forward Regge parameters. These we find for both amplitudes a,B to
be

o""(*) = 8.3mb, B, = 1.0
withyao=%. The value of the f residue is to be compared with exchange
degeneracy which gives Bf =~% Bp = 1.1 (for a0=§). It is reassuring that
these Regge parameters are in complete agreement with a recent FNAL
experimentzz) that gives O(ﬂ+ﬂ—) = 15+4mb at s=20 GeV2 and 13.5+2.5 mb at
é=32 GeV2. (It is only at these two energies that we can believe 7 exchange

. . + . . ..
controls their reaction m n-pX because of kinematical limits on the mass of

the exchanged particle). Most importantly, even though the values of these
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Regge parameters are stable, our results are, within limits, rather
insensitive to them. For example, doubling oﬂﬂ(W), as factorisation would
suggest we should, does not essentially change our amplitudes. Yes, the
fit is worse;Bf decreases to partially compensate for the increase in o'"
and the forward and near forward amplitudes are rotated, most in the

forward direction, but by only 5° at 1.15 GeV and by less at higher energies.
Similarly, varying the intercept of the p,f trajectory not only changes the
energy dependence of the high energy amplitude but,from the form of the
residue in eq. (15), changes the position of the nonsense wrong signature

zero also. However, setting ao=0.35 rather than 0.5 rotates the forward
amplitude by at most 6° about the basic amplitudes a,B: again a remarkable
resistance to change.

In contrast the situation for the parameters of the effective "exotic"
Regge pole controlling backward scattering at high energies is rather
different. The values obtained depend strongly on the errors assigned to
the backward data points above 1.7 GeV and on the grid of energies we
choose to fit. This dependence reflects itself in the larger uncertainties
in the results of the backward hemisphere dispersion relations above
1.7 GeV than in the forward hemisphere results. This is why we do not
plot our results beyond 1.71 GeV in figs. 2a,b. Typically, with ax(0)=~1,

we find (see eq. (16))
2

]
1]

a:y=-0.70, y' = 3.9 GeV

2

- 0.17, y' = 7.5 GeV

B :y
The quality of the fits depend rather weakly on the choice of ax(O) in the
interval (-1.5, -0.5), though the fitted values of y,y' are strongly a
dependent, as we would expect from eq. (16) if the amplitude below 1.7 GeV

is to be fairly insensitive to the variation in such parameters.
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Although Regge behaviour is not required of the real part of the ampli-
tude until some high energy such as 4 or 5 GeV (the results being independent
of the exact value of vo), the forward amplitude has on the average a
comparatively small real part above 1.8 GeV, just as the early onset of
roughly exchange degenerate Regge behaviour would suggest. This is not
the case in the backward direction where the imaginary part is small above
1.8 GeV but where the real part is quite considerable till much higher
energies are reached. In particular, note that solution o has a sizeable
negative real part at 1.8 GeV, while solution B is moving closer to the
origin and so closer to an early "average" onset of Regge behaviour. MHowever,
we have no reason to expect that Regge behaviour for the real part must set
in till much higher energies. Nonetheless, this is an important difference
between the analytic amplitudes a,B to be considered again later.

(E) Technicalities: Varying the S* parameters

While discussing such points it is appropriate to mention that larger
uncertainties not only arise above 1.7 GeV but also between 0.95 and 1.1 GeV -
this is why we do not start to plot our results till 1.15 GeV, where they are
quite reliable. How big the uncertainties are in thé inelastic region between
1.15 to 1.71 GeV with respect to changes in the Regge parameters we have
already touched on, with regard to the experimental errors will be discussed
later in the next section.

The inaccuracies here close to the inelastic threshold arise because,
although in principle elastic unitarity determines the amplitude completely
below KK threshold the moments, eq. (1), are very small in this narrow energy
range and large uncertainties occur. In particular, while the I=0 S-wave
phase shift 62 is rising very rapidly from 90° through 180° in this precise

energy region, we are uncertain as to its exact value at the moment the KK
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9) . . . .
channel opens up””. This sizeable uncertainty propagates up to 1.1 GeV in
the determination of the phase of the inelastic amplitude. In resonance
terms this manifests itself in an imprecise relation between the S$* para-
meters and the background. To pin this down more precisely requires a

; . ] + -+ - + + o+ o+
detailed analysis of not just mm »wn and m 7 -7 m data but also
+ - = + - 00 . . . .
mm >KKand mm >7 7 . At present, some inconsistencies arise between

23,24) 1,2)

data on the latter two channels and those on the former two . High

statistics accurate data on the 7°n° channel, in particular, might be useful
in this connectio%é%hen combined with data on the other channels so as to
accurately fix both the phase shifts and inelasticities of not just the I=0
channel but also the I=2, for which ni=1 is necessarily assumedz) for want

of any reliable information on inelastic channels. We shall return to discuss

this energy range around KK threshold later.

(F) Technicalities: Logarithmic end-point singularities

Next one may worry that the division of the range 1 to 1.8 GeV into N
intervals, each with a discrete phase Aw(si,z), introduces logarithmic
singularities at the edges of the subregions when substituted into eq. (13),
cf eq. (14). This is, of course, the case, but their effect is negligible.
This can be checked (i) by increasing N - we have done this from N=8 to 24 -
and (ii) by changing the energies-"si defining the intervals - this is done
several times - and repeating the analysis. The results remain unchanged.
This is largely because the additional non-continuous phase AU(s,z) (for s
in bin centred on Si) has a smooth behaviour with s, at each fixed value of
t,u except perhaps at Vs = 1.79 GeV - the last data point.

The p Regge term contributes much less than the pomeron or f to the high
energy integral for /s<1.8 GeV having an additional (v/vl) factor as odd
signature requires, where vy corresponds to an energy of 1.8 GeV. Thus,

while the high energy contribution is relatively insensitive to the residue
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Bp» the p term is just as important as its even-signatured counterpart,
the f, in the imaginary part of the amplitude along the right hand cut.
Because of this, we can with hardly a change in the integral of the Regge
contribution for Vs=1.5 GeV, say, eliminate any logarithmic singularity at
Vs=1.8 GeV by defining the p residue so as to give continuity, i.e. define

I (s,t) = ImFReg(s,t) at Vs=1.79 GeV and t=0 or -0.2 GeV2 for example,

mFdata
where the Regge amplitude is given by eq. (15). This makes a negligible
difference to our results and typically Bp becomes 0.9 instead of 0.75.

(G) Two Analytic Amplitudes Alone?

We have constructed the amplitudes a and B to have cut s-plane analy-
ticity for a certain range of fixed momentum transfer by starting from the
non-analytic solutions A and B of the phase shift analyst (e.g. ref. 9).
To obtain amplitude o, in particular, we have had to search for parameters
Ay far from the starting point A. It is natural then to ask if we were to
search further would we find yet other analytic amplitudes besides a,8
describing this same data of the CERN-Munich groupl’z). Indeed, if such
exist they would most easily be found by beginning our iterative procedure
at some other reference points than the phase shifter's solutions A and B
by, for example, taking X(s,z) to be non-zero initially.

Though far from attempting an exhapstive search of the 320 parameter
space of Ay's,we have found that other starting amplitudes may lead us to
the very same amplitude o,B at least within errors. This is of course
reassuring. However, others take us far away to yet other amplitudes
equally analytic and equally well describing the data but with quite
different properties.

Nonetheless, as we shall see, amplitudes a,B constitute the basic

analytic amplitudes we have been able to construct,so in the next section

we shall explore these in greater detail and chart their physical properties
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before even taking the most tentative step into the quagmire of a large
parameter space. Even then we shall see that amplitudes a,B and their

neighbourhoods are indeed special.

4. Phase Shift Analysis

(A) Partial wave projection

We have constructed our basic amplitudes @, B by requiring that they
not only describe the experimental moments of eq. (1), but are analytic in
s. This construction can be performed independently at each fixed value of
momentum transfer. The only inter-relation between different momentum transfers
comes from the fact that at low energies in the elastic region the dispersion
relations must reproduce the same known amplitude with its specific momentum
transfer dependence given by experiment and that in the high energy region we
have chosen definite forms for the t and u dependence of the Regge residues -
fewer parameters than the number of values of t and u used. Thus our phases
at a given energy in the inelastic region are not completely independent from
one momentum transfer to another, but weakly correlated by these low and high
energy requirements. However, while analyticity in s at a given momentum
transfer is seen to produce rather smooth amplitudes [figs. 2(a,bi] describing
the data, no smoothness in cosf at a given energy is imposed except in this
very weak way. It is to the examination of these almost independent amplitudes,
analytic in s, as a function of momentum transfer that we now turn. This is
necessary if we are to investigate the physical properties of these amplitudes
in terms of resonances and structures, which are most easily seen in individual
partial waves. Moreover, it is on partial wave analysing our amplitudes that
we can answer the important question of whether unitarity is satisfied or not.
This is by no means obvious.

Recall that our starting amplitude B has an S-wave which is highly non-
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unitary over several hundred MeV. This we argued away by recognising the
arbitrariness of the phase shifter's decision on the maximum number of
partial waves, choice of overall orientation of the partial wave vectors
and method of smoothing. However, we have removed these three factors of
arbitrariness. Thus, for our amplitude B, or for that matter o, unitarity,
eq. (11), now poses a realistic constraint which can possibly rule out one
analytic amplitude or another.

Our first step in examining amplitudes a,B for their physical properties
is therefore to check whether they satisfy unitarity or not. For this, as
discussed in section 2B, we must consider the amplitudes as functions of
cos® and project out partial waves. Our amplitudes o,B will have an infinity
of partial waves as defined. To be able to determine these would require
the amplitudes to be known at an infinite number of points in cos6 at each
energy. However, fixed t,u dispersion relatiomns can only determine the
amplitude in the near forward and backward cones. The centre of the physical
region is unexplored [Eor example, at V/s=1.6 GeV, only |z|>0.75 is covered
by the dispersion relations we usél and then to be tractable we only use a
finite number of points in t and u. We therefore cannot use the full range
of cosf, -1lgzgl, to project out partial waves.

Armed with the amplitude at only a finite number of momentum transfer
points (t,u=0, -0.05,... GeV2) at each energy we are forced to approximate
the amplitude by a finite number of partial waves. In principle, this can
be a large number but in practice we are able to represent the amplitude
adequately using five waves up to and including %=4. Using four
waves, 253, is not sufficient.

Since a minimum y2 criterion is used to fit the dispersion relation
amplitudes with partial waves, it is possible to obtain fits which while

giving a good description of the amplitudes, in the sense of x%, mno longer
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fit the original experimental moments quite so well. To avoid this we
require that the partial waves not only fit the dispersion relation amplitudes,
but equally the experimental moments from which they are derived. 1If appre-
ciable higher waves were necessary, which we have presently set to zero,
this would show up by 'predicting' higher moments L7 non-zero outside their
experimental error bars.* This, in fact, will not happen and for Vs<1.65 GeV
up to =4 is certainly sufficient. Thus we find the major effect of the
continuum phase x(s,z) is not so much the generation of many higher partial
waves, but rather only a few, together with the mixing of lower waves, so as
to produce an analytic amplitude.

Every 20 MeV, at each data point from 1.15 to 1.69 GeV, we perform
this partial wave analysis. However, when a partial wave is very small,
particularly some high wave, like the 2=3 and 4 waves below 1.4 GeV, the
uncertainties in their determination, as given by the experimental and
dispersion relation errors are very large and the points somewhat scattered.
In this situation we can obtain more meaningful results without a deteriora-
tion in x? by fixing these waves to be the tails of the appropriate Breit-
Wigner resonances. We do this for the %=3 wave below 1.44 GeV assumed to be
controlled by the g-resonance and for the %=4 wave below 1.5 GeV controlled

by the h resonance.** Above these energies these waves are allowed to go

* 3 .
Recall that the way we have constructed the amplitude, if we were to take
the complete infinite number of waves, the amplitude would require all moments

with L>6 to be vanishingly small within limits.

%k , ]
We are aware that this cannot be exact near threshold since the 2=4 scatter-

ing lengths, whether in the resonant I=0 or the supposedly non-resonant I=2
wave, are comparable. We are only using these resonance tails as convenient

forms down to 1 GeV.
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free, since then their magnitudes exceed the size of their error bars.
Below we will give the explicit Breit-Wigner forms used.

In calculating the even partial waves both I=0 and 2 components
contribute according to eq. (9). For the S-wave we take the I=2 phase
shift to be a constant, elastic, -25° 2’14). With this input we present
the (supposedly) pure I=0 S-wave. Nevertheless, the D and G waves will
each include an I=2 component which is expected to be small from T
analysesz’14).

To test whether our resultant partial waves are unitary or not,
eq. (11), we conveniently represent them in terms of phase shifts and
inelasticities, eq. (12), when the ni must lie in the range Osngl. 1In
figs. 3(a,b),4 we show the partial waves obtained by fitting each of the
dispersion relation amplitudes o and B respectively, together with the
experimental moments, weighted so that the moments and the dispersive
results contribute roughly an equal amount to x%2. 1In figs. 3(a,b) the
So’ P, D and F waves are displayed in their relevant argand diagrams from
1.15 to 1.69 GeV, where the circles set the unitarity bound given by
eq. (11)*. Since the G wave is very small it is not shown in such a
diagram but rather its phase shift is given separately in fig. 4 for both
solutions.

It is immediately seen (fig. 3) that neither solution is ruled out.
Indeed all the partial waves of both our basic analytic amplitudes satisfy

unitarity remarkably well. If it is recalled that solution B of ref. 9, to

which our amplitude B is quite closely related, has its S-wave far outside

*
Remembering the 'small" I=2 part has not been separated out in the D wave,

the circle is not the exact unitarity limit. What is plotted is D=D +%D2.
o
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the unitarity circle in the energy range from 1.25 to 1.55 GeV, we see our
procedure has, by implementing analyticity and so fixing the overall phase
of the amplitude and the relative phase of each partial wave, restored
unitarity to the amplitude.

Moreover, our resulting partial waves are not only unitary but rather
smooth (fig. 3). Not as free from structure as the phase shifter's

9)

artificially smoothed results”’ discussed in sect. 2B, but far smoother
than the phase shifter's raw partial waves (see figs. 4.14,15 of ref. 16).
This smoothness results solely from the requirement of analyticity in
energy and by the approximate analyticity in cosf we now have. Despite
this 'analytic' smoothness our resulting partial waves fit, not only the
smooth dispersion relation amplitudes of figs. 2(a,b), but also the
experimental moments exceedingly well. Remember that with only guesses
for the phase relation between different partial waves, the phase shifter
finds very very raggedy partial wave amplitudes fitting these same moments.
In figs. 5(a,b) we show how well the partial waves of amplitude B fit the

1Y)

original moments ° - the situation for solution o is even slightly better.
Let us discuss these results in more detail.

Comparing figs. 3(a,b) showing the 253 waves for amplitudes a,B
respectively, we see the leading waves in the f and g regions are very
similar. For example, reading from these graphs the parameters of the

=0.18 GeV, x,.=0.83 for o compared with

f-resonance are mf=1.272 Gev, T £

f

1.261 GeV, 0.17 GeV and 0.84, respectively, for B. These parameters are

exactly the same within errors — errors we shall discuss separately below.
While the leading waves are very much the same, it is the lower

daughter waves that produce the difference between our amplitudes a,R of

figs. 2(a,b). Since solution B is most like previously discovered
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solutions it is more natural teo discuss it first.

As already remarked solution B has a unitary S wave (unlike B), which
is in fact highly elastic in the entire energy range from 1.29 to 1.69 GeV.
It is of course somewhat difficult to believe that this wave really can be
quite so elastic after such a strong onset of inelasticity at KK threshold
produced by the S* resonance. Indeed, we can bring the S wave into the
unitarity circle by hand with ng=0.9 hardly worsening the x? for fitting
the dispersive amplitudes and moments. This is achieved by a small compen-
sating movement mainly in the D wave, for which very roughly IADIZ%|AS|.
This will be seen more fully in the error regions we explore below. None-
theless we can say the S wave is resonant in the region 1.3-1.45 GeV. Indeed,
we can describe not only this S wave with an 'elastic' e resonance in this
mass range together with an S* just below KK threshold, but also approximately
the experimental KK cross-section23) below 1.5 GeV. The detailed couplings
however depend on the detailed forms used: see, for example, ref. 26).

The behaviour of the P wave in solution B is unmistakably that of a
resonant loop characteristic of a second sheet pole. The parameters of
this p' are mp,=1.575 GeV, T(p'»mm)=0.105 GeV, I'(p' inelastic)=0.235 GeV
assuming the inelastic channels to have KK kinematics. Thus the p' in this
solution has a 30% coupling to mm and so should be clearly seen in this decay
mode. We return to this below.

The highest effectively non-zero wave, the G wave, is seen in fig. 4
for both solutions a,B. It is of the size of 1 to 3°. To see whether this
is a reasonable magnitude for this wave generated by analyticity (recall
the phase shifter artificially sets this to zero) we compare these results
for §, with that suggested by the tail of a Breit-Wigner form for the

4

h-resonance at 2.035 GeV. Taking the unitary partial wave to be given by
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xMT'(s)
£,(s) = [ (17)
% s-4u2 Mz—s—iMF(s)

where the energy dependence of the width is described by

2.2
29+1 DR(qRR )

¥ =, (L) (18)

I D, (a°%%)

with the radius R in the centrifugal barrier factors being set at 5 GeV—1

(1 fm), and

2 1 2 2_1,2 2
q = Z(S 4u™), g = 4(M 4u”).

For the =4, D4(x)=11025 + 1575x + 135x2 + 10x3 + x4. We then find that
with M=2.035 GeV, FO = 0.2 GeV, the phase shifts 64 for amplitudes a,B are
fitted with elasticities, x, of 0.2 and 0.25, respectively: both very
reasonable values indeed. These give the curves shown in fig. 4.
[incidentally, a similar form to eqs. (17,18) is used for the %=3 wave
below 1.45 GeV, as already explained, with D3(x) = 225 + 45x + 6x2 + x3
and g-parameters of M, = 1.692 GeV, Iy = 0.24 GeV and xg = 0.245.]

The overall smoothness of the free %=4 wave of fig. 4 and its strong
agreement with the assumed tail of the h-resonance leads us, in fact, to
use this form explicitly up to 1.69 CeV when fitting the lower waves and
this is what is actually plotted in figs. 3 (a,b). Leaving out this G wave
would give a poorer representation of the dispersion relation amplitudes and
the moments and produce a non-unitary S wave.

Before turning to our amplitude o let us remark on its G wave too. It
is smaller than for § though very much the same: an elasticity of 207 as
compared with Z5/. This illustrates an important point. Amplitude o is
obtained by a far larger phase change x(s,z), of eq. (7), from the phase
shifter's non—analytic scolution A with its #>4 waves zero, than ([ from B.

We thus might have expected that o would have larger higher waves (e.g. 2=4)
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than B. In fact, the converse is true. The larger values of x(s,z) in
the backward hemisphere for a produce not larger higher waves but rather
mix the lower ones among themselves so as to generate an analytic amplitude.

Let us now look at the other daughter waves of solution o, fig. 3a.

The S wave is now quite inelastic. Though the wave does return briefly to
the unitarity circle beyond the S* effect just as KK data indicate523),
before becoming inelastic again and remaining so. The § wave executes a
relatively tight resonant loop once again suggesting a high mass € resonance
in addition to the S* at KK threshold.

The P wave is distinctly different from that of solution B, showing no
0'(1600) coupling to mm at the few percent level. This is a major physical
difference between our solutions. Although the P wave does go outside its
unitarity circle for some 100 MeV, this is of no great significance when we
take account of the errors on this wave (considered below). We have made no
attempt to constrain any wave to be unitary, which could certainly be done
without too great an increase in x2. Moreover while the D, F waves are
rather similar to those of B when these are leading waves, the D wave above
the f is quite different. Not only is the shape of this D wave different but
it shows a distinct loop in the 1.5-1.6 GeV region, again characteristic of
a resonance. This we call the f* having a mass in the region of 1.55 GeV, a
width of 0.1 GeV and roughly 10% coupling towm if it is in the I=O channel
or 20%Z coupling in the I=2, remembering we have not separated the D wave
into its isospin components. Exactly what this loop in solution a might be
we will consider below, nevertheless its appearance is quite unmistakable.
In this same energy range the D wave in solution B also has some structure
which is however not particularly significant.

It is appropriate here to mention that this loop is separate from the
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the sharp fall in the moments Ao’ A2 and A4 seen between 1.45 and 1.47 GeV

in the CERN-Munich datal)

of figs.5(a,b), which also show the fit given by
solution B*. This sharp drop results in the rapid movement of the D wave
in this 20 MeV range seen in both figs. 3a and b for amplitudes a and B.
Though this is at the onset of the f* effect, its interpretation appears

*%k
to be unrelated.

(B) The Physical Differences between our Analytic Amplitudes

Since our two basic amplitudes a,B are both not only analytic but also
unitary we discuss in this section how we can differentiate between these
solutions, particularly remembering that we have only obtained the amplitude
o by the imposition of analyticity. It is useful to summarise their different

physical properties in the inelastic region from 1 to 1.8 GeV in a resonance

shorthand
Wave o R

G tail of h tail of h

F g g

D £ £
£* no f*

P very little p' o'

S € €

becoming highly inelastic highly elastic

Three differences are clearly apparent:
(i) The S wave in a is much more inelastic than in B.

(ii) In the P wave, solution o has essentially no p'(1575) coupling to mm,

*
Incidentally, solution o fits these falls somewhat better.

*k
The confirmation of this sharp structure awaits the final analysis of both
the Omega experiment of ref. 5 and completion of the new ACCMOR experiment,
ref. 29.
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while solution B has a 30% coupling* to the elastic channel.
(iii)In the D wave,solution o has a resonance-like effect, the f* in the

1.55 GeV region, while B has none.

How can we distinguish between these possibilities. It is sensible to
remember that the features of a(f*, nop') and of B(p', no f*) come in
insepargble 'packages' so that if we can prove or reject one feature the
others follow.

Clearly these amplitudes a,B having different S,D waves ((i),(iii) above)
they predict different mn > 1°r° amplitudes which high statistics data on
this channel could confirm or rule out. Unfortunately,no really high statis-
ticé data exist on this channel (eg. ref. 24), but some is promised from an

10)

analysis of the Serpukhov data , which has augured well with the discovery
of the h-resonance.

Detailed information on inelastic channels, both KK and 4m, could in
principle distinguish between the different S wave inelasticities in the
range 1.4-1.7 GeV. 1Indeed, a far better knowledge of the S* resonance
would allow us to determine the phase of the whole amplitude with greater
certainty through this region,at the crucial onset of inelasticity, than
we have been able to here (see discussion section 3E). Present intuition,
based on knowledge,such as it is,of the inelastic S wave below 1.1 GeV26),
would tend to favour solution B, rather than o, as its S wave can be more
easily fitted with a "conventional' almost elastic € plus S* prescription26).
However, because of the sizeable uncertainties in the S wave (see below)
and with the lack of definitive data in this region, we are unable at the

present time, to distinguish our solutions in this way. Since neither

of the differences (i) and (iii) are therefore very easy to test, we turn

*
Once again the errors on this will be discussed below.
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to the second point, namely the different P waves.

5)

If it were only more easily accessible, data on the i > ﬂiﬂo channel2
having just isospin one and two, would clearly see the p' and allow its coupling
to be determined. However, the discovery of the J/y family of particles has
highlighted the power of e'e” annihilation to detect vector mesons and to
discover their decay modes. Evidence already exists for a p'(1575) in e+e—

6b’27), 5p27b), 21 and 4w decay channels6’27>

, but its branching ratio to wm -
the crucial distinction between solutions o,B — is not determined other than
indications that the two pion decay mode is less favoured than the four pion
mode - how much less favoured is the question. This will hopefully be resolved

in two ways: (a) the Fermilab experiment on the photoproduction of vector mesons

off beryllium sees evidence for a p' in both 2m and 47 charged modes with 47

)

predominatingba ; when their analysis is complete they should be able to

quote the corresponding branching ratio for the p'. (b) Similarly, the DCI

6b)

experiment at Orsay °, that discovered the w'(1778), sees the p' in the

. . . + - . . .
collective multipion modes e e +2nm in the 1.6 GeV region. They will even-
tually, on collecting enough statistics, be able to quote the branching ratio
(p'>2m)/(p'+47). It is believed that just as the P' prefers to decay to

7a)

. 2 . .
four pions rather than two , the w' prefers to couple to five pions

rather than threeﬁb) (just like the ¢ in fact): the problem is how much

more. Indeed, if the ratio (w'=»3m)/(w'+5m) is quite sma116b)

, this might
suggest that the analogous 2m to 4m ratio for the p' is similarly small.
This is, of course, only a suggestion but one which would be a natural
implication if the dominant decay of the w' were to be p'm, but this, in fact,
is only one possibility.

In any case we have the exciting prospect that ete” experiments will

in the very near future tell us which of our solutions a,B is nearest the

truth. If the decay mode p'»mm is a large fraction, amplitude B would
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clearly be favoured. However, if the coupling of the p' to mm really were
found to be very small, it would imply* solution a is the correct one.
Now this solution has the so-called f* effect in its D wave. This leads

us to enquire what this might be. We shall therefore list the possibilities:

0) It is in the I=0 and not I=2 D wave. No evidence is seen in the mat
2) oo + o .
channel™, but m m or m m data would be useful to check this
completely. We will assume it is an I=0 effect.
1) The f* effect is the f': this requires the f' to have higher mass, and
width even greater, than found in the ANL KK analysiSZ3b) (which give a
mass of 1.506 GeV and width of 0.066 GeV) and in other recent

28)

experiments and a larger coupling to 7w than previously seen
(which is less than 2.5% from ref. (28)), and finally, what we have
taken to be pure mn>mm data extracted from wN>mmN by one-pion-exchange must
have a sizeable non-pion—exchange component (the Al) not yet eliminated.

If this is ruled out as conflicting with all present evidence on the f'

we have two further options based on assuming the f* seen here and the f'

are distinct.

2) The f* is the first daughter of the g. This is an easy and seemingly
uncontroversial suggestion to make. However, this may nonetheless be
somewhat disfavoured by the fact that we have no evidence for other
states on this same daughter trajectory: the €(750) and p'(1250), both
'of which have been superceded by states seen on the second daughter
trajectory: €(1250) and p'(1600). So this possibility raises more

problems than it resolves.

* . + = . .
Assuming the CERN-Munich data on mw m ~— m 7 1s correct - an assumption

we have naturally made all along.
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3) If the f* is neither of these (1,2) then we have no room in the simple
quark model for another tensor meson in this region made out of a quark
and an antiquark. Instead, if such a new tensor meson exists, it is
perhaps made not of quarks but of coloured gluons. Such a highly
inelastic state would lie on the Regge trajectory corresponding to
gluon exchange, viz the pomeron, on which it would fit quite nicely.

We do not go into this further, since the speculations are endless,
but add that there are those who would not be unhappy if such a state
did exist.*

Detailed analysis of KK data might suggest that to explain the CERN-
234)

3b)

Munich results on this channel, even f, f', A2 interference found by

the ANL group2 is not sufficient and that either another state (the f*)

is needed or a far broader f'23d). Thus KK data is perhaps the key to
testing the existence of such a state but because of the complicated inter-
ference effects this may in fact be rather difficult in practice.

It is clear that such difficulties in confirming resonances extracted
from phase shift analyses arise for all daughter states except for those

C

with JP =1 which couple to the photon, and so are preferentially

. . . . . + - eq e
produced diffractively in photoproduction and easily seen in e e annihila-
. . . . 5,6,10,29)
tion. The final analysis of presently or nearly completed experimentd

are eagerly awaited,as well as future results on new experiments.

(C) Other Analytic Amplitudes Investigated

Having explained in some detail the physical properties of our basic

amplitudes o,B which are equally analytic, equally unitary and equally well

*
We are grateful to John Ellis, who sensing a whiff of glue, shared with

us his vision of what a glueball should really look like.
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describe experimental data, we return to the question raised in section 3G,
namely are a,B the only analytic amplitudes that we can find? This will
provide us with a suitable vehicle for studying the errors in our previously
described analyses.

Amplitudes a,B have been found by starting at the phase shifter's
solutions A,B and iterating to find the analytic values of x(s,z) of eq. (7),
i.e. iterating Ay of eq. (17). As already emphasised the phase shifter's
solutions A and B are just convenient reference points in our search for
analytic amplitudes. It is clear we can start anywhere. If we do, we
find more often than not, that an arbitrary choice for wo(s,z), of eq. (17),
does not lead to convergence or, even if it does, the amplitude is not
analytic; namely, the system converges according to criterion (ii) of
section 3A, so that the amplitude is self-replicating in the inelastic
region, but criterion (i), that the known elastic amplitude should be
correctly reproduced, is not fulfilled. When either of these two situations
arise we take this to imply that our starting phases are more than some 50°
away from the nearest analytic amplitude, which seems about the maximum
range for which we have found convergence. Of course other starting points
than A and B do lead to completely analytic amplitudes, some to amplitudes
so close to a or B as to be indistinguishable from them (see, for example,
sections 3B,D). However, others lead us to quite new analytic amplitudes.
These we discuss here.

In all such cases we have been unable to move far away from the forward
hemisphere amplitudes of solutions o, B, aside from small changes discussed
in section 3D. This remarkable stability comes as no surprise, since we
have already found that replacing ¢0 = ¢Bw(s) by a constant leads to exactly

the same result (section 3B). This stability occurs because the imaginary
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parts of the forward and near forward amplitudes are positive definite,and
this, together with the fact that the contributions to the modulus of the
amplitude given by the moments, eq. (1), all add positively too, leaves
relatively little room for manoeuvre. This is especially so at t=0 and,
of course, less so at t=-0.3 GeVz, where the amplitude is much smaller
anyway. In the backward hemisphere, which is only very weakly correlated
with the forward amplitudes, the situation is quite different.

We have found several different analytic amplitudes starting with
different initial phases,all having a more rapidly rotating backward
amplitude than either g or g. This invariably leads to a violation of
unitarity for these analytic amplitudes. In particular,the S and D waves
are forced far outside their unitarity circles in the region 1.29-1.35 GeV*.
We consider these no further, other than to remark that it is surprising
enough that both our analytic amplitudes a,B are unitary without expecting
all other analytic amplitudes to be so.

We have, however, found one other amplitude which is not only analytic,
of course, but also unitary. This we obtained from a starting point which
is neither A nor B, o nor B, in a seemingly distant part of the parameter
space,but not as far as our other trial starts giving non-unitary amplitudes
were. This converges to yet a further analytic amplitude with the same
forward Regge parameters as for a,B8. For the moment, we call this amplitude
Y. It is, however, not dissimilar to our amplitude B even though its start
is typically 30° away (namely, |A¢(s,z)l=300 on convergence). On partial

wave analysing this amplitude Yy, as in section 4A, we find it to be satis-

* . .
This arises in this region because the forward and backward amplitudes

have maximum modulus there. Rotating the backward amplitude (relative to
a,B into the left half of the argand circle) reduces Imf% and eq.(11l) 1is

violated.



_50_

factorily unitary as shown in fig. 6. Its S wave is less smooth than for o,8,
not at elastic as B nor as inelastic as a. The amplitude is, however, of
a B-type in that it clearly has a p'(1575) in its P wave with a sizeable
coupling to mm rather than none at all. This time the coupling is 157. Its
D wave is more elastic in the 1.45 GeV region than o or B, and shows the
same rapid movement from 1.45 to 1.47 GeV seen in all solutions.

It is important to note that this amplitude vy is, at different momentum
transfers, just as smooth as o,B. This smoothness follows from the imposi-
tion of analyticity in energy. However, this amplitude Yy does not have
partial waves quite as smooth as a,B. This is related to the cos 6 depend-
ence at a given energy for which we have imposed no arbitrary smoothing
other than a finite & cut-off. Fig. 6 shows the results for Qmax=4. The
larger G wave found here we take as collective of all higher waves;
indeed a non-zero %=5 wave is needed at the higher energies below 1.79 GeV
to give as good a description as for a,8. Fitting the G wave phase shift
(i.e. just the real part) to the Breit-Wigner form (shown in fig. 4 for a,B)
and using the same mass, width and radius R as in eqs.(17,18) we find the
elasticity to be 60% rather than 20-25%. Now we ask is this amplitude Y,
which has a smaller coupling p', a less elastic S wave and a bigger G wave
than B really a different amplitude, or is it more or less the same. In
other words, are the minima of X2, iﬁ which B,y lie, separated by a steep
mountain or just a small hillock so that B and Y are in the same shallow
plane?

Such an exploration requires the determination of meaningful errors
for the phase shifts, always somewhat complicated in such analyses. This
is solved by taking the errors given by the MIGRAD subroutine of the CERN
minimisation programme MINUIT once it has converged. These errors are

meaningful in that they correspond on convergence to the change brought
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about by increasing x? by one. For illustrative purposes we show the
corresponding error ellipses (defined by n,S8 for each wave) at just two
convenient, typical energies: 1.39 and 1.59 GeV. From these it is seen
that B and y are in fact minima in a fairly shallow plain and not in
separated and distinct valleys. We therefore regard amplitude Yy (obtained
quite differently from B) as an equally likely alternative to B and so
rename it B'. Despite slightly different physical properties B' and B are
both analytic, unitary amplitudes lying in the same continuum patch.
Indeed, from now on when referring to amplitude B we mean equally B'.

The sizeable error ellipses on the S wave of fig. 6, being roughly
three times larger than those on the D wave, highlights, as already
intimated in the previous section (4B), how impossible it is to use the
S wave inelasticities to distinguish our basic amplitudes o from g', g'
from B - hence o from B. As we have already emphasised, the clear cut
distinction between these physical amplitudes is the strength of their
couplings of the p'(1575) to wm; a strength e+e_ annihilation can most
easily reveal.

Most importantly, we have found, in as much as we have been able
to explore a three hundred parameter space, no other*analytic and unitary
amplitudes than o,B. This is why we have regarded these as our basic

results and considered them in such great detail.

5. Discussion

The purpose of this section is not so much to summarise what we
have achieved, as we have summarised as we have gone along, but rather
to discuss our analysis in the light of other work in this area.

9

Let us return to the phase shifter's solutions A, B, C and D with

their arbitrary partial wave cut-off, articial smoothing and arbitrarily

. . oo . . . . .
This assumes that the final m m production data will continue to eliminate
the amplitudes that are obtained starting from solutions C and D of ref. 9.
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chosen overall phase. It is clear that after ruling out solutions C, D as

16) 10)

. . . .. 00 ..
inconsistent with preliminary m m data , 1t 1s a natural problem to

try to see if analyticity can distinguish between the remaining solutions

13)

A, B. As already discussed, we previously found that, as they stand,
B is closer to an analytic amplitude than A, using straightforward dispersion
relations in a very simple way.

30)

Before this, Common performed a different study of this same
problem. Since amplitudes A, B have, by definition the same modulus but
different phases above KK threshold, it is natural to consider phase-
modulus dispersion relations which are essentially dispersion relations for
log F, rather than those we have used for the amplitude itself, eq. (13).
These relate the phase directly to the modulus and so one does not have to
make a starting guess for the phase wo(s,z) as we do. However, they are
only useful in the forward direction, since it is necessary to know the
zeros of the amplitude in the complex s plane to use a relation for log F.
In the forward direction these are completely under control. It should be
clear from our analysis that using only the very forward direction cannot
distinguish A from B, a from B or from any other analytic amplitude we have

30)

been able to reveal. Common found however that if Regge behaviour for
the full amplitude (both the phase and modulus) sets in at 3 GeV

solution A is favoured, while if it sets in at 1.8 GeV B is chosen. If
Regge tehaviour is required only for the imaginary part of the amplitude
above 1.8 GeV, that is the phase is not a priori preset above 1.8 GeV

but given a posteriori by dispersion relations, we find no such difference.

31)

In the earliest of all analyses Froggatt and Petersen have like us,
constructed analytic mm amplitudes describing the experimental data on the

moments: an analysis which has very recently been finalised. This they

do in a quite different way from us with,in general,basically similar
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results, results which nonetheless have some crucial distinctions.
Froggatt and Petersen impose cut s-plane analyticity by expanding
the amplitude in terms of functions which are explicitly analytic in s.

32)

In pursuing this technique, they follow Pietarinen who has applied such
methods to 7N,KN scattering. However, there are a number of important
differences between these meson-baryon processes and 7T scattering. Unlike
mN, KN, we have in 7T no reliable total cross-section measurements in the
phase shift region and very little higher energy informationzz). This lack
of working high energy parametrisations is particularly critical for the nm
amplitude controlled by exotic exchange with I=2, for this, of course,

cannot arise in TN scattering and for which we must therefore make hypotheses
[Eor example eq. (16i1, which, however physically reasonable, are neither
theoretically nor phenomenologically well tested (e.g. ref. 19).

In order to expand the amplitude in a convergent series of explicitly
analytic functions, Froggatt and PetersenBI)* (like Pietarinen32)) transform
the cut s-plane into a unit circle by a conformal mapping. At each fixed t
(and fixed u) they parametrize the amplitude as a polynomial in the new
mapped variable and fit this to the data for |F|, including a certain
penalty function to ensure smoothness. A smoothness analyticity does not
necessarily require. This method has the advantage that the amplitude is
manifestly analytic with the need for principal value integration obviated.
Though not essential to the method,FP choose to explicitly include the p, f
and g resonance poles in the full amplitude (not just in the relevant partial

waves) in order to leave a smoother function for polynomial parametrisation.

It is clear that some care is necessary if such a procedure is not to bias

*
Hereafter referred to as FP.
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the analysis in favour of amplitudes with daughter structures beneath each
leading resonance, since it is only for one form of the residue of each pole
that its daughters can be eliminated.

Moreover, the high energy behaviour of an amplitude expanded in terms
of a large order polynomial in the unit circle is far from transparent and
difficult to control. It does not in a natural way lead to Regge behaviour
with moving rather than fixed, singularities used in ref.(3la), nor to a
smooth onset of this behaviour before infinite energies. In order to bring
this under complete control FP have performed a new analysis31b) contempora-
neously with this present work. This treatment assumes the standard Regge
ansatz, rather like our eqs. (15,16) but for the whole amplitude beyond
1.8 GeV and not just for the imaginary part as we do below 4-5 GeV.

FP perform their analysis at t,u=0,-0.2,...,-1.0 GeVz. A somewhat
different range from us, since we restrict t,u to the smaller interval
(0,-0.3) GeV2. This is because we do not have the courage to use our
dispersion relations across the double spectral regions without having any
foreknowledge of how strong double spectral effects might be. Moreover
at an energy of 2 GeV, for example, and a momentum transfer of t or u=-1 GeV?
to assume Regge behaved amplitudes is a far stronger assumption that we can
possibly make - perhaps at such relatively large momentum transfers a con-
stituent interchange model is more appropriate. It is true that our forms
for the Regge residues, eqs.(15,16), do have a couple fewer parameters
than FP use; this does give them slightly greater flexibility at larger t
and u than our forms (of restricted usage)would allow if simply continued
there.

With these requirements imposed, FP find one analytic amplitude,which

is very similar to our amplitude B of fig. 2b. This is reassuring as our

methods and assumptions are quite different. However, FP find just this
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amplitude alone. This they claim to be the unique analytic description
of the CERN-Munich datal’z). This is, needless to say, at variance with
our determination of the unitary, analytic solution o and our discussions
of sections 3G and 4C. How does this arise? FP have made stronger require-
ments than we have. Resonance poles are explicitly built into their ampli-
tudes at the p, f and g positions - positions set by the Particle Data Group27a)
regardless of spin. The amplitude with a strong coupling p', daughter of the
g, results in refs.(3la,b). For us no excursions on to the second sheet are
necessary but, of course, a principal value integration is.

It is important to stress that in our determination of the phases we
do not constrain them by a third criterion (in addition to the two of
section 3A) that the real part of the amplitude above 1.8 GeV (and below,
say 5 GeV) should be Regge behaved and given by eqs. (15,16). This is
particularly so for the effective, rather than absolute, Regge singularities
we call the pomeron and that controlling backward scattering. These not
necessarily being poles may have rather different real parts than a simple
pole form gives, even asymptotically. Instead, as discussed in section 3A,
our real parts in this intermediate energy region above the data are con-
strained only by imposing analvticity in the form of eq. (13). However,
we have already noted that "average' Regge behaviour for the real parts does
approximately happen, even though we do not constrain it to occur, for both
amplitudes a,B in the very stable forward direction and for B8, but not o,
in the backward region. For FP Regge behaviour is required to have an early
onset for both real and imaginary parts. It is then not too surprising that,

along with a built-in daughter for the g, amplitude B only results31b)f

la)

* . . 3 . . .
In the earlier FP analysis , in which the precocious onset of Regge

behaviour was not imposed and no claim of uniqueness made, essentially the
same amplitude was found, viz. like our R. This happens because in this

(footnote cont'd)



_56_

In nN scattering it is well-known that the real parts of the amplitude
are at low energies quite different, even 'on average', from Regge expecta-

tions, even when the imaginary part is 'on the average' Regge pole dominated.

One consequence of the early onset of Regge behaviour for the backward ﬂ+ﬂ—
amplitude, together with the assumed low-lying nature of the responsible
Regge trajectory, is that this amplitude should satisfy a superconvergence
relation with a cut-off as low as 1.8 GeV#* Tt is seen that the amplitude
of FP and our solution B approximately do fulfill this type of condition,
while a does not.

The cut-off dependence of such relations has however been well-
publicized in many papers33). Indeed if our amplitude B (like that of FP)
were to continue to satisfy such a relation with a cut-off after the h,
for example, just as after the g, odd spin daughters, having isospin one,
would be needed to cancel the contribution of the h - or perhaps we have to
wait till after the leading spin five resonance for the relation to happen
to be satisfied again. As discussed in sect. 3D of ref. 19, it is clear
that such speculations are, from a practical point of view, of little use.
Indeed, theoretically, we may expect the leading "exotic" singularity to be
the p—p and A2-A2 cuts, having aeff(t)=2ap(%t)-l with "intercept' rather

33,19)

close to zero. From such discussions it is therefore quite unclear

. + - . . .
whether we can believe the backward m m amplitude satisfies an unsubtracted

% (footnote cont'd)

analysis, along with built iﬁ daughter poles, the amplitude is assumed known
throughout the S* region up to 1100 MeV despite inelasticity. As already
indicated in sections 3E,4B, our analysis is rather sensitive to this region.
Knowing the amplitude there fixes the solution. Indeed, our solution B is

more easily compatible with current analyses of KK data26).

*%
One of us (MRP) is grateful to J. L. Petersen for a most useful discussion

on this subject.
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dispersion relation, never mind a superconvergence relation with effective
cut-off just where the CERN-Munich data happens to end. We have therefore
chosen not to prejudice the issue of the exact position of this effective
Regge singularity nor how its consequent Regge phase is approached. Thus

we feel both amplitudes o and B are physically reasonable from the point of

view of the high energy behaviour of the backward amplitude*.

Another source of difference between our analysis and that of
Froggatt and Petersen31) is the question of smoothness. As set out in
the introduction (section 1), our aim has been to avoid the artificial
removal of irregularities in the data used by the phase shift analyst and
to demand only that amount of smoothing theoretically justified by analy-
ticity, and no other. In this way, we hope to expose all the dynamical,

and hence analytic, structures ' hidden' in the data for a given process

*
It is perhaps useful to remark parenthetically that both we and FP find

that changing the pomeron coupling, viz ¢ t(oo), from 8 mb (the value

to
favoured by the fits) to 15 mb (the value suggested by factorisation) has

a rather small effect on the forward amplitude [Eote: we plot our ampli-

tudes for o o

. t(oo) = 8.3 mb, while FP set atot(w) = 15 mb for the plots of

their final analysié]. However the variation we find, discussed in sect. 3D,
is somewhat smaller and its energy dependence the opposite of that shown by
FP in refs. (16,31). This difference arises because FP, in varying Otot?
change the real and imaginary parts above 1.8 GeV together, while we allow
the real part freely to follow the change in the imaginary part only as
required by analyticity. The resultant changes below 1.8 GeV are smaller
in our case and are least at the energies approaching 1.8 GeV and larger
at lower energ;es. This is because the data in the elastic region prefers
a smaller total cross-section, through eq. (13); so increasing this,

worsens the agreement there, but it improves towards 1.8 GeV. Nonetheless,

these differences are small and mainly of a technical nature.
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from a given experiment just as they stand,and not to bias our analysis by
believing some effects and not others. To be guided by experiment and

basic theoretical tools requires us to keep as close to the data as possible.
Nonetheless our resulting amplitudes, seen in figs. 2a,b, are remarkably
smooth. These may of course not be quite smooth enough for nature and may

still have wiggles which are unphysical - we cannot tell. In partial wave

analysing our dispersive amplitudes we have been guided by the same principle.
Figs. 3(a,b), 4,6 are our results unsmoothed except for the continuous Breit-
Wigner forms used for the F wave below 1.44 GeV and for the G wave as
previously discussed.

For Froggatt and Petersen16’31), however, smoothness is of paramount
importance. In constructing their analytic amplitude a penalty function is
included to ensure smoothness in addition to analyticity. Then their phase
shifts are wholly determined by just the t=0, u=0 analytic amplitudes and
by the experimental moments®. The amplitude at other values of t,u, though
determined out to -1 GeVz, are used by FP, only in an iterative way, to
smooth the resulting partial waves. Furthermore, a penalty factor is
included in x2 to minimise the importance of all partial waves with 2>3.

This results in their %2=4 and higher waves being negligible. As argued
throughout, higher waves are absolutely essential for us to obtain analytic
amplitudes if these are to describe the experimental moments with any precision.
This is because, in our approach, the phase shifter's amplitudes of eq.(6) with
x(s,2)=0 (c.f. eq.(7)) are not analytic. Judging by fig. 7 of FP's recent
paper31b) our fits to the dispersive amplitudes are decidedly better than

theirs - this is hardly surprising since we have a free G wave, an =4 wave

*
We find the t,u=-0.1,-0.2 GeV2 amplitudes are just as important for our

partial wave analysis.
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that is nonetheless physically most reasonable.
Moreover, the S wave of FP, like that of the phase shift solution Bg)

is non-unitary. The S wave of our analytic solution B satisfies unitarity

as a direct consequence of our %=4 wave being non-zero. For FP, with 234

waves forced to be negligible, a non-unitary S wave results. To solve this
problem FP add to their x2 function for determining partial waves yet another
contribution, viz S(ng)A, of a rather 'ad hoc' nature. This, by its very
size, forces the S wave to have ngm0.7. Since, as we show in fig. 6, the

S wave is the least well determined partial wave, such a change would

hardly worsen x2 for us too. However, we need no such constraint to obtain
a unitary amplitude. Because our partial waves are simply those needed to
represent the data on the moments and the dispersion relation amplitudes

they may not be as smooth, or perhaps even as physical, but how they are

obtained is quite straightforward.

The amplitude of FP, like our solution B, has a p'»2m coupling of some

6,27a) suggest — but only suggest -

30%. Since preliminary experimental results
this coupling may be much smaller and FP have no solution like our a, they
try to reduce this coupling as much as possible by the addition of further
weight factors to x2 in their partial wave analysis. They find interestingly
enough 10% to be an extreme possibility but then the moments and their
'dispersive' amplitudes are poorly fitted. Since our approach is somewhat
different, we only look for perfect fits and ask what coupling for p'->2mw

they give for each analytic amplitude. For instance, our amplitude g', in
the continuum patch of B, has a coupling of the p'-+2m half that of solution B
but with a much larger %2=4 wave. FP's approximation to this situation,

having essentially no %24 waves, can only considerably worsen the fit to

the moments - just as they find.
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In the introduction and in section 2A we have strongly argued that
the phase shifter's restricted class of solutions (eq.(6)) does not contain
the class of analytic amplitudegﬁ) Our solutions o and B are explicit
examples of this. For unlike solutions A,B both of these have x(s,z)
different from zero, particularly in the backward hemisphere. The final
amplitude* of Froggatt and PetersenBl) constructed from summing the non-
negligible, and hence %53, partial waves is however, in as much as it fits
the experimental moments, just one of the phase shifter's amplitudes of
eq.(6), in which the only unknown phase ¢o(s) has been fixed by analyticity
and the zeros z, as a function of s have been smoothed in a different way
than done for, example, in ref. 9.

The purpose of comparing our analysis in such detail with that very

31)

recently completed by Froggatt and Petersen is that such a comparison
serves to summarise what we have attempted, what we believe we have achieved
and to present the differences so that future analysts of other data (for

other processes, even) can be aware of the assumptions, pitfalls, etc, in

the different methods available.

6. Conclusions
We have set out to solve some of the problems inherent in present 7w
. 7,8,9) . .
phase shift analyses . These are of three types: (i) the assumption
that the maximum number of partial waves is half the number of non-zero
momerits, (ii) the forward phase in the inelastic region is guessed,
(iii) the resulting amplitude is smoothed in some arbitrary fashion that

cannot distinguish local dynamics from random fluctuations. We have attempted

to solve all of these by the use of one basic theoretical requirement that

%
which is not exactly the same as their amplitude analytic in s.
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the amplitude describing the data should be an element of the analytic
S-matrix. This has required us to make assumptions about the experimentally
unknown high energy behaviour of the 77 scattering amplitude. In this we
have been guided by the success of the simple Regge pole model and considera-
tions of duality.

We have found that the phase shifter's assumptions define a class of
non-analytic solutions and that we must take account of the full continuum

34)

ambiguity in order to find amplitudes which are analytic However, both
the phase shifter's non-analytic solutions A and B lead us to analytic,
unitary solutions a and B respectively. Though our search for other analytic,
unitary amplitudes not in the continuum patches of o,B cannot be considered
exhaustive, we have in fact found no others.® FEach of these is equally
analytic; each equally well describes the CERN-Munich data upon which our
analysis is wholly based. Nonetheless these amplitudes have quite distinct
physical properties, which more experimental information could distinguish;
for example, a detailed analysis in the S* region of both mm and KK channels
or a simultaneous analysis with high statistics 7o data, when it is available.
Perhaps most excitingly our amplitudes have quite different P waves, one with
a clearly resonant p'(1575) coupling strongly to mm and the other having none
or very little coupling at all. These differences can be resolved by e+e_

6)

and/or photoproduction experiments °, hopefully within the next few months.

These results we eagerly await.

. . . . s + + .
This analysis uses only the results of the high statistics m 7™ experi-

ments of the CERN-Munich groupl’z). It clearly can be applied to any set

of data. We have restricted our attention to one only to show how an

* . . oo . . . ..
This assumes that the final m m production data will continue to eliminate

the amplitudes that are obtained starting from solutions C and D of ref. 9.
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analysis, which tries to limit the degree of unprescribed smoothing, can

be used to isolate local structures in the data if these are real dynamical,
and hence analytic, effects. Future experiments (e.g. ref. 29) and hopefully
the final results of completed experiments (e.g. refs. 5,10) will, of course,
show whether these details will remain in all future analytic amplitudes or
disappear, or be replaced by new effects. In any case, our method of
analysis provides a simple, straightforward way to delineate the relation-
ship between experimental data and elements of the S-matrix, and thereby

to explore and expose the features of strong interaction dynamics.
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Figure Captions

Fig. 1
Figs. 2a,b
Figs. 3a,b

The domains of the Mandelstam plot for which knowledge of
the (absorptive part of) the amplitude is used in evaluating
fixed t and fixed u dispersion relations as enumerated in
section 3A. The s and t channels are AR scattering

. + + + + .
and the u channel is m 7 > ™ ™ scattering.

Argand plots of the n+n_~+ﬂ+ﬁ_ amplitude, F(s,z), for t, u=0,
-0.2 (GeV/c)2 in the energy range 1.155Vsg1.71 GeV. The
points, at 20 MeV intervals, are obtained by using dispersion
relations iteratively as described in the text. The ampli-
tudes labelled o and B, shown in figs. a,b respectively,

are obtained by stafting the iterative procedure from

solutions A and B of ref. 9.

The Argand diagrams showing the wm partial waves obtained by
fitting, at 20 MeV intervals, the CERN-Munich moments (fig. 5)
together with the values of the analytic amplitudes at

t, u=0, -0.1, -0.2 GeV2. The unitarity circles are for I=0
for S and D waves, and for I=1 for P and F waves. The I=2

S wave is assumed elastic with 6§=—250, and the I=2 D wave

is neglected. Solutions a and B, of figs. a,b respectively,
correspond to using amplitudes o and B of figs. 2a,b. Below
1.44 GeV the £=3 wave is input as the tail of the Breit-Wigner

form, eqs. (17,18), for the g resonance. The input for the

2=4 wave is as described in fig. 4.



Fig. 4

Figs. 5a,b

Fig. 6

The 71 2=4 wave obtained from the simultaneous partial wave
analysis of the analytic amplitudes (fig. 2) and of the CERN-
Munich moments. The results are displayed in terms of 62,
obtained by fitting the real part of the #=4 wave. The
parameter, 62, would be the phase shift if the %=4 wave were
entirely I=0 and elastic. The curves correspond to the tail
of a spin four I=0 (h) resonance (M=2.035 GeV, F0=0.2 GeV,
R=5 GeV_l) of elasticity x = 0.2 and 0.25 respectively.

These spin 4 resonance forms were input as the %=4 wave, for
solutions a and B respectively, in the partial wave analysis

of fig. 3.

The Legendre moments, AL(s) of eq.(l), reconstructed (for Lg6)
from an analysisg) of the CERN-Munich data. If the =4 is
determined in the partial wave analysis then the L=7,8 moments
(taken to be zero) are included in the fit. We show a

typical error assumed for the L=7 moment. The continuous

line corresponds to the fit of the partial wave solution B

of figs. 3b, 4.

The mm partial waves obtained by the simultaneous analysis
of the dispersion relation solution B' and the Legendre
moments of fig. 5. The analysis is the same as those of
fig. 3 except that the 2=3 wave is determined by the fit
at all energies and that the =4 wave is determined for
Mﬂﬂ>1.32 GeV. The curves around the points at M= 1.39

and 1.59 GeV show the uncertainty as given by AX2=1.
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