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ABSTRACT

It is shown that the Glauber theory for the
scattering of a high-energy hadron on a nucleus
becomes unitary, when all the possible inelastic
intermediate states are included between successive
scatterings. This result is used to prove that the
n-th order multiple inelastic contributions satis-
fy the Abramovskii, Gribov and Kancheli cancella-
tion, which is therefore a consequence of the

multiple scattering structure of the theory.
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1. - INTRODUCTION

In a remarkable paper, Abramovskii, Gribov and Kancheli (1973)
have proved, in the context of Reggeon calculus, the following theorem,

known as the "AGK cancellation'.

If one considers the single inclusive cross-section in the
central region, one finds that it is given only by the contribution which
results from cutting a single Pomeron exchange ; the contributions of all
the other diagrams are cancelled by absorptive corrections. As the inclu-

sive distribution corresponding to a single Pomeron exchange is a plateau

in rapidity, the same result holds for the integrated inclusive distribu-

tion (excluding the fragmentation regions).

The detailed technical proof of the theorem is based upon the
use of combinatorial techniques, and in particular of relations which
closely recall the combinatorial expressions one finds in multiple scatter-
ing theories when dealing with the scattering of a projectile on a composi-
te system. There the combinatorial factors come in when one expresses the
S matrix for the scattering on the composite system, which is the product
of the individual s matrices, in terms of the individual 1t matrices, or
when one expresses a cross-section on the composite system in terms of the

individual cross-sections.

It appears then likely that the AGK cancellation can be expressed
in a simpler way through the use of the s matrices ; moreover one might
wonder whether it is valid in multiple scattering theories wider than Reggeon

calculus.

In fact, it is known (Chang and Yan, 1974 ; Capella et al., 1975
*
Andreev, 1975) that the AGK cancellation holds in eikonal models ).

In this paper we show that the AGK cancellation holds in any
multiple scattering theory, which is unitary, and in which the individual
scattering matrices are also unitary [for a closely related result in

Reggeon field theory, see Ciafaloni and Marchesini, 1976].

_......_..__...____——————————-_—_..._.__..___..._-._.._..___.._.._—_—_———————————-—_—.—.—__—_.__.__-

By eikonal models, we mean models in which only the incident particle is

allowed to rescatter.
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For this purpose, we shall use the generalized Glauber multiple
scattering theory for the scattering and production in the high energy inter-
action of a hadron with a nuclear target containing A nucleons. Our proof
will be along the following lines. First we prove that the Glauber theory is
unitary when one includes between successive scattering all the possible »
elastic and inelastic intermediate states. The meaning of unitarity is
here that the Glauber theory satisfies the optical theorem, namely that the
total hadron-nucleus cross-section, computed by summing over all the pos-—
sible final states, coincides with the expression given by the imaginary

part of the forward coherent elastic scattering amplitude.

We then compute the total inelastic cross-section, as the dif-
ference between the total and total elastic (coherent plus incoherent)
cross-sections. This inelastic cross-section is expressed as the sum of
the partial inelastic cross-sections of order n, denoted by o which
correspond to the process in which one has inelastic production on n
nucleons, and in addition inelastic absorption on the remaining A-n
nucleons. It is then found that the sum né1njn equals Aoin, namely
is A times the projectile nucleon inelastic cross-section. This rela-

tion is just the AGK cancellation.

The technicalities of the proof go as follows : recalling the
general expression (Gribov, 1970 ; Bertocchi, 1972, 1973%a, 1973b) obtained
from the Feynman diagram technique, of the coherent production amplitude
for hadron-nucleus collisions, and which includes all the possible elastic
and inelastic intermediate states, we construct the coherent and incoherent
elastic and production cross-section, whose sum is shown to satisfy the
optical theorem. To better understand the subtle points involved in the
problem, the standard proof of the AGK cancellation is first rederived for
the eikonal approximation. The next step consists in the proof of the AGK
cancellation when all the inelastic intermediate states are present, but .
their longitudinal momentum transfers are neglected. Finally, the proof
is given in the most general situation in which the longitudinal momentum

transfers of the intermediate states are present.



o, - GLAUBER THEORY AND UNITARITY

The general amplitude for the coherent transition from the
incident hadron state « to the final state B on a nuclear target ‘A >
can be obtained from the Feynman diagram technique (Gribov, 1970 ; Bertocchi,
1972, 1973a, 1973b) which generalizes the Glauber theory (Glauber, 1967). If
one neglects the constraints coming from the nuclear centre-of-mass motion,
it can be written as *) )
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where the nth order operator aég) is given by
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and < A’ ]A > means iﬁqﬁdBXip(gi) ; p(§) is the one-particle nuclear
density, normaliged to 'rdBXQ(g):_1,

In (1) and (2) the different symbols have the following meaning

m is the nucleon mass ; p the total impact parameter ; Bi, z, the trans-
verse and longitudinal co-ordinates of the ith target nucleons ; EB'::mg'/ZP
the longitudinal momentum transfer on the B. state ; FY 6<6i) the profile

matrix for the transition + -9 on the ith nucleon, related to the vy —9

production or scattering amplitude by

>.b" —
'f'a«g(‘i) 2’Top d, b; ¢ E’:s(b‘)

The expression (2) represents the most general amplitude for
the interaction with n of the target nucleons (the remaining A-n  beling

”°pect1tor(”) The intermediate statec ﬁi are the most genersal

*) The normalizations are the same as in Bertocchi (1972).




(multiparticle) intermediate states allowed by energy conservation. It is
the presence of the inelastic intermediate states Bi;éa, for whom ﬁﬁj'%'za’
which renders the theory much more complicated than the standard Glauber
eikonal theory in which, for elastic scattering, one keeps only the elastic

intermediate states Bi::a.

*

We shall see, however, that it is still possible to express in
a simple form the total cross-section and various integrated quantities,
like the summed inelastic cross-section, even in the presence of the inel -

astic intermediate states.

Let us first recall the usual terminology of particle-nucleus
interaction ; we shall call :
- elastic, a reaction in which o =B ;
- inelastic, the one in which o #B ;
- coherent, the reaction in which there is no change of the nuclear
state [A' > = |A > ;
- incoherent, the one in which there is a change of nuclear state
|[av > £ |a>
- summed, the reaction in which one does not distinguish the final
nuclear state, and therefore one sums over all the states

Al >,

We shall also use the word "integrated'" to denote a reaction

in which one has integrated over the angles a differential cross-section.

Starting from the expression (2), we can now immediately write
down the amplitude for a reaction in which the nucleus makes a transition

to a final state IA' >, which can be either equal or different from IA >,

as
Vad

(AL, 1A ) ~

where B is again given by (2). )

o

We rewrite now (2) introducing the co-ordinate space individual
. Dy (L)p
s matrices, denoted by Saﬁ (bi,zi), and related to FQB <bi> by
VD o

b= - b,z
S-‘p (L;IZ:)’-' S-l/s - e EP(L.‘)E. A (4)
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The unitarity relations obeyed by S(l) and F<l> are
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or, in operator form
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The operator F=71-8 1in (1), (2), (3), can be easily rewritten

as follows

= A"u)
£-1-3=1-Z[T57]

where the symbol 7 has the meaning of taking all the possible permutations

i)

arrow is that the 2z co-ordinate of an operator at the left is smaller than

(7)

of the =z ordered products of the S operators ; the convention on the

the 2z co-ordinates of the operators at its right.

We are now going to compute the following quantities

- the total « nucleus cross-section, using the optical theorem, which
is given by :

A - A 4 4)

o« A o - ’r oy )

% - 2 AL‘;UKJ’)(‘ g‘YJRbD [-Z( ’ S CL) ‘,/ ZJ)

":1 'of of (8)

>t

- the summed (g%), integrated (Idzq) cross-section for the reaction

o —p

A A A 2 A A
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To get this result, we have used the closure relation of the final nuclear
states, E% A' > < A'| =1, plus the orthogonality of the plane waves,
which upon the angular integration diagonalizes the impact parameter. In

particular, we have for the elastic summed integrated cross-section
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(10)

L T le,ﬁ P})« ge |1+ S

Srovmpet . ;

- the sum over all the final states B of the summed integrated cross-

section given by (9)
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Now, since
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(12)

A A _ A A(i)/\(i)‘l—_t\ ) ) .
we have S 8 —.H1 S S =1. In other words, the unitarity of the in-

Ly 1=
dividual §<l) operators implies the unitarity of the complete S opera-

tor.

Therefore, the expression (11) coincides with (8), and the

optical theorem is verified.,

This result is not trivial, as it might appear at first sight
first of all, in order to have the optical theorem verified, we must com-
pute the summed cross-sections, adding the coherent and incoherent cross-
sections ; secondly, this result tells us that the standard eikonal form
of the Glauber theory is non-unitary, and unitarity is restored only sum-
ming over all the possible elastic and inelastic intermediate states. In
particular, the eikonal form for the total hadron-nucleus cross-section and
the K8lbig-Margolis (1968) expressions for the coherent and incoherent

nuclear production are not mutually consistent.

This result, however, does not necessarily imply the failure
of the phencmenological applications of the standard Glauber-Margolis
theory to total cross-sections or coherent production reactions ; the

fact that this theory is actually in good agreement with the presently



available experiments, with only small corrections coming from the inelastic
intermediate states, implies the dominance of the eikonal approximation j
there are also theoretical arguments (Weis, 1976) to understand this domi-

nance for the total cross-sections.

We end this section writing down the expression for the total
inelastic cross-section in the o nucleus collision as the difference
between the total cross-section given by (8) and the summed integrated

elastic cross-section given by (10)

~ A
el A el _ ’r el a 1P
G- JL —1 G'm g A it o‘zlz':"j{hx. gC‘Y') 1 (go(d‘{ (13)

3, - THE AGK CANCELLATION

We concentrate now on the total inelastic cross-section (13).
As we have shown that Glauber theory is unitary, it is obvious that the
inelastic cross-section must have this expression ; the complication given
by the presence of inelastic intermediate states is, however, hidden in
the matrix expression for éaa’ which contains all the complications of

the =z ordering.

inel

Our aim is now to produce for o
summed

two different multiple

scattering expansions.

To fix our ideas, we start with the simplified expression for
the § operator (7), in which we neglect all the longitudinal momenta
(this would be the situation at infinite energy, if all the intermediate

states have finite mass). The =z ordering is then absent, since the S

no longer depend upon Zi’ and we simply have

NI SPYCII SEE RN
S:/]TS (L‘-L) . S (14)

LS4

Let us also start with the eikonal approximation, in which only

the elastic intermediate state is kept ; we have in this case
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This expression can be simplified, using the wide nucleus approximation,

(15)

valid for A >> 1. We repeat here the details of the derivation, both

for completeness and since this will be useful later. We have
N G > o2 - a) > (0 0 _,) 2
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is the usual thickness function, and
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Therefore

(qy] ~ ->,
J)X k(x.)‘écui = 1“ WT(é}
(16)

where 0. =0p-0 is the total inelastic cross-section of the incident
in
hadron with one single nucleon., One gets therefore the usual expression

of the inelastic summed cross-section in the eikonal approximation

el 1A
o, = (sz{%“-ﬁﬁ,T(L)J ] (17)

We remark here that even when only the elastic intermediate state
is allowed, so that the total S operator becomes explicitly non-unitary,
production comes in through the unitarity of the individual ( ) operators.
We write now (17) in the form of two different expansions

: A
’,,,4,‘1' _- S— Cr/ .
a) G = L n J
Srirmeasl Mn=1

(18a)

A-n

me AL [ [TE) e T@] e

" ﬂ.)n

Expression a) is a power series expansion in terms of the individual inel-
astic cross-sections ) while in b) o, represents the cross-section
of the physical process in which n nucleons have undertaken production,
while the remaining A-n nucleons have only provided inelastic absorption.
This interpretation of o is correct when the successive interactions
with the different target nucleons are independent. We stress here three
points
i) the gﬁ are alternatively of positive and negative sign, while all
the o, are positive definite [}ppzoxlmatlon (15) is only meaningful

when [147 T(b)J > 0, as it must give ’O£Q>|23] :
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ii) in the o, the absorption factor [1—GDT(E)]A_H

[@hich becomes

exp[-AjnT(g)] in the optical 1imit A~w®] contains the inelastic

cross-section S and not the total individual cross-section o H

11

T

the origin of this fact is very well known ; as we look 2%t an inte-

grated quantity, only the truly inelastic events remove particles

from the incident beam, while those removed by elastic scattering are

found again at different angles ;

191) & . articul
iii) Un;éon In particular

& = A gdlw(;’) = A

If we compute now the sum
A
M3
n 4

where the partial cross-sections o, are weighted with the factor

get A -
Mz 2 non= = AT
n<4

which is equivalent to the AGK cancellation.

(19)

n, we

(20)

We will now prove that relation (20) is still valid, always

neglecting (for the moment) the longitudinal momenta, when we do not

restrict to the eikonal approximation, but we allow all the intermediate

states.
. ) 2 2
Computing again lsaal we have
é (S Aw) AQG) A(A) ~ ~ ¥ éu)")
ol o = (S S .--.S » S . 5 coee ol o =
«) o oa) (A) TR (4"

RS L
= ﬂ,}]ﬁ,_/.“j},‘-, S"p' _S/ef P 2-.“‘ d}’ Jl)’g 14-4"‘
LR TR Lo
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has the general structure

) ] : T,

- ~ T P [ A

[*‘rv“ O e e U’“"’)J
—

The term depending upon bj

.
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CP(-YE (sl =
D ) e
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Working again in the wide nucleus approximation as in (16) we have
3 (G .
’.(J) ~ R A =,
s b-b)-C (5b) =
&d,ngiﬁﬂ E}wﬁJ %r J
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T S L
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We get therefore for Oéﬁiﬁed the matrix expression
\;dl/(, !'A A D A
G =jou> 1- [1— ’u(w]
frormemasl o &

As in (18), we expand [?—[?-—@(E)]A:J to give

G./*J = Z (’;:w
)“"""“VL A=4 £
~ w44 ’ i ,“/ \. "
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- A-n)! ! oy

SV
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(21)

(22)

(232)

(23Db)
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It is clear that expressions (23a) and (23b) for gn and o, are quite

different from those given in (18a,b) ; however, it is still true that

2 ~
szn&;:{n
P

and moreover

5= Afds 6] A[-P- Efute) = & (dg ot (Ju <A

so that the AGK cancellation is again valid.

We now turn to the most general case, where we retain the lon-

inel 2 at .
S ed? S and S Aare given by (12) and (13). we

~K
remark that when we compute the product SQQ'SQQ, we have only to keep in

gitudinal momenta ; o

the product those terms corresponding to the same permutation of the z's
in Saa and S;a ; the product of terms corresponding to different per-
mutations vanishes. Take now, for example, one definite permutation, as
the one given by 1,2,3,...,A. We shall have, as a partial term in the

product, the expression

T () o« wy  AanT ottt
FAN N ST S P N
( P bﬁ'/”' Pai % A INE Jo
ol old P /Gfﬁ/ < Pt a-1 Ja-1, f

%, ru ‘3/4--1

where the index P means the contribution of that definite permutation.

The term depending upon Ej’ z. will have the structure

g (h-k, 35 082y = 5, S - T (-5 )

A *
Even if we do not specify the operator T ), we can always write, for the
tributi of a given permutation to inel i
contribution g D ion 5 ed’ the two expansions

*x
) As it can be realized, the wide nucleus approximation introduced in (16)
and (21) is not needed in order to get M»«gH ; this approximation is
needed if moreover we want to have c =M . . Without the wide nucleus

in
approximation we would simply have M A, Id bfd <. p(x )[j IS(J>I ]
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.'Vt ’A;‘ ~
(G;wwti)P :-;::L?;)F
A N
-~ - foms oY Ph } ]
(T )p = S‘)Lbjjjdbx‘ e [( (g (242)
A
i
(\'9 ym-.-t‘)r’ = 2_’. C‘T"‘\)(’

ol

A A
RS T8 A (24b)

where (?n)p represents the sum of all the ordered products of order n

of T matrices, while (ﬁn)p represents the sum of all the orgered pro-

ducts which are of order n in T and of order A-n in (?-—%).

It is then trivial to show again that

A ~
nI4 (25)

Now we have R »
(Gn’;\)‘, = A ng\a Zl &d,v;grﬂ’)[(ﬁ)du =

A
_ AT AT (T g ).

=

(26)
. S\ %
since S(J) S(J) is 2z. independent.
oo (o' J

Summing (25) over all the permutations, and using

5 (1 e ges), = 1

(7]
we get again the AGK cancellation

r\ = ‘%? Plp = /A 6o

We have therefore shown that the ACK cancellation is always valid in the

unitary formulation of Glauber theory.



- 14 -
What is, in this context, the meaning of this relation ©°

In the eikonal model, the o, are the cross-sections to pro-

A
duce n '"inelastic blocks" (Andreev, 1975) 3 therefore nZ1n0n represents
the sum of the different contributions to the (integrated) inclusive cross-

section, and

A
_ > m 0L
1} = m=a
- S-ed
T pmadd (27)

represents the ratio of the multiplicity of particles produced in hadron-

nucleus collisions over the multiplicity of particles produced in hadron-

nucleon collisions.

The relation we have obtained is therefore equivalent to the
AGK calcellation whenever the on's defined in (18b) and (23b) have the
meaning of the partial inelastic cross-sections contributed by n target

nucleons, with the inclusion of inelastic absorption on all the remaining

nucleons.

In this case we will have that the result (Gottfried, 1973)

5 = A 0.
= ]
G ead

(e8)

is valid in the general case, and is not limited to the eikonal model.
Therefore in a model which satisfies unitarity, the cascading of the
secondary particles does not increase the total multiplicity, as compared

to the eikonal case (with the caveat that, however, one must compute
tnel including all the intermediate states).
summed

We end with a number of relevant remark

- ags seen from (28), if one computes v from the measured values of o .

o | in
ii;med’ in the latter one has to include all the particle pro-

ductions, both coherent and incoherent ;

and of ¢

- as compared with Reggeon calculus, the relevant elementary parameter is
the physical quantity Sl and not some perturbative approximation of
it, as the cross-section corresponding to a single (bare) Reggeon ex-

change ; this is the virtue of the Glauber theory, which always involves

measurable quantities at the individual level ;



- 15 -

- the general validity of the result is affected by energy conservation
effects in the same way as the eikonal models (Andreev, 1975) or Reggeon
caleulus (Capella and Kaidalov, 1976), since energy conservation has
been neglected in the present treatment insofar as limiting the number
of produced particles (the only r8le of energy conservation is here to

give the longitudinal momentum effects).
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