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ABSTRACT

The natural conservation of flavours to O(G;) in neutral weak
interactions severely constrains choices of gauge groups as well as
their fermion representations. In the absence of exactly conserved
quantum numbers other than charge, and of [AQ] 2 2 charged currents,
essentially the only weak and electromagnetic gauge groups whose neu-

tral interactions naturally conserve all flavours are SU(2). x U(1)

L
and SU(2)L X [U(l)]g. The plausible extensions of these gauge groups
to grand unified models including the strong interactions are based on
SU(5) and S0(10) respectively. Making the SU(5) model completely
natural, including in the Higgs sector, gives the prediction
o~ / o
md/me ms,mU mb/mT ,
where T 1is the probable new heavy lepton and b 1is the conjectured
third flavour of charge -1/3 quark. The $S0(10) model contains a

potential  SU(2) X SU(2)R x U(l) weak and electromagnetic gauge

L
group, and has a complicated Higgs structure which does not naturally
conserve quark flavours. However, S0(10) is better than SU(5) at
reconciling data on the weak neutral current mixing angle and proton

stability.
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INTRODUCTION

Tt seems that flavour—changing neutral currents are greatly suppressed in
both the leptonic and quark sectors. Muon and electron numbers are separately
conserved to a high Gegree of accuracy, and strangeness—changing neutral interac-
tions are apparently O(G;). This strong suppression of AS = 1 neutral cur-
rents was the prime motivation for the existence of charm, which seems experimen-
tally to play the rdle proposed for it by Glashow, Iliopoulos and Maianil). Now
it also seems likely that AC = 1 neutral interactions are very strongly sup-—

2).3)

pressed. In the prototype SU(2)L ® U(1l) gauge model all flavour-changing
neutral currents are indeed suppressed to order G?. Direct second order (Fig. 1)
and indirect fourth order (Fig. 2) neutral weak currents are subject to the GIM
cancellation, and even the Higgs system can be chosen so that neutral Higgs boson

exchanges (Fig. 3) conserve flavour.

Several authorsu)’S)’6) have recently proposed that the O(Gi) suppression
of flavour-changing neutral currents be promoted to a general principle. In par-
ticular, Glashow and Weinbergh) have enunciated the conditions which ensure that
the direct and induced neutral currents in an SU(2) ® U(1) gauge theory conserve
all flavours "naturally", i.e., for all values of the parameters of the theory*
They found that all fermions of the same charge and helicity should have the same
SU(2) transformation properties and acquire their masses from the same unique
source, either a single neutral Higgs boson or a gauge invariant bare mass term.

Thus the "naturalness" requirement severely restricts the possible representation

content of an SU(2) ® U(Ll) gauge theory.

We do not know whether all quark and lepton flavours are indeed naturally
conserved by all neutral weak interactions. Indeed, there are several suggestions
that the standard "natural" SU(2)IJ® U(1) gauge theory is inadequate, such as
the high y anomaly in antineutrino scattering, the negative results of atomic
physics experiments searching for parity violation, possible radiative decays of
charged leptons, and trimuon events in neutrino scattering. However, the pheno-
menological relevance, aesthetic**) appeal and restrictive power of the principle

of naturalness make us seek to push it to its limit. TIn this paper we systemati-

cally study the restrictions it imposes on the choice of gauge group as well as

¥) They and we assume that quarks are fractionally charged and interact via
massless, unbroken SU(3) colour gauge gluons.

%%) We are humbly aware that aesthetic judgements are subjective and time-
dependent. The cockroaches of Troy probably did not understand why the
Greeks were making so much fuss.
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the representation content. Almost any group can probably be made natural by
some trick: our purpose is not so much to rigorously exclude any possibility,
but rather to assess the aesthetic price you must pay for inflicting natural
flavour conservation on any given group. Most of the time we will talk about
quarks, but most of the arguments apply equally to leptons. However, the lepton
mass spectrum looks qualitatively different from that of quarks (mv ~ 0), and

it is perhaps not clear that the same naturalness conditions should be applied.

We will first be concerned with the form of the spontaneously broken unified

3)

gauge theory of weak and electromagnetic interactions™ , which we call Quantum
Asthenodynamics*) or QAD. We will then study the incorporation of natural QAD
theories together with the strong interactions in a completely unified gauge
theoryT), which we call Quantum Holodynamics*) or QHD. It will emerge that in
the absence of any absolutely conserved quantum number besides electric charge
Q, or of exotic !AQ| > 2 charged currents, the only plausible, completely na-
tural, QAD models are based on the groups SU(2) ® U(1) and SU(2)® [U(l)jz.
The most plausible QHD theories containing these possibilities are based on the
groups SU(5) 8 and S50(10) 8)’9)’10), respectively. The SU(5) model can be
made completely natural by using7) a single Higgs multiplet, in which case it pre-

dicts that at present energies u = 10 GeV

M m w
4 a D x _'" w (2 to S) (1.1)
M, M M

’A

A

where mb is the effective mass of a conjectured third flavour of charge -1/3
quark, and mT is the mass of the heavy lepton probably discovered recently.

However, the SU(5) QHD model is only marginally consistent with present data
on the weak neutral current mixing angle 6, and the lower limit of v 1030

years on the proton lifetime T In contrast, the S0(10) model is natural

proton’
except for the (possibly negligible) Higgs exchanges. It predicts that at present

energies
sm'© 2 03, L (W)=0(00), T\ Ht'yeas (2

for a reasonable range of grand unification masses.

. ol
¥) The Greek word &Geevﬁs means weak, without strength. The greek word oOMAos
means whole or complete.
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The layout of our paper is as follows. In Section 2 we restate for general
groups the conditions Glashow and Weinberg found necessary for naturalness in
su(2) @ U(1) models. When proceeding to higher groups, we find it convenient
to state a "zeroth" condition that the unbroken symmetric gauge theory has no

"natural" theories

flavour—changing neutral currents. We also consider that
should have arbitrary Higgs potentials and vacuum expectation values. We will
assume the absence of exactly conserved quantum numbers other than electric

charge Q. In Section 3 we first consider an arbitrary QAD gauge group

GQAD ==® Gi where the Gi are simple groups, and first show that if any of the
i

Gi has rank > 2, then a natural theory will have |AQ| > 2 charged currents.

If GQAD is itself simple, it and its representations must be somewhat weird.

We are then reduced to [SU(2)]NQ¢ [U(l)]M, and show that completely natural
theories with N > 1 generally have exotic quark charges and often lAq| > 2
charged currents. Reduced to SU(2) ® [U(l)]M, we first reiterate that a natural
SU(2) acts on a unique helicity3)’h)’5), and then show that requiring the cancel-
lation of triangle anomalies within the observed spectrum of fundamental fermions

strongly suggests M < 2.

In Section U we turn to QHD theories, motivating and studying the possibility

tmmxmm.mmm)=rmm(Gm®)+27Fﬂm 2 for anw@ml For  Goyps

unique plausible GQHD is su(s) '"’. But sin? © is strongly renormalized

the

11)

from its Clebsch value of 3/8 at the grand unification mass scale, becoming

sin? 6 < 0.2 at present energies, and the proton lifetime is also a bit dodgy.

If SU(5) is to be completely natural, a unique Higgs representation must be re-
T)

sponsible for quark and lepton masses. Taking this to be a 5 gives ° at the

grand unification mass scale (cuM) :

m m
d . M - My -\ (1.3)
Me W\.",L
qum Gun qum
which is renormalized to (1.1) at present energies. For GQAD = sU(2) ® [U(l)]z,
. . . 8 .

the unique plausible GQHD of rank 5 is 8S0(10 )’9)’10), which we analyze
in some detail. The group S0(10) actually contains a possible GQAD subgroup

12),13),1k4)

of 8U(2); ® su(2)g ® U(1) Tt needs more than one Higgs multiplet

to give realistic fermion masses and mixings, and is hence not completely natural,
even though the SU(2)R bosons can in principle be zapped to arbitrarily high

masses. We derive the predictions (1.2) for sin? 0, ds(u) and T but

proton’
find no useful mass relations. In Section 5 we comment on some QAD theories, and
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draw some conclusions from our analysis of naturalness. We feel that naturalness
almost forces you into a QAD gauge group of the form SU(2) ® [U(l)]M, and that

SU(5) and S0(10) are then the least unlikely QHD gauge groups. Of these two,
SU(5) 1is more natural but has more phenomenological problems. Maybe naturalness

will not long remain a viable assumption.

CONDITIONS FOR NATURAL FLAVOUR CONSERVATION

It seems that neutral current cross—sections are generally of the same order
as charged current cross-sections, so that neutral current amplitudes are general-
1y O(GF). This is apparently untrue for AS = 1 neutral currents, which are
experimentally of O(Gi mi), with m e typical hadron mass. Thus AS = 1 neu-
tral currents are apparentlynot only absent in second order O(GF) weak interac-
tions, but also suppressed beyond the O(GF o) naively expected from the fourth

order weak interactions of Fig. 2. These properties are guaranteed by the Glashow,

1 .
) form of charm—changing charged current, whatever

Iliopoulos and Maiani (GIM)
the masses of the u and c¢ quarks and the value of the Cabibbo mixing angle
might be. This is what Glashow and Weinbergh) term the "natural" suppression of

AS = 1 neutral currents. From upper limits on the fraction of AS =2 final
states at SPEAR, it seems that mass mixing of 0° and D° is not larger than
their decay rates. This suggests that AC = 1 neutral currents are also

O(G§ mi), again as guaranteed "naturally" by the GIM current. It is, therefore,
tempting to pursue the suggestion of Glashow and Weinberg that all flavour—-changing
neutral currents be "naturally'" suppressed —- i.e., O(G; mi) independently of
the particular values of elements in the quark mass-matrix. Glashow and Weinbergh),
and PaschosB) and co—authors6), have studied the consequences of this Ansatz for
SU(2) ® U(1) QAD theories, finding severe constraints on the fermion representa-

tion content. We first set out the conditions necessary for natural flavour con-

servation by neutral interactions in a general gauge group.

Consider a semisimple gauge group GQAD with seyeral neutral generators Yi
coupled to electrically neutral gauge boson fields z' in the symmetric, unbroken
theory. Suppose that the Zi are coupled to left-handed (right-handed) quarks
via the coupling matrices Yi(Y;). The QAD Lagrangian contains terms

£ 9 STUE
T Ve M
where

‘3”]’* = ixf‘{:l,xsv“/:cl -+ E{:?SIM(I'PK53 \/F; fi

(2.1)
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In order that there be no flavour—changing neutral currents in O(GF), it is first
necessary that there be no flavour-changing neutral current in the QAD theory be-
fore spontaneous symmetry breakdown. This means that in (2.1) all the coupling
matrices Yi,R must be diagonal in quark fields. Any such flavour—-changing neu-
tral current in the unbroken theory would also show up in the spontaneously broken
theory. The absence of such a current is trivial in SU(2) ® U(1) gauge theories,

but not for larger gauge groups G For example, in the SU(3) scheme of

15) QAD

Fritzsch and Minkowski there is a AF = 1 neutral current in the unbroken
theory corresponding to the non-vanishing root indicated by an arrow in the gquark
representation of Fig. L. Even if the quarks d and e did not mix in the bro-
ken theory, there would be a flavour-changing neutral current. All generators
Eiu of GQAD with non-vanishing roots 0. must have *AQ > 1. Mathematically,

the condition can be stated as

(A)  All neutral generators Y' must lie in H the set of mutually commut-

QAD?

ing, simultaneously diagonalizable linear operators in GQAD'

Now consider the spontaneously broken gauge theory with the quark mass term
= +
— @ (1-¥5)Mq - 7 (3 IM g (2.2)

The mass matrix M 1is arbitrary, but must commute with the electric charge Q:

[M) Q‘S =0 (2.3)

The quark mass matrix M is then transformed by introducing unitary matrices

UL’UR and the new quark fields

¢ = 30-%01 + 1¥Ung

(2.4)

so as to take the diagonal form

m - U MU 2.5
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The neutral current couplings Y; and Y; of Eq. (2.1) then become

D

iyt R .=
71_ = Ul_ YL UL ) YR = UQ_‘ Yg' Ugj (2.6)

. L i
The naturalness postulate of Glashow and Welnberg ) then demands that the YiD

and Y0 be diagonal for any choice of M obeying the condition (2.3), and hence

R
for any unitary UL and UR commuting with Q. There might be other exactly con-
served quantum numbers Pa in the theory, in which case M, UL and UR would
a

also have to commute with the P :
a - a -
[m,P*] =0 , [UL,R. ,Pj =0 (2.7)

In order for the YlD to be diagonal for all such UL and U the Yi R must

L,R R’ s
have the same eigenvalues Yi R for all quarks with the same charges and P2 quan-
2%
tum numbers. Therefore the Yi R must be functions of the matrices Q and p%:
2

yb ; \/LL.Q (Q,P&> (2.8)

L.

il

Glashow and Weinbergh) did not consider in full detail the implications of such ex-—

6)

actly conserved gquantum numbers Pa. As emphasized by Paige, Paschos and Trueman
the exclusion of such P? is necessary to eliminate large classes of flavour-
conserving gauge models. In the rest of our analysis, we will assume no exactly

*)

conserved gquantum number exists except charge ‘. In this case, Eq. (2.8) reduces

to

YL,R = YL.R (Q> (2.9)

so that there is an extended version of a deduction of Glashow and Weinberg.

*#) In Section 3.3 we discuss the SU(E)L & SU(2)gr ® U(1) model of Mal2), which
conserves flavour to O(G§) in neutral interactions by virtue of a new exact-
ly conserved quantum number.
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(B) All quarks of the same charge and helicity must have the same eigenvalues for

each of the Yl.

Since it follows from condition (A) that @ and the Y' together form H

all quarks of the same charge and helicity must have the same weights. Conditions

(A) and (B) together ensure that there are no neutral weak interactions in O(GF):

we now turn to the fourth order diagrams illustrated in Fig. 2.

If we consider the diagrams of Fig. 2a, then Glashow and Weinbergh) pointed

*
out that together they produce a change AYl in the coupling of Z1 of the form

AV e T, YT, + T T -3 T, T4 Y (2.10)
_ é\/"{TN;T,J

where we denote by T+u(T—u) the quark coupling matrix of the gauge boson W+a

(w_a) corresponding to the non-diagonal generator E_ (E ) of G.... If we

. L %%) o -a QAD

denote the root vectors ry
v = + v
[7 ) Tio(’S LV Tﬂ’-‘*— (2.11)

then (2.10) becomesh)

DY w T T (Y- e« Tl () = {1, T4 Y
= - Y"; !:T-m )T-—,L] (2.12)

But

{ IESERRVA
L_T*o\ ,Tm] - roa\/ (2.13)

%) 1In this and subsequent equations, the summation convention is not used for .
the index q.
*#%) If necessary, we will think of Q as YO, so that the charge of the boson

W is roO
+o o

QAD’

the set of mutually commuting linear operators in GQAD’ condition (B) means that

)
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so that the changed coupling Yi + AYfL of the boson Zi is still contained in
HQAD’ and conserves flavours because of condition (B). [Equations (2.10) to
(2.13) apply separately to each helicity L and R. ] As pointed out by Glashow
and Weinberg ), two of the diagrams in Fig. 2a also require fermion mass renormali-
zations: these cause no problems because condition (B) ensures flavour conserva-
tion for any mass matrix. The diagrams of Fig. 2b are proportional to (2.13)

and therefore conserve flavour through condition (B). Following Glashow and

Weinbergu), we see that Fig. 2c gives an effective current-current Fermi interac-

. . . . . +0o- .
tion of strength GFa with left- and right-handed coupling matrices XLOLRB which
o - L

contain both [T, T° ] ana {7® , 7°° } picces. Taking the o= g case
L,R> "L,R L,R> "L,R ’ >

we find

tol ~ot ~ 2t ot Aol
XL.cL o S(T“ - T3L.a) T 5T3z..g

— LR (2.14)
where we have introduced
é - \);.- E é = r:); \/0
+to Td > 3 (2.15)

\‘;tl \ﬁ;Xz

which together form an SU(2) group (o spin), and have denoted the coupling ma-
+0-0.

trices of ﬁa by fa‘ Just as for Glashow and Weinberg, the couplings XL R are
- - s
diagonal whenever the quark masses are diagonal if and only if
(A
ol ol
= 3 (®) (2.16)

Hence all quarks of the same charge and helicity must have the same value of each

0 spin, as well as the same weight. It is then clear that the following condi-

tion must hold:

() All irreducible quark representations of G must either be identical or

QAD

else be completely non-overlapping as far as quark charges are concerned.

The cases O # B in Fig. 2c give no further restrictions. If O and B

have different charges, they cannot give a neutral current. If O and B have



_9_

the same charge [E+a’ E—B] = 0 Decause of naturalness condition (A). Then
{E+a’ E—B} # 0, but seeks to connect quarks of the same charge but different Yh,

which are forbidden by condition (B).

This completes the discussion of second- and fourth-order intermediate vector
boson exchange diagrams. The one remaining interesting possible source of flavour-
changing neutral weak interactions is the second-order exchange of some neutral

Higgs boson shown in Fig. 3. The strength of such a graph 1is

Vs
Hq .
gH’//M" (2.17)

3

where one might expect

. .
= Om (;\F\) (2.18)

-
<
A

“Haq

if

NN

Higgs exchange will therefore be of order Gg m

Fs l ‘. 2
mH 2 O { EF\' ~ {\:S'OC;(,,Q\O (2.19)

The Higgs system becomes strongly interacting if Ly > 1 TeV, so this may give
some order of magnitude upper limit on reasonable Higgs particle masses. If the
Hh coupling constant A 1is O(eg), which might seem a plausible possibility,
then

m, = Of100) eV

H (2.20)

1k . .
3,14) completely clear that flavour-chenging Higgs exchanges

. 1
It is therefore not
are strong enough to worry about. If one does, then as shown by Glashow and

. L . s
Welnberg ), there i1s the condition:

(D) All quarks of a given charge must get their masses from the same, unique
*
Higgs boson ).

#) We dismiss the alternative of an invariant mass term as impossible to realize
in realistic natural models.
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We would interpret the naturalness philosophy as requiring that the condi-

tion (D) apply for the most general Higgs—fermion and inter-Higgs couplings, and

Higgs vacuum expectation values, consistent with the GQAD symmetry properties
of the various fields. Among other things, this means that in general not more
than one Higgs multiplet in the same GQAD representation can be allowed.

Having made the routine generalization of the Glashow-Weinberg naturalness
conditions to QAD groups different from SU(2) ® U(1), we are now in a position
to study the restrictions they imply for general QAD theories. We will apply mer-
cilessly conditions (A) to (C), but condition (D) on the Higgs system we may some-

times relax.

NATURALNESS RESTRICTIONS ON THE CHOICE OF GQAD

We will now consider a weak and electromagnetic gauge group

q&% = @ C\(', (3.1)

where the Gi are simple groups or U(l) factors. Almost any group can probably
yield a natural gauge theory if sufficiently exotic charge assignments are made
for the bosons and fermions, or sufficiently bizarre fermion representations are
chosen. Therefore we will not exclude rigorously any choice (3.1) of G , but

QAD

*
rather indicate the aesthetic price ) to be paid in each case.

3.1 GQAD with a factor Gi of rank > 2

Every simple group of rank > 2 contains some simple subgroup of rank = 2, and
it will suffice to consider this latter case. We therefore examine A2 = SU(3),
B2 =C, = S0(5) and G, Condition (A) of Section 2 implies that all the root
vectors must carry AQ # 0. Because rank 2 groups have three or more roots, we
are therefore forced into roots (and hence charged currents and vector bosons)
with |AQ| > 2. The least exotic choices for SU(3), S0(5) and G, are shown
in Fig. 5. The lowest "natural" quark representation in SU(3) is shown in
Fig. 6. The weirdness of quark and boson charges rapidly grows with rank > 2.

For example, the simplest natural QAD theory with an SU(L4) factor would have

|AQ] = 3 charged currents and quarks with charges 5/3 and -U4/3.

*) See, however, the footnote on page 1.
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3.2 GQQQ simple
Since neutral currents exist, GQAD must have rank 2 2, so that we run into

all the problems of Section 3.1. However, more problems arise when G is

QAD

simple, for any representation R must have

2: Q‘& =0 (3.2)

c(en

Since we want quarks with charges -1/3 and +2/3, the condition (3.2) means

that we must use irreducible representations with dimensionality divisible by 3.

In the case of SU(3), the simplest three-dimensional representation of Fig. 6.
does not have the property (3.2). No natural SU(3) model based on a six- or
15-dimensional representation exists either, the crucial stumbling block being con-
dition (B) of Section 2. It is barely conceivable that a higher dimensional re-
presentation of SU(3) might work: if so it would contain quarks with charges

Q = 0(10). The lowest candidate representations of S0(5) and G, have dimen-
sions 30 and 27 respectively: 1in view of Figs. 5b and 5c we have not studied
them. We see no way things can improve for simple groups of rank > 2, and con-

clude that natural simple G theories are outlandish.

QAD
3.3 Ggap containing su(2) ® su(2)

If we exclude factors Gi of rank > 2, then

qQ% = [S()(Z)}N® [U(l)lwf N Mzl (3:3)

We start with N = 2: the constraints of naturalness are more difficult to satis-
fy if N > 2. 1If either of the SU(2) groups is ambidextrous, that is it acts on
quarks of both left and right helicities, then we run into a more complicated ver-
sion of the problems found by Glashow and Weinbergh). They showed that ambidex-
trous SU(2) ® U(l) models were all unnatural: the phenomenologically excluded
vector-like models were unnatural only in the Higgs sector condition (D) of Sec-
tion 2 while other ambidextrous models had more unnatural sins. Accordingly we
only consider single-handed SU(2) groups, and so analyze the two distinct cases

of SU(2)L ® SU(2)L and SU(2)L X SU(2)R.
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su(2);, ® su(2)y,

Suppose we placed some quarks in an (n,m) (n>1, m>1) matrix representa-
tion of SU(2)L K SU(Q)L. Then by condition (B) of Section 2 all the quarks in the
matrix must have different charges. Hence there must be at least n X m distinct
quark charges. Furthermore, if we take the W's acting up and down columns to
have |AQ| = 1, the non-overlapping charges mean the row W's must have |AQ| > n.

Even the simplest case with a (2,2) representation

Q=" Q =%\
]R:"% % )

of SU(2)L ® SU(2)L is rather unappealing.

If we try to put quarks into (n,1) and (1,m) representations of SU(2)L ®
SU(Z)L, then condition (C) will tolerate no overlap of quark charges between the
representations. The total range of quark charges then ranges over at least
(n+m-1) units. Also there is no communication at all between the two left-handed

worlds: possible, but uninteresting.

su(2), ® su(2)g

This gauge subgroup has been considered by Fritzsch and Minkowski8), Malg),

Mohapatra and Sidhul3), de Rujula, Georgi and Glashowlh), and others. Their mo-
dels are very interesting for phenomenology, as they introduce right-handed cur-
rents without being trapped in the straitjacket fatal to vector-like modelsl6).
These models include at least some non-trivial representations (i.e., dimension

> 2) of each of the 8SU(2) groups. As shown by de Rujula, Georgi and Glashowlh),
the naturalness conditions (B) and (C) then require all quarks to be in identical
representations of each SU(2). Suppose we put them in n (> 2) dimensional re-
presentations of SU(2)L and m (> 2) dimensional representations of SU(Z)R.
The only unnaturalness arises in the Higgs sector. We need Higgses H in (n,m)
dimensional representations & of SU(2)th SU(2)R to get my # 0. If we try a

single real representation, the Higgs quark-antiquark interaction is

hee T HTE ~ Ko W (5.5
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Let us suppose that p quarks are common to both left- and right-handed represen—
tations and that H and H+ acquire vacuum expectation values which we may as

well write as

“. 0O . [aF O
_ t [T

‘{cg - O 01> <:> , ‘lo = o ‘Ci;

o |o O |

O (3.6)
O

r O s =g q‘. O v
1._ 0 n%% O ‘(K + ‘iR O ‘"Lf‘rsaf; O <(L (3.7)

o |o o l|o/

We can diagonalize L and hence the matrix (3.7) by appropriate unitary trans-

formations on the left and right fields, but then all the generalized Cabibbo
angles amongst the first p guarks vanish if p > 1 as usually wanted. We are
then forcedlB)’lh) into more than one real Higgs multiplet, in conflict with na-

(i)

E]

*
turalness condition (D) of Section 2 ); Indeed, with two Higgs multiplets H

with quark couplings hi:), the generalized Cabibbo angles are non-zero if and

(1)

only if the hrs are not proportional, in which case the neutral Higgs ex-—

changes necessarily violate flavour conservation. Of course, as discussed in Sec-

tion 2, you may not care about the Higgs couplings. If you want to stay natural

in SU(2)L ® SU(Z)R, then you must get the left- and right-handed multiplets to
*%
have charge overlaps <1 . Such a model would have quark charges > 5/3 or
EXE)
< - 4/3, and is not wanted by anyone at the moment .

*) This conflict with naturalness is ignored in Refs. 13) and 1L4), but recog-
nized by de Rujula in Ref. 17).

. . 2
¥%) In a sense, this happens in the standard su(2);, ® U(1) model )’3), where
all qg are singlets, sO that SU(2)R is inactive.

-’

¥%%) Of course, a (d) doublet would fix the vV high y anomaly.
3/ R
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In this analysis of SU(2)L & SU(2)R, as elsewhere and presaged in Section 2,
we have assumed there are no exactly conserved quantum numbers besides charge. An
amusing model which is natural, violates the conditions (B) and (C), and has such
a quantum number is a SU(2)L<$ SU(2)R ® U(1) model of Ma. It has quark multi-

plets

(i)l_ ’(C‘S)L ) (r’)g, ’ (3)2. ) Ce, % SV (3.8)

and (1,2), (2,1) Higgs multiplets so that mo=my = 0. We can define a quantum

number 4‘( = +1 for uL’dL’CL’SL’CR’SR’ = -1 for Upsdpstpsbpsty oy, = 0 for the

W's and the Higgs. The quantum number v%[‘is exactly conserved, and the u and

,D

d quarks remain massless in the renormalized theory. Because of the vanishing
2
) (3.8)

is not of direct interest, but it does point up how naturalness conditions may be

. .. 1
masses, as well as other phenomenological reasons, Ma's original model
9

evaded.

3.k Gy,p of the form SU(2) @ [U(l)]M

. L .

As shown by Glashow and Welnberg ), there 1s no completely natural theory
with an ambidextrous SU(2) subgroup and quark charges of -1/3 and 2/3. The
conditions (A), (B) and (C) of Section 2 force us into the standard SU(2)L or

vector-like SU(2) and the latter is not natural in the Higgs sector (D). Am-—

A’
bidextrous natural SU(2)A<x [U(l)]M theories with very exotic quark charges could
. .. M .

in principle be constructed, but we assume that only SU(2)L ® [U(1)]" theories
are now of practical interest. Is there any restriction on the number M? The

naturalness conditions (B) and (C), together with the observed doublets

Go) o (90 CRL (), 7

force us into sequences of quark and lepton doublets with the same charges and

* . .
hypercharges ). Let us call the T = +3 (-3) fermions anofermions (cathofer-

mions). The SU(2)L * [U(l)]M groups are not safe from anomalies: their absence

*¥) Unless we want fermions differing in charge by > 2 from those seen so far.
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restricts the possible representation content. It is well-known that in the stan-

dard SU(Z)L ® U(1) each (coloured) quark isodoublet cancels against an (un-

coloured) lepton isodoublet. The anomaly condition is
P
Z;T'sL Q =90 (3.9)

which is dbeyedlB) by the observed doublets if and only if there are equal numbers

of (coloured) guark doublets and (uncoloured) lepton doublets. Because of their

non-zero mass, we are then forced into equal numbers of right-handed anoquarks

(q = 2/3), cathoquarks (Q = -1/3) and catholeptons (Q = -1). Our only resi-
dual freedom is in the number of right-handed massless anoleptons (neutrinos).

We are therefore led to consider the following possible fermion structures in

su(2) & [U(l)]M

1
((h> ) %AR "lci’» l (,C> ) ch_ (3.10)

{
T ﬂ>
({C>L N ?ﬁp‘ b "CR b} ('C/{_ 3 (—AR 7LC,Q- (3.11)

though the number of right-handed neutrinos is in principle arbitrary. We now ask

what values of M can have their anomalies cancelled within the representation
structures (3.10) and (3.11).

Our gauge group has the diagonal generators T3L’ Q = T3L + Y/2, and possibly

other hypercharges which we denote by Y'. The general set of anomaly conditions

STE co B BTV @ SEY o ®
2 THe-0 © LR © SR,

3 Ta=0 © SAM-R)0 ) 5(rmE-red)-o
(®

(3.12)



- 16 -

Of these conditions, (3.12a and g) are trivially satisfied because of the repre-
sentation contents (3.10) and (3.11). Condition (3.12b and c) are already obeyed
through the usual charge assignments, while condition (3.12e) is equivalent to
(3.12d). The only remaining conditions are therefore

B N (\ Gl \/E )
N, — v & -
[/ = O (ftv) \.)Q (,/ IK)‘R-

V=0 ©

s

¢
i
3.13)

.

2 ~ SyivR iR (
SEE-%)0 © SO0 @

which we try to satisfy using the representations (3.11). A little algebra shows

that the only linearly independent assignments of hypercharges to the objects

(zﬂ,CL ) L“ecu ’ T“nﬂcmt% ’LCQ

are
y=(3 5 =1, %,3; 0,-2 (3.1%)
or
\?/";(O’O’\’—"\'“t> (3.15)
or

\/2—:. ( O) O 3"?;5 ) \’-— (35)3> (3.16)

%
Of these possibilities ), (3.14) is just the conventional hypercharge of SU(2)LC©

U(1), and is the only one of the three which does not need a right-handed neutrino.
The solution (3.16) looks pathological, and certainly could not be embedded in any
grand unified theory involving other interactions. We are then left with (3.15)

as the only new solution**). Thus, unless we introduce hypercharges which are

zero Tfor fermions but non-zero for Higgs multiplets, we can have at most M = 2:

%) A theory with both vyl ana Y2 simultaneously would not obey all the con-—
ditions (3.13).

#¥) Notice that it has the structure v« T3g, which couldg) be part of an SU)2)
subgroup. This analysis also suggests that not more than two SU(2) groups
can be used in a gauge theory exploiting known fermions.
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LS U (3.17)

Thus our chain of plausibility arguments based on the naturalness requirements ~

(A) to (D) of Section 2, and on the exclusion of pathological model leads S

us to the two candidates (3.17) for GQAD' There 1s however an unaesthetic*) way

to incorporate SU(2)L Oi'U(l)M with arbitrary M, by choosing a family of M
hypercharges Ya,B = oY + BY' with 0,8 arbitrary real numbers. To each hyper-
charge we associate a boson field Za,B which gets an arbitrary mass Ma,B from
(for example) a singlet Higgs field ¢. In the unbroken version such models collapse
degenerately into SU(2)L @ U(1) ® U(1); they are distinguishable from the latter

only by virtue of the symmetry breaking in the Higgs sector.

NATURAL QHD THEORIES

Having pursued the naturalness conditions for QAD theories, and found just
the two plausible theories (3.17), it is reasonable to ask how they can be embed-

. e . 8) . ..
ded in unified QHD theorleST)’ ).29) of the strong, weak and electromagnetic in-

teractions.

L.1 The rank of Gpyp

We assume that the strong interactions are described by QCD, and so by a
gauge group SU(3)C with rank 2. The GQAD groups (3.17) have ranks 2 and 3.
Clearly

Should the equality in (4.1) be realized? Candidate additions to the set HQHD
of mutually commuting linear operators in GQHD are objects with non-trivial trans-—
formation properties under both colour and flavour groups,i.e., operators of the
form

—_ < -
O = 18, %3,3\““1 (1.2)

~

#) See, however, footnote on page 1.



- 18 -

where F 1s a matrix diagonal in helicity and flavour space but not necessarily
proportional to unity. We first ask whether F can discriminate between differ-

ent QAD isodoublets, such as

— [ _ c
When we allow an arbitrary quark mass mixing matrix, such operators O will in

general become non-diagonal in flavour space, for example
— c
O » Uv'l"p)\s,sc'

Fourth-order diagrams involving the combined exchange of a boson V coupled to 0
and of a gluon as shown in Fig. 7, will then generate flavour-changing neutral in-
teractions. The bosons V are presumably superheavy, so that such flavour-changing
neutral interactions are very suppressed. If V exchange is of order g2/m$ = G,
they would tend to be of order GV astrong' To exclude such flavour-changing neu-
tral interactions needs a new "supernaturalness" principle for which there is ab-
solutely no phenomenological justification, though it may seem to be an aesthetic*)
extrapolation of the previous ideas of naturalness. If we make this important as-
sumption, then the only linearly independent non-trivial forms of F that we have
to consider are T3L’ T3R’ and YL - YR. It is then easy to see that the triangle
diagrams in Figs. 8a and 8b will be anomalous, given the representation contents
(3.11) and (3.12). So F should be a unit matrix in flavour space. The "super-
naturalness" assumption therefore implies that the equality is realized in Eq. (L.1).
We now consider only rank 4 {containing (3.10) and SU(2)L ® U(l)} and rank 5 {con-

taining (3.11) and 50(2), ® [U(1)F) as possibilities for Gy,,.

4.2 Rank 4: 8U(5)

7), the only possible rank 4 @& is

QHD
SU(5). It breaks down into SU(3)c ® SU(2)L ® U(1). The fifteen left-handed

As was shown by Georgi and Glashow

fermions

R)Y;B RAYIB —RY B —RY8
1“ ) ?c ) A ) QCL

L L L

5 (-Al_ )

('CL‘ LC.L- (L4.3a)

*) See, however, footnote on page 1.
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are put into a 5 + 10 reducible representation of sU(5)

[0 @& -4, -1 -¢
_ _ _ ‘-*S =R
@, ) L O W sk -1
L7 -y e 6 e | (4.3v)
qﬂ -7'“ O "ZR -Yc
8 -
< 4 1, O -L
% U T T o/]_

11)

If we introduce, following Georgi, Quinn and Weinberg .

Q = ‘EL"’DTO

(L.k)

where To is a normalized generator of SU(5), then the representation content
(4.3b) implies that D2 = 5/3. The neutral weak interaction mixing angle 0 de-
. . 2

fined so that the neutral ZO boson couples to T3 - sin~ 6Q then takes the

valueT)’ll)

] -

) R =2
S © = \4p? 2 (h.5)

at M the grand unification mass. An arbitrary quark mass matrix can be obtained
with just one Higgs multiplet. As pointed out by Georgi and Glashow7), if the
Higgs is taken in a 5 multiplet, then

W\%Q(N\) = M(,C (M (4.6)

where we have indicated explicitly that the relation (L.6) holds at the grand uni-

fication mass where SU(5) is a good symmetry. Equation (L.6) implies that



Me My o () M (W)

RO, - [ e e e \

WL (W) ML D
My (.?V\} <t e (M) (4.7)

where T 1is the charged heavy lepton apparently discovered recently, and b is

the conjectured related third charge -1/3 quark.

The relations (L4.5), (4.6) and (L4.7) are not exact at a present energy scale

U, Dbecause below the grand unification mass the SU(B)C, SU(2)L and U(1)
coupling constants 83> & and g, are renormalized differently. Georgi, Quinn
*
and Weinbergll) showed that ) (where o = e2/hw, o = gi/hﬂ):
gy |+ 2D X4
S, ‘&'\,“\\) = = (5.8)
|+ p*
while
) ‘ .
e (MY = S (- ()
IL_A.: :Zl(l‘\".:}b )C’& S(f’q s (4.9)

Their analysis can be extended to the renormalization of the mass relations (L.6)

and (L4.7) by using the anomalous dimension

75:'5‘5;

“rn — (L.10)
PAiY
of the mass operator in QCD. If there are ND sets of fundamental fermions (3.10)
then
¥l
1) X )
(-M. _.._..qf_.(l o --‘i:z'—-" (N\, DAL
W~ N Lol b.11
MLQ(I’Q ANy s Hm ( )
where O, is the SU(5) coupling at the grand unification mass M:
— .
oy = gGUM/hﬂ.

%) Higgs multiplets could in principle contribute asymmetrically to the renorma-
lization of the SU(3), SU(2); and U(1) coupling constants, but their ef-
fects are negligible for SU(5) with a single 5 Higgs multiplet.
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“LE = “—%f - zlbl Lht (Jt:f) ({:4,?‘?;>
Deom 2, (W L M ' (1.12)
The bi are defined by
2> . = ~ 3/
M= N (,"Q = f, ~ {T;, 3‘.‘ (ﬂ) §““ \‘5; << (4.13)

where

_ Np _ _2 T2z _4 - -1 _4
b= e 2%c T LR LN ISR S L N TR

and the SU(2)L Higgs doublets in the simplests’Y) 5 representation of SU(5)

11)

make a negligible contribution. A lower limit on the choice of M 1is provided

by the limit of " 1030 years on the proton lifetime T expected to be

proton’

T = O(-hg?" ) (k.15)

*
in this model ). An upper limit on the choice of M follows if we demand that
Og (W = 10 GeV) < 0.3 as suggested by the success of asymptotically free pertur-—
bation theory. In Fig. 9 we have plotted

SO & 00 el 60 ™ Whe) P Tpoeon

as functions of M, taking u = 10 GeV. The constraints mentioned above allow

O(SX\O'9> eV £ M £ O(i™) GeV (4.16)

*¥) The proton decay rate can always be suppressed by a Cabibbo rotation, but this
seems an unreasonable ploy.
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. .o . 1
which excludes grand unification at the Planck Mass "~ 10 ? GeV. For the range

(4.16) we find

salO(m) ~ (019 b 020) | K (1) 305, (4.17)
o Mq (M /WlLC (W) ~ (25 b 45)

Experimentally, sin® O ~ 0.3, so that SU(5) may have problems with this quanti-
ty, but the values of as(u) and the quark-lepton mass ratio in (4.17) seem quite
respectable. We can use (L4.17) to predict the mass of the conjectured third charge

-1/3 quark b, if a heavy lepton T with mass v 1.9 GeV indeed exists:
M, = 4 © 1) Cev (k.18)

This prediction rests on the naturalness condition that only a 35 Higgs represen-—

tation be responsible for giving masses to fermionms.

4.3 Rank 5: S0(10)

The only rank 5 groups which are simple, or admit a discrete symmetry and so
can have a unique coupling constant, are [SU(2)]5, s50(10), S0(11), SU(6) and
SP(10). Of these possibilities, [SU(Z)]5 has no SU(3) subgroup, while S0(11),
SU(6) and SP(10) have no 16-dimensional representations suitable for the funda-
mental fermions (3.11). SO(11) has an 1l-dimensional "vector" representation,
55-dimensional adjoint representation, and 32-dimensional "spinorial" representa-
tion. The corresponding numbers for SP(10) are 10, 55 and 32 respectively.
The irreducible 15-dimensional representation of SU(6) has the unacceptable
sU(3), ® SU(2) content (3,2) ® (3,1) @ (3,1) ®(1,2) ® (1,1). This leaves us
with the S0(10) group of Fritzsch and MinkOWSkiS), and of Georgi and Glashow9)’lo).
The tensor analysis of S0(10) in terms of fundamental spinors is set out in the

Appendix. The irreducible 16-dimensional representation of S0(10) can be used

for (3.11) as
& %.B R7\® —RB —eYVR - -
{ I
(TA > CIC ; (A,‘-c A RN 1. -La )LJ (4.19)

b} A

which has a decomposition

1

"

(4"?- "‘) © (2(‘ i )i 2) (4.20)



into SV ® SVE).® SVQ@)e ,or

into

SulE), ® Sulk), @ SV @ UL

12)-1k)

Therefore the QAD subgroup of S0(10) 1is in general SU(2)L ® SU(2)R ® U(1)
) the

rather than SU(2) ® [U(l)j2 (see also the Appendix). In the SU(5) model
neutrinos were necessarily massless because there were no right-handed neutrino

fields. In S0(10) the neutrinos can in general acquire masses which can be made
finite and calculable in the Higgs systems discussed below. The multiplet struc-—
ture of Refs. 12), 13) and 1L4) with some massless, some massive anoleptons can be
achieved by introducing extra SO(10) singlets, but at the expense of naturalness

conditions (B) and (C) being violated in the lepton sector.

Chains of symmetry breaking for SO0(10) can be found leading to the full

su(2), ® 8U(2), ® U(1) or the restricted su(2), @ :U(l)j2 or SU(2), ®U(1) forms
*

for GQAD being effective at low energies '. As an example, we consider the break-

ing scheme of Ref. 1L), where the neutral weak mixing angle is defined by the pho-—
ton field being

P L sene (Wl +\NZR)+&?§—2§ x* h 22)

' »
[

with the gauge-covariant derivative

: M
D’AEBF‘-‘- ¢ sM\G:( “’W T «r;.r-*/)(g (4.23)

UO3

%) The Higgs systems discussed below do not admit a breaking to SU(2) ® [U ]2

for GQA unlike the scheme of Ref. 8).
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The coupling matrix TO is normalized so that traced over the representation

(4.19)

T (TF) = T(Ts) =Te(T5) -2 (4.28)

in which case D2 = 2/3. At the grand unification mass M

PSR

32 (bﬁ\) = l = 5?%26

9, (M) Dsi®

so thatlh)

) . 3
. 2 B -
St 9 = 2 -
+
2+D =2 (4.25)

as in the SU(5) model. To give the intermediate vector bosons realistic masses
requires at least one Higgs multiplet in a (1,2) representation of SU(E)L ®
SU(Z)R. The simplest way of finding such a Higgs in S0(10) is in a 16, in
which case there is also a (2,1) Higgs which could acquire a vacuum expectation

value. We assume this can be neglected as a first approximation.

*
Higgs multiplets which can ) give masses to the fundamental fermions in

S0(10) are those in 16 ® 16:

b® W = o 22o@d 26 (k.26)
which have the ©SU(L)® SU(2)L ® SU(2)R decompositions

o = (e,u)® e -

o = (@LDE (L) @ (6,30
® 6,13 ® (05,2,D)® (Hh2,2) \f (k.27)
B’.é = (@,),\3@ (l0;3,\)@(ﬁ>)|)3)®(16,2,1)
J

%) See the Appendix for an explicit construction.
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Since

-~ ~.

RYE (g™ ® 1Y
?Q 3L¢*/ and L e j t

form U's of SU(4), it is clear from the SU(4) representation contents of the

Higgs multiplets in (L.27) that we get the mass relations

v Iy = o, Y WL (W) =, (WD) N
'19 i / L“ kS ' 3 :(C~ ! LC( (4.28)

if only the 10 contributes to fermion masses, and

Vi *\_::':fa I ) \
I ({ﬂ\“ } Y‘L.LP' (N , M'QCLN\X} Sm(c(N\\) (4.29)

if only the 126 contributes (see the Appendix). If just the 120 gives fer-

mion masses,
Mys My s My oM = Mot Mgty ot = M Mmoo (4.30)

and the Cabibbo angles are zero, even though there are two complex (2,2) multi-
plets because their coupling matrices are proportional -- see Section 3.3. Nor
are there Cabibbo angles if only one of the 10 or 126 representations is re-
sponsible for the fermion masses. The 10's and 126's have antisymmetric coupl-
ing matrices (see the Appendix) and so would by themselves yield at least some de-
generate masses. Taking more than one 120 but no 10 or 126 cannot give the
desiredlh) pattern of left- and right-handed Cabibbo angles. We conclude that
unless the right-handed currents are suppressed very strongly by breaking the
symmetry differently from Refs. 12), 13), 14), and giving the W§ very high
masses, the observed fermion masses and phenomenological constraints on mixing
angles require at least one 120, and one 10 or 126 Higgs representation to
contribute. These and the 16 necessary to give intermediate vector boson
masses, to0 say nothing of those connected with superheavy bosons, motivate

0)

Glashow'sl characterization of the Higgs system of S0(10) as baroque. The
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S0(10) model is even more unnatural in the Higgs sector than are the plain
su(2), ® su(2), ® U(1) models discussed in Section 3.3.

The relations (L4.25), (4.28) and (4.29) apply at the grand unification mass,

and their renormalization at present energies can be calculated using the ideas

of Georgi, Quinn and Weinbergll). In this model sin2 6 at present energies is
WO - o 2Nt
X T 1[\*" .
Sim, (P‘) 2. +3D G(s (M.) (L4.31)

where D2 = 2/3, and we have again neglected the possible effects of Higgs multi-
*
plets ). The renormalization (L4.31)of sin2 8 is somewhat less than in the

SU(5) model: in the limit a/as - 0:

- 2 ) .2
Sta, 9( > - SM»S‘ 5 =
so) . & so() ¥ (4.32)

The grand unification mass M 1is given by

b ('M’) - lt(2+3D )o([l B 1+}>’L)3 (4.33)

Comparing (L4.9) and (L4.33) we see that M tends to be larger in the 50(10) mo-

del: as u/as + 0:

b (5

\ S5 T _,)\ 31
K lsus) S0(19)

220t (4.3k)

We have not calculated any mass renormalization relations, because neither of the
conditions (L4.28), (L4.29) can be realistically imposed. We have plotted in

. .. .2 .
Fig. 10 the quantities sin® 6(u), us(u) and Tproton as functions of M, tak-

ing W = 10 GeV. We notice that in contrast to the SU(5) model there is no

squeeze between proton stability and realistic values of sin2 8(u) and us(u).

19

We can easily take M to be the Planck mass of &~ 10" GeV, in which case

%) We have calculated their effect on (4.31) to be < 0.01, despite the plethora
of multiplets discussed above.
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5?0 () ~ (029 1 030), % (WO 0P OD
o Tpakon ™~ I yeass
where the uncertainties arise from the Higgs multiplets. Comparing the SU(5) re-
sults (L4.16) and (4.17) with the S0(10) results (4.35), we find the S0(10) may
fare better. The results (L.16), (4.17) and (4.18) show the price to be paid for

complete naturalness in QHD theories.

DISCUSSION

In this paper we have pushed to its 1limit the possibility that the neutral
weak interactions may naturally conserve all fermion flavours to O(G?). Pheno-
menology does not force naturalness upon us —— indeed there are various indications
that weak interactions may not be completely natural —- but it is a powerful tool
for organizing our thoughts about gauge models. Gauge models have so much free-

k)-6)

dom that we may need an organizing principle to regulate our imaginations.

In Section 2 we extended the naturalness conditions of Glashow and Weinbergh) to
general weak and electromagnetic gauge groups. In Section 3 we showed how, modulo
the existence of a new exactly conserved gquantum number or IAQI > 2 charged cur-
rents, the only completely natural anomaly-free gauge groups were SU(2) ® [U(l)]M.
Barring inelegant tricks with the Higgs sector, only M =1 and 2 were completely
natural. In Section 4 we studied extensions of these natural theories to include
the strong interactions, studying the possibility that the rank of the super unifi-
cation group should be 4 or 5. The only possible groups were SU(5) 7 and

SU(10) 8)_10). If it is made natural by using a unique five-dimensional Higgs mul-
tiplet, the SU(5) model needs the third charge -1/3 quark to have a mass

0(5 to 10) GeV. If the SU(5) grand unification scale is chosen to make the pro-

30

ton lifetime obey the present limit of 10 years, then the neutral weak inter-

action mixing angle has sin2 0 < 0.2, which is on the verge of inconsistency with
present neutral current data. The S0(10) model is even more Higgs unnatural

than the SU(2)L & SU(Z)R ® U(1) group which is its maximal weak and electromag-
netic subgroup. Also, it has no quark-lepton mass relations. However, it gives
sin2 § ~ 0.3 which is nicely consistent with present data. If we choose the
S0(10) grand unification mass to be the Planck mass v 1019 GeV, then at present

. . Ly
energies ~ 0(0.1) and the proton lifetime is O0(10 ') years. If so de-

0Ls’crong
sired, the SU(2)R subgroup of S0(10) can be postponed to arbitrarily high ener-

gies, so that the low energy wesk and electromagnetic gauge group is essentially

. . 1L
SU(2)L ® U(1): this may not be satisfactory phenomenologically ).
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Based on our results, we can make a few remarks about some gauge models in the
literature. Theories based on a simple weak and electromagnetic gauge group such as

SU(3) cannot be made natural without introducing exotic charged currents and compli-

. . C 8
cated fermion representations. Existing SU(3) models ) are not natural. Models2o)’2l)

exist which are based on SU(3) ® U(1), which generally violate naturalness con-

dition (A) by having flavour-changing neutral currents in the symmetric Lagrangian.
. 2 . .. .

The recent model of Lee and Weinberg 1) also disobeys conditions (B) and (C): this

does not however yield more violation of naturalness because they have a new abso-

lutely conserved guantum number, analogous to that introduced by Mal2). Of models

based on SU(2). & SU(2)R ® U(1) 12)_lh), the only one which is completely na-

tural is one due to Malg)

, which has a new exactly conserved quantum number and is
forced to have u and d quarks exactly massless even after renormalization. The ob-
served low masses of the u and d quarks make the Ma model rather appealing, and
models of this class may repay further study. The phenomenologically attractive

su(2), @ su(2), 13)

and Glashow are natural as far as single and double intermediate vector boson

® U(l) models of Mohapatra and Sidhu and of de Rujula, Georgi

exchanges are concerned, but their neutral Higgs couplings necessarily violate fla-
vour conservatioan). In view of the unknown and possibly large masses of the neu-
tral Higgs bosons, it is not clear this Higgs unnaturalness is a serious problem.
Turning to SU(2) ® U(1) models, it was pointed out in the original papersh)_6) on
naturalness that an ambidextrous SU(2) group violated naturalness in tae Higgs
sector, though the phenomenologically disfavoured vector-like models could be na-
tural for vector boson exchanges. As for SU(2)L ® U(1), Poggio and Schnitzer22)
have emphasized that the naturalness requirement is not very sensible if fermion

masses are allowed to approach the W and Z masses.

Turning to super-unified theories including the strong interactions, the class
of models based on exceptional groups23) is generally unnatural because such groups
contain SU(3) ® SU(3), one SU(3) to be identified with colour, while the other
SU(3) is part of the weak and electromagnetic gauge group, so that the problems
of Section 3.1 arise. The original SU(5) model of Georgi and GlashowY) can be
made completely natural by a suitable choice of Higgs representations, but the re-
lated SU(6) model of Abud et al.zh) violates naturalness conditions (B) and (C)
(connected with W and 2 exchanges) as well as needing unnatural Higgs represen-

tations.

Since pursuing naturalness to the bitter end is such a theoretical strait-

jacket, it is sensible to seek ways of relaxing the assumption. Possible ways to



_29_

go might include allowing exotic quark charges and IAQI > 2 charged currents.

1k4)

Alternatively, one might abandon the naturalness restrictions on Higgs boson

couplings, which are of dubious phenomenological relevance. Another possibility

2), and

would be to pursueel) the line of the SU(Q)IfgsU(E)RéﬁU(l) model of Ma'
have an extra (approximately) conserved quantum number. It should be remembered
also that flavour conservation is on a different footing in the quark and lepton
sectors, since in the latter case muon number may be conserved to a good approxi-
mation because the neutrinos are essentially degenerate in mass, as seems to be
the case for ve and vu. Since applying naturalness to the quark sector alone
severely constrains the choice of gauge group, perhaps the easiest freedom to
exercise is in the choice of lepton representation content. As for constructing
grand unified theories, higher rank schemes violating "supernaturalness" certainly

warrant study. Even if naturalness is not an absolute principle, and is broken in

one of the above-or-other-ways, we hope it may be a useful starting approximation.
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APPENDIX

TENSOR FORMULATION OF S0(10)

The spinorial representation of S0(10) has the generators represented by

generalized © matrices

[?S;,?fj-] = «GE}.“ (L,J:),.,.j;o) (A.1)

I3
{

20
where the generalized Y matrices obey

1683 =25 lag=nm (n.2)

k1
overlapping indices, so we may diagonalize five generators simultaneously, for

From (A.1) and (A.2) it follows that Oij commutes with © if there are no

example:
- - vl
O’?\ - 6‘1’ 034, C’-S6 S J?g N G‘%IO (A.3)
. . . 2 .
which have eigenvalues *1 since oi. = 1. The eigenstates of Odiag therefore
span a space of dimension 25 = 32, However, we may define a "chiral" operator

'ZS,X -t 1;('60 = TTG'{)WL& (A1)

s

11

which commutes with all the Oij' Therefore we can divide the 32-dimensional mul-

tiplet into a 16 and a 16:

- - - e
(o5 L0

-+ T

2

corresponding to two irreducible representations which are inequivalent and con-

jugate to each other. If £ transforms as



(A.6)

then the conjugate representation transforms as

53 |

I E .
- -l A C':
S +

LA;'\ ’

N
AN
.

[N

(A.T7)
such that

where we have chosen the 0's Hermitian. If we introduce a unitary matrix Ga

- 0.
%3 (A.8)
then
=87
transforms as
- - -
o < % : ~
Z ‘u(ﬁ ~ T 2T o\ 3
2% = C. 3, = ukO}; 3 (4.9)
From (A.4) and the defining equation (A.8) we have

- T

@ ?3' (6 = -8 = - (A.10)
A x

because the diagonal o's are real and symmetric. Therefore {ig flips chirality,

and we can identify

(A.11)
Using curly letters for 32-dimensional quantities, capital letters for 16-dimension-
al quantities, and small letters for eight dimensions, we choose:
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B8 -7 %)
o ey v N Lo —Sﬁj
’ \‘3
z . )\ _ e \‘ (‘ (A.12)
5.7 \e } ; o7 eV j

We classify the 16 left-handed fermions in the representation 16 according to

e- () 8 (%% s 090, ,L,}

3/; ) P i (A.13)

H

55T:(?(§ »‘7;»‘?5;‘7: %: ‘Z (m )a

where dps 9o lA’ lC are anoquarks, cathoquarks, anoleptons (neutrinos) and

catholeptons (charged leptons) (3.11) respectively, and ElA etc. are the cor-

responding antiparticles arbitrarily mixed with respect to charge-degenerate fla-

vours. We may then identify:

o} - 2(T3L‘\'T3R)

¥3
034 = Z(T; 'T;BR)

O;g = ZT;'- Y+YC

qw 2\], +y (A.1k)

where Y is defined by Q = Tg + Tg + Y/2, Tg and YC are colour SU(3) ma-

trices, and T3’ are generators of the left and right flavour isospin groups.

To construct the Higgs couplings we must find the irreducible representations

in the product 16 ® 16. Writing the product of two spinors in a matrix

ES §: = N (A.15)
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we may expand Héi, in

space. A choice is

el Nasmy

where

o
Lowr v

il
4

—
. o)
\
-
i
R
~t .
t
i
-

&’ TACI L AEITS
O I potitkels

Then if we write

. oL
m - 2/1) nﬂig,l_ r ‘58

o

from the transformation property
T\ - f‘\‘ "?T -L\?—pT T
- B . o
5(3.30) - iNg 33 « W3
we have, using (A.8)

SN = 2 N 2 M, f!:UQJ-,Y“"i(_ B

It follows that the TI%

terms of a complete set of matrices in the 32-dimensional

(A.16)

(A.17)

(A.18)

(A.19)

of fixed tensor rank form irreducible representations.

Furthermore, because of the properties (A.5) and (A.10), the representations in-

cluded in 16 ® 16 (and in 16 ® i@) have the property
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{F“ > IS:X‘& =0 (A.20)

while those in 16 ® 16 have the property

[TOL , 75';(:( =0 (A.21)
Since Xx {‘-5} _ {‘-5}

only half the {r®} are linearly independent. Thus we have the product decompo-

sitions
b @] _[l] o)0o) 5 06
o) b |  |mz
= {(‘*‘%K%@ {(\tXxW’}e{(\d%)r 5} (.22)
and

Lk = 1 @ 4% & 2

® ‘{GCJ-} ®© {Y‘*} (A.23)

W
—

with the appropriate chiral projection operators.

Scalar Higgs mesons can therefore belong to the odd chirality representations

10, 120 or 126. Since m‘f transforms as i*g, the Yukawa coupling
Tt * >7 x
I -3TM3+he=EMIBTE « he. oy
Y oL
is invariant. If we now define the matrix
- \lB © | ©

then (A.2L4) may be written as
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~
iy = ém*g ET“? + h.c. (A.25)

with

*
The non-vanishing expectation values <ma> # 0 must be such that the matrix

08(1 =er® is diagonal. Since we have
) _ o _
it follows that

[er , 091 = 0O (A.26)

Then ﬁ must be formed from even rank tensors r% which can be constructed

from products of Gij which are of the form:

S‘:' O +
O, = y *  S=9S (A.27)
Y ©o -5

Those which do not mix fermion and antifermion may further be reduced according

to

Y
]
r\)\
¢
*
~

i\ o "’5\‘.5 (A.28a)
PR
Sh ’5;8 (o]
. = *®
4 o ,S‘:d (A.28b)
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where we denote generators as "axial" (A) or "vector" (V) according to the

commutation relations:

i \f

a

{-.._-

Lme

(A.29)

~
/
H

{-¢
i

o=
S

-0

M
gl C 0

M

§

‘
[

The attribution (A.13) implies that the SU(4) generators (i,j =5, ..., 10)
which include colour SU(3) are of the form (A.28a). Of the diagonal generators

L—TR) M+ am " " .
O3h = 2(T3 3 is "axial" and the others are "'vector . Then since
\' . v
(" 0] = ¢
- v
[oh 0P = ©

v v - - A
rg”, "y = ¢

and

we may choose O, as "axial" and O: 5 i,J # 3, as "vector". Then writing

Vanl 0
’\‘M = € Jﬁ/‘x (A.30)

we see from (A.29) that the r (A.30) commute with all the generators except
O The only such matrices in the 10 representation are Y3 and v), which
moreover commute with all the Gij : 1,5 # 3,4. The only identification possible

[ see (A.29)] is therefore

3 (A.31)

= A = *L

- ti ) \5:+ fi(:réﬁ'
which correspond to the two neutral components of the (1,2,2) multiplet of
Su(Lk) ® SU(2)L ® SU(2)R displayed in Eq. (L.27) of the text.

For the 120 representation, we have (4.27) two (1,2,2) multiplets with a
total of four neutral members. From the representation (A.30) they are seen to

be



3

rS\?. - 7‘(3 0"2_ - € g )
3 | e

r4:!7. = Gl 7o c 034012

Y2

_ C } (A.32)
. = ¢
V:Y ) “{'6034;[:

J

where tf is the SU(3), singlet amongst the SU(Lk) generators. Finally, for
the 126 representation [see Eq. (h.27)] there is one (1,2,2) and we get

S s §
‘-;lly N 60_‘7—1 K r;n.y - "’60_340}2 (i (2.33)

From (A.24) the mass matrix is now given by

Lo

g

2 ‘<M:> ?sToéQ/W—i + h.c.

o

jl

o

S <ml> ED'F «h.c. :

where

), (0B (3D [ e

For the diagonal generators S in Eq. (A.27) is real and diagonal with Sl2 = S3h'
Then, since 93, is "axial", D

is of the form

A © _(d o
D:(od, Fo ) 126 3D'(o~d)5wl'2‘g

(A.35)
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Thus we obtain mass matrices of the form

€ T -
«\me Ve Sa,lr FQ Dd.\:‘r v heo

= Uy 30:,(, (_hmolgh‘i .S'Q()x‘nb) v hoc. (A.36)
= U k“ok(%f&xg*fﬂ)gi’ 4 h.c.

where we have denoted vacuum expectation values of Higgs fields by Vo used the

it

indices a,b for different 16 fermion multiplets, and anticommuted fermion
fields to get (A.36). If only the 10 contributes, "colour SU(L)" is conserved
and the mass matrices yield [see also (h.28)]

» Me. 7 M (2.37)

ch = ":SM‘«. (4.38)

since the matrices (A.33) transform as the lSth member of a 15 of SU(4). The
minus sign in (A.38) can be trivially removed by an appropriate chiral phase trans-—
formation. Finally, if there is a single (complex) Higgs multiplet contributing
to fermion masses, the coupling constant g:b in (A.36) is independent of 0. As
a consequence the mass matrices for ano- and catho-quarks and leptons will all be

proportional, giving

- 1 N Wi T - A ;M N 2 4 23 = A O 21 < W 1Y —_—
mw, nlot ¥ ‘VQ nae’ A c < v lv\r,m l"ut .wt(r.)v‘yt, "7_{ = --- (A.39)

Note moreover that if only the 10 and 126 contribute, then the mass ma-
trix is antisymmetric in the multiplet (a,b) space, whereas if only the 120
contributes the mass matrix is symmetric. For any complex matrix G we can find

unitary matrices U and V such that
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VEGL - M

is real and diagonal. U and V are the matrices which diagonalize the Hermitian
matrices G+G and et respectively, and if there are no degenerate eigenvalues

they are unique up to a phase transformation on the eigenvectors. Since M = MT

by hypothesis, if G = GT then

so that V* and U must be the same up to a phase transformation. In our con-
text this means that if representations 120 alone were responsible for fermion
masses, then the left- and right-handed currents' generalized Cabibbo angles would
be related; in particular the coupling (u d')R cannot be made arbitrarily small.

16) with SU(Q)R playing a significant phenomenological r61elh)

This is inconsistent
at present energies. If 10 and 126 representations alone were responsible for
fermion masses, their antisymmetric couplings would generate some degenerate fer-—
mion masses. Therefore a realistic Higgs structure must contain at least one 120
representation and at least one 10 or 126 representation if it is to give a

realistic fermion mass matrix.

Further, we observe that since the % corresponding to non-vanishing Higgs

. . L
vacuum expectation values commute separately with T3 + TR and Y, only the
"axial" neutral vector boson coupling to Tg - T3 can acquire a mass through the

. . . . L
Higgs multiplets in 16 x 16, and the charged bosons coupling to T  and TE

will be degenerate. For this reason an extra Higgs multiplet 1s necessary, the

simplest choice being a 16 spinorial representation.

Finally, let us remark on the stability of the mass relations, and the pos-
sibility of massless neutrinos. The neutrinos will be massless before renormaliza-

tion if the vacuum expectation values point in specified directions in SO(10)
10 . 10
space (for example, v, = 1iv ).

3
fected by infinite renormalization. However, as in SU(5), the zeroth order mass

This and other mass relations will not be af-

relations will receive a finite renormalization due to the fact that the Higgs sec-
tor necessary to give appropriate masses to the W bosons require a different
symmetry breaking pattern. We have not determined whether or not the condition

for massless neutrinos can be phrased in terms of a symmetry which could be re-
spected by the latter Higgs sector, in which case neutrinos would remain massless.
An amusing possibility -- limiting the unpleasant abundance of Higgs fields --
would be that only 10 contributes, but that the finite fermion mass renormaliza-

tion produces an acceptable mass pattern. In addition to relations (A.37), if
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there are only three fermion 16-plets, the antisymmetry of the mass matrix re-
quires one massless fermion of each type (u, d, e, Ve ?) and the other two de-
generate in zeroth order. Unfortunately Higgs in 10 and ;é leave some vector-—
like lepto-quark bosons massless, so another high multiplicity representation must
appear. One can also guarantee some massless left-handed neutrinos by introducing
left-handed neutrino singlets which mix with the fermion 16-plet via the Higgs
16-plet. However, this will in general introduce a Cabibbo angle into, for ex-—

ample, the (e—ve) coupling, where ve is a mass eigenstate.

L
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Figure captions
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Second-order neutral vector boson exchange diagram.
Fourth-order diagrams involving two vector bosons.
Second-order neutral Higgs boson exchange diagram.
The most straightforward triplet quark representation of SU(3).

The root vector diagrams for simple rank 2 groups with the least

charged currents consistent with naturalness.

One of the first triplet quark representations of SU(3) consistent

with naturalness.

Fourth-order diagrams involving a gluon and a coloured and flavoured

vector boson V. .
Triangle diagrams giving anomalies in grand unified gauge theories.

The neutral weak mixing angle 60, astrong’ md/me and the proton

lifetime T plotted as a function of the grand unification
proton

mass M in SU(5).

The neutral weak mixing angle 6, a and the proton lifetime T
s proton
plotted as a function of the grand unification mass M in S0(10).
The values of sin? 6 and o, may be slightly larger if the Higgs
multiplets contribute asymmetrically to coupling constant renormalia-

tions.
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