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When the interaction potential of a ferromagnet decreases like r ~

s

, we prove that two-point correlations

(i) do not decay faster than r ~° and (ii) decay at least like r ~* at large magnetic field and, moreover, at

least like r —¢2*

, where v is the space dimension, for any nonzero magnetic field and arbitrary temperature.

Extensions of the latter result to n-point correlations and to other systems are indicated, and a central-limit
theorem, or Gaussian limit of block-spin distribution, is mentioned for slowly decreasing ferromagnetic

interactions at any nonzero magnetic field.

I. INTRODUCTION

The main results on the decay of correlations in
classical statistical mechanics have been obtained
so far for finite-range or exponentially decreasing
potentials. It has been proved in a number of cases
that the correlations decay exponentially with dis-
tance in pure phases, and it is reasonably believed
that they decay exponentially arbitrarily close to
critical points with a rate of exponential falloff that
tends to zero near these points.

Much less information is known in the case of po-
tentials that decrease only like an inverse power
77 of the distance. It is the purpose of this paper
to present various rigorous results in this domain.

We shall consider lattice spin-3 systems in a v-
dimensional space (v=1), or possibly the corre-
sponding lattice gases obtained by the Lee-Yang
isomorphism. Given a finite box A, the Hamiltoni-
an H,, the partition function @,, and the n-point
correlation functions 0, (X) (where X=x,...,%,,
n=1, and where each point x;, ¢=1,...,n, isa
point of the lattice) are defined, respectively, for
free boundary conditions by the relations
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In these equations, o is a configuration of spins
o, at each point ¥ of the lattice in the box A, 0, =+3,
h, is a magnetic field at each point y.in A which in
usual cases is independent of y and is denoted by #,
B is the reciprocal temperature, and the interac-
tion J satisfies the inequality

2. [T <=,
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where Z” denctes the v-dimensional lattice, each
point ¥ of the lattice being labeled by v integer co-
ordinates.

A fervomagnetic system is characterized by the
further condition

J(y)=0, for everyyeZz’, y#:Ov,

The pair, or two-point, connected correlation
function o T (x,x,) is defined by the relation

()':(xl,x2) =0, (0}, %,) — 05 ()0, ().

The n-point connected correlations are defined

more generally by induction through the formulas

k
olX)=0,x)- 2 JIokx),
XpreenXp} i1

R>1

where the sum on the right-hand side runs over all
nontrivial partitions of X=x,,...,x, in subsets X;.
The physical correlations are obtained, for pos-
sibly different boundary conditions, in the limit
when the box A is made infinitely large. This limit
is well defined and is independent of the boundary
conditions if, being given the interactionJ, the
values of the magnetic field and of the reciprocal
temperature do not correspond to a point in the
phase-transition region. This region is known in
the case of ferromagnets to be of the form 2 =0,
B> B;, where B, is some critical value.

The organization and contents of the paper are as
follows. ‘ 7
In Sec. II, we are interested in lower bounds on
the two-point connected functions. It is sometimes
believed on a phenomenological basis that the cor-
relations still decay exponentially away from criti-
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cal points, even in the case of potentials that de-
crease only like an inverse power of the distance.
It has been proved' however, in various situations
in which analyticity properties are known, that the
correlations cannot decay exponentially if the po-
tential does not. If we restrict our attention to fer-
romagnetic systems, we prove here moreover, by
using the Griffiths-Hurst-Sherman (GHS) inequali-
ty,? that the two-point connected correlations can-
not, as a matter of fact, decay faster than the po-
tential.

We next consider the converse problem, namely,
the determination of upper bounds on the connected
correlations.

On the one hand, it is known,® for general lattice
(or continuous) gases, or also by the Lee-Yang
isomorphism for spin-3 systems, that the two-
point connected correlations decay at least like
7~ at low activity or at large magnetic field,
respectively. In the Appendix of the present paper,
it is shown that the power of decrease in these situ-
ations is actually s and nots - v.

This result combined with the previous one
shows, as stated at the end of Sec. II, that the two-
point connected correlation of a ferromagnetic sys-
tem decays exactly like 7 *° at large magnetic field
if the potential decays like # 5.

In a number of other situations, for instance for
ferromagnetic spin systems at any nonzero magnet-
ic field # and arbitrary temperature, it has also
been proved,* by using analyticity properties with
respect to the magnetic field, that the connected
correlations decay at least like » *®®  s(8,1)>0.
However, the power s(B,%) obtained in Ref. 4 tends
to zero when 2~ 0.

By using analyticity properties with respect to
the interaction potential and magnetic field, instead
of using only analyticity with respect to the mag-
netic field, we show in Sec. III that the two-point
connected correlations decay at least like -
y~6-2=2) where v is, asabove, the space dimension
and « is arbitrarily small, for arbitrary values of
h (#0) and arbitrary values of 8. The result holds
again here for ferromagnetic systems, in which
case the needed analyticity properties with respect
to the potential can be established on the basis of
the results of Ref. 5 on the zeros of the partition
function.

The fixed loss of power, i.e., 2v, is due to tech-
nical reasons,® and it seems safe to conjecture that
the correlations decay as a matter of fact like » °¢
arbitrarily close to critical points.

. The above result of Sec. III on the decay of cor-
relations is extended to z-point connected correla-
tions in Sec. IV. As a corollary, a central-limit
theorem, or Gaussian limit for the block-spin dis-
tribution, is also given for slowly decreasing fer-

romagnetic interactions at any nonzero magnetic
field.

We conclude with the following remark. The me-
thods and results of Secs. III and IV can apply to
various other systems as soon as one can have
similar analyticity properties with respect to the
potential. An example is the case of lattice gases
with arbitrary potentials and arbitrary activities:
The methods of the present paper, together with the
results of Ref. 5 on the zeros of the partition func-
tion, then lead, at high temperature, to analogous
results on the decay of correlations and on central-
limit theorems.

II. LOWER BOUNDS ON TWO-POINT CONNECTED
CORRELATIONS OF FERROMAGNETIC SYSTEMS,
AND RESULTS AT LARGE MAGNETIC FIELD

Theorem 1 below applies to ferromagnetic spin-3
systems and o T(x,,x,) is there the unique two-point
connected correlation obtained (independently of
boundary conditions) in the A -~ limit when 2#0,
or h=0, B<B,, or is alternatively anyone of the two
functions obtained in the A -~ limit in each pure
phase at =0, B8>pB,, when the boundary conditions
correspond to all spins 3, or all spins —3 outside
A. The theorem has been obtained in collaboration
with H. Kunz.

Theovem 1. The two-point connected correlation
of a ferromagnetic system does not decay faster
than the potential J. Namely, for any >0 and any
real 2, there exists a strictly positive constant
C(B, 1), such that

0Ty, %,5 B, 1) >C(B, k) T (x, —x,) . 1)

Proof. The Griffiths-Hurst-Sherman (GHS) in-
equality® ensures that

O'X'(xl,xz‘,ﬁ,{hx})20'1(961,962;3,{’1;})30 (2)

whenever 0=#,=<h,, where A is a box of arbitrary
size and {&, } and {#.} are two systems of magnetic
fields at each point x. On the other hand, the cor-
relation o T(x,, x,; hx , hx,, {h,=+0,x#x,%,}) can be
computed explicitly. It is given in the A - limit
by the formula

or(xuxz; hxly hxz,{hx= +9,% "exl,xz})
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where

zi=exp[—2hxi+2 Z J(x,.,y)], i=1,2

yCZV; y#xi

and J is the (two-body) potential.

To prove Theorem 1 for given 2>0, g arbitrary, .
or k=0, B<B,, it is sufficient to use formulas (2)
and (3) and to choose, in formula (3), 7, k., suffi-
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ciently large. The result is obtained similarly by
symmetry for any given 2<0. Finally, it is ob-
tained at 2=0,8>8, for the plus and minus phases
by using the fact that the corresponding correlation
functions in each pure phase can be obtained as
limits when 2 — 0 of the correlation functions at 2
>0 or 2<0, respectively. Q.E.D.

If we next restrict our attention to the case of
large magnetic field, Theorem 1, together with the
results of the Appendix, yields moreover the fol-
lowing result.

Theovem 2. 1If the potential J of a lattice ferro-
magnetic system satisfies the inequalities

Jo/rS<I(x, —x,)<JTL/rS, 7r+0 (4)

where r=1x, -x,l, s>v,and J, J} are given strict-
ly positive constants, then being given any >0,
there exists an /,>0 such that the following in-
equalities hold for any real & satisfying |21>h;

C(B, 1) /r3<oT(x,,%,;8, k) <C'(8,h)/r®, 7#0 (5)

where C(B, %) and C’(B, ) are strictly positive con-
stants (that may depend on 8 and ).

III. DECAY OF TWO-POINT CORRELATIONS OF
FERROMAGNETIC SYSTEMS AT ARBITRARY
NONZERO MAGNETIC FIELD

Being given a ferromagnetic potential that de-
creases like »“°, Theorem 1 of Sec. II shows that
the two-point connected correlations cannot de-
crease faster than »°. We prove here the follow-
ing converse result for any nonzero magnetic field.

Theovem 3. Being given a ferromagnetic two-
body interaction J =0 satisfying the bound

I, —x,) <J,(1 +|x1—x2|)'s, (6)

there exists, for any nonzero magnetic field %,
any reciprocal temperature g8, and any >0, a
constant C(B, k,, a) such that

[0 T(x,, %53 T, By ) | <C (B, Iy, @)1+ |3, —x, )7 7200,
(7

The proof given below uses, as already men-
tioned in Sec. I, analyticity with respect to the po-
tential and magnetic field instead of using only an-
alyticity with respect to the magnetic field, which
alone cannot lead to a fixed power of decreass for
the correlations. It is based on the fact that the
correlation function o T(x , x,; h,, 8, J ) can be ob-
tained, by analytic continuation, from the correla-
tion function of a system with an interaction de-
creasing much quicker than J and with large mag-
netic field.

Proof. We consider the analytic mapping
t=(z(), J(»,t)), where  is a complex variable,
[t1<1, defined by
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z(t)=(t/t)" 2, , (8)
i <
J(v,t):{‘](”) H7<7, 9)
J@)A+7)SH ifr=yp,

where
— p=2Bh (1)
z(t) = 2m®) |

th=1-(s-2v-a)/s,, s,>0,

zg=e" B s(t)=s,(t, - 1),

and where the choice of s, #, ¥, is given below.
We note that

2 lawnl< 3 T +]x]yrece.
xe:2Vx#{0} x:2Vx#{0}

(10)

Let a be a given number such that 0<a <h,/2. Ifn
satisfies the bound

Lz, <e™te, (11)

and if 7, is chosen (independently of s,,#) such that
for every =7,

2 2
tanh[ BJ (1 +7) @] <{exp %2%223% P
X (1 47) @/ (12)
with .
C(a)": Z (1+|x[)-(u+a/2),

x:ZYx#(0)

then Proposition 4.2 of Ref. 5 allows one to show
that @, ({r(®) +1,}, B, J(.;£))#0 for arbitrary A,
whenever [£(<1 and ) [<a, for every xc Z” (Q, is
the partition function for the finite box A and A, is
an additional magnetic field at each point x).

By the methods of Ref. 7, this result in turn en-
sures that o T(x ,x,; ) =0 T(x,x,; k(t), B8, J(.;1)) is
analytic with respect to ¢ in the domain 1£/1<1 and
satisfies there the bound

'oT(xl’xZ;t)l<cl, (13)

where the constant C, is independent of x ,x,, t.

On the other hand, let z,>0 be chosen (indepen-
dently of s,) such that (z,,8 J) is in the low-activi-
ty region, i.e., the analyticity domain obtained
from the Kirkwood-Salzburg domain by the Lee-
Yang isomorphism. If n>0 is such that

(t—‘ﬂ) 20<2, (14)
t()

then the low-activity methods of Ref. 4 (part II) al-
low one to derive, in the region |¢|<f,—7, the
bound

[0‘ T(xuxz; t) |<Cz(1 + ]xl -%, I)'[(nso+s)-v—e] , (15)

where €>0 is any given number and C, is indepen-
dent of x,, x,, and ¢.
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The analyticity for |£1<1 then leads to a simple
interpolation between the bounds (13) and (15) by a
method analogous ‘to that used in the proof of Theo-
rem 3 in Ref. 4, or alternatively by more general
methods based on the study of holomorphy enve-
lopes.? It yields

lcr(xuxz; to)l
<C3(1 " |x1 -x, |)-(ns0+s-v-s)llnt0/ In(tg=n)I , (16)

where C, is independent of x ,x,.

The bound (7) of Theorem 2 follows by choosing
s, sufficiently large and, for instance, n=s;'3, »n
=s2/3, Q.E.D.

Remarks. (i) The methods of the Appendix allow
one to obtain, at sufficiently low activity, bounds
of the type (15) in which the power of decrease (ns,
+8 -V —¢) is replaced by ns,+s. The power of de-
crease in the bound (16) is correspondingly re-

placed by (ns,+s)(I1InZ,l/ I1In(t, - n)I). This method .

involves, however, a few technical complications
and does not lead to a better uniform bound than s
— 2v — « on the power of decrease in Theorem 2.
(ii) The potential J can be considered as the sum
of a finite range potential and of a small perturba-
tion decreasing like . This remark, together
with the methods and results of Ref. 9, leads to an
alternative proof of Theorem 2. The power of de-
crease obtained is not better than in Theorem 2.

IV. EXTENSION TO n-POINT CORRELATIONS AND
CENTRAL-LIMIT THEOREM FOR SLOWLY
DECREASING POTENTIALS

We now present the following extension of Theo-
rem 3 to n-point functions.

Theovem 4. Being given a ferromagnetic inter-
action J = 0 satisfying the bound

@, =x,) <L+ |x, = x, )¢,
there exists, for any nonzero magnetic field %,
any reciprocal temperature 8, and any @>0, a
constant C(B, i,, @) such that the following “strong
cluster property” holds:
s X3 oy By ) I
<C(B, g, @)

x » Il

T(X1seeasXy) (XjX5)ET

loT(x,, ...

O e N ¢ 4]

where the sum runs over all trees-7 on the points
Xy ...,%, (i.e., connected graphs without closed
loops).

Proof. The bound (13) in the proof of Theorem 2
is adapted to the case of n-point functions by me-
thods analogous to those of Theorem 4 in Ref. 10.
The bounds (15) and consequently (16) are adapted
by the methods of Ref. 4. The bound (16) is re-
placed by

loT(,, ... X t) [ <C™ry L. amy)

X exp <—L(X)('r)so+s —-V-¢€)

[Int,l
x Iln(to—n)l>’ (18)

where L(X) is the minimal length of all trees con-
structed on the points x,,...,x, of X, and possibly
on other supplementary vertices, with respect to
the distance d(x,y)=1In(1 +/x —y|) (the factor
n,!...n,! appears when the points x,...,x, are not
all distinct and occupy only p positions x4,...,x;
occurring respectively #,, .. .,n, times).

The bound (17) of Theorem 3 follows from the
bound (18) and the result of the Appendix of Ref. 11.
Q.E.D.

The bounds (17) of Theorem 3 are an extension to
the case of slowly decreasing potentials of the re-
sults previously proved in Ref. 10 for finite-range
potentials. As the latter, they are adapted in a
straightforward way to systems of complex mag-
netic fields {%,} with nonzero real parts, and they
ensure when s >3v that

Z loT(x,, ..

gV
xz,.,.,xntz

Lx)|<CMml<o, (19)

where C is independent of x,...,x, and of n.

These bounds yield in turn, by the same methods
as in Ref. 12 [see Eq. (3.6)], the following central-
limit theorem previously proved for finite-range
potentials or exponentially decreasing pair corre-
lations, 27

Corollary. For any ferromagnetic system with
interaction J(7) <C/(1 +7)%*¢ and nonzero magnetic
field, the characteristic function of the block-spin
distribution tends to that of a Gaussian as the size
of the block spin tends to infinity. The observa-
tions'®!* concerning corrections for large size L
of block spins and their interpretation also apply to
the present situation.

We finally note that in contrast to the case of ex-
ponentially decreasing potentials, one needs here
the tree-decay bounds of Eq. (17) to show that the
sum in the left-hand side of Eq. (19) is finite and
hence to obtain the central-limit theorem. Weaker"
bounds derived from bounds on the two-point func-
tions would not be sufficient here.

APPENDIX: LOW-ACTIVITY RESULTS

The results of this Appendix are presented here
for convenience for lattice gases at low activity.
They hold also for lattice spin-3 systems at large
magnetic field, in view of the Lee-Yang isomorph-
ism. They apply without conditions on the sign of
the potential and extend also to continuous gases.

The method used is slightly different from that of
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Ref. 3. As a matter of fact, it does not use the
Fourier transformation and hence avoids losing a
factor » ™ in the decay of correlations. The method
and results are due to a collaboration with M. Du-
neau and P. Renouard. Related results have been
obtained independently in Ref. 15.

We denote here by ¢, z, p7, respectively, the po-
tential, activity, and connected correlation func-
tions of the lattice gas considered. In the case of
continuous gases, the bound assumed on ¢ is to be
replaced by a similar bound on f(r) =™ _ 1,
The proof and results are then completely analo-

J

!pT(xl,xz;z,¢>)|s Z (zK,)" Z

=4
n=0 Vireeer 2

where f{r)=e™?™ _ 1.
The theorem is then a consequence of the follow-
ing lemma together with the remark that

| f) |[<(1+p,e®0)(1+97)7, for everyrez”. (22)

Lemma.

Z [(1'{'7’lx1"yll)-x(1+7ly1_y2|)-x><"'

ny
Visheoas V€L

X(L+y |y, =%, )]
<K(@y,x)"(1+vy|x, —x,[)*. (23)

Proof of the lemma. This result is proved by

If(xl_yl)Hf(yl-yz)

gous (see remark at the end).
Theovem. Being given a potential & such that

o) |<po(L+¥7)7X, 720

where ¢,, x>v, y>0 are given numbers, there ex-
ist constants R >0 and C such that for |zI<R,

[pT(x,, %, 2, 8) [<C(L+y |x, —x,])X. (20)

Proof. 1t follows from Ref. 3 that there exist R,
>0 and K, such that the following bounds hold for
lzI<R,:

e

F(ya=x,)], (21)

r
induction on r, by using the following inequality:

Z (1 '*")’Ixx_yxl)_x(l +7,y1_372|)-)(

vyezV

2T aeir D) e ln -, @)
yezZ

which is obtained by dividing the y, space into the
two regions

lxl‘y1,$|y1—y2’-

In the case of continuous systems, the sums are
replaced by integrals, and a further factor (1 +y)X
appears in the right-hand side of Eq. (24), in order
to cover the region |x, -y,|<1. The results are
then unchanged.

'x1"y1l2 'y1-y2Iy
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