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ABSTRACT

When the interaction potential of a ferro-

magnet decreases like r_S, we prove that two-point

correlations

- do not decay faster than r° ;

- decay at least like r~% a2t large magnetic field
and moreover at least like r_<s~2v), where v 1is

the space dimension, for any non-zero magnetic field

and arbitrary temperature.

Extensions of this latter result to n point
correlations and to other systems are indicated and a
central limit theorem (or gaussian 1limit of block-spin
distribution) for slowly decreasing ferromagnetic in-

teractions at any non-zero magnetic field is mentioned.
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The main results on the decay of correlations in classical sta-
tistical mechanics have been obtained so far for finite range or exponent-
ially decreasing potentials. It has then been proved in a number of cases
that the correlations decay exponentially with distance (in pure phases)
and it is reasonably believed that they decay exponentially arbitrarily
close to critical points (with a rate of exponential fall-off that tends

to zero near these points).

The situation is different in the case of potentials that de-
crease only like an inverse power r_S of the distance. On the one hand,
it is sometimes believed on phenomenological bases that the correlations
still decay exponentially away from critical points. However, it is
proved 1 , in a number of cases, that the correlations cannot decay expo-
nentially if the potential does not. If we restrict our attention to
ferromagnetic systems, we prove here the following stronger result, esta-

blished in collaboration with H. Kunz :

Theorem 1  The two-point (connected) correlation of =a
ferromagnetic system [i.e., J(x1-x2) = 0]
does not decay faster than the potential J :

HERHN ”’j)> CRA) J(x,-2,) (1)

Proof

2)

The Griffiths-Hurst-Sherman (GHS) inequality ensures that :

Oy (x, 2B TR 2 0 ) (2,58 A7) S0 2

whenever O < hx < hé, where A 1s an arbitrary box and {hX}, {hg} are

two systems of magnetic fields at each point x. On the other hand, the
. T .
correlation O (X1,x2;hx1,hX2,{hX=~+® ,X;£X1,X2} can be computed, It is

given by the formula :

VT(xi, X, JZ’Q) sz,'{{ ttod, X it"%xz}')
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where

¢
and J 1is the (two-body) potential.

To prove Theorem 1 for a given value h of the magnetic field,
it is sufficient to use formulae (2) and (3) and to choose, in formuls (3),

hX1,hX2 sufficiently large. Q.E.D.

We now consider the converse problem, namely the determination
of upper bounds on the decay of correlations., On the one hand, it is

3)

known , for general (discrete or continuous) lattice gases, or also

(by the Lee-Yang isomorphism) for spin systems, that the two-point correla-—
tions decay at least like 1~ sV at low activity (resp. at large magnetic
field). In the Appendix, we prove that the power of decrease of the correla-

tions at low activity is actually s and not s-v.

In a number of other situations, for instance for ferromagnetic
spin systems at any non-zero magnetic field h and arbitrary temperature ,
it has also been proved 4 that the correlations decay at least like
r—s(B,h)’ s(B,h) >0 (where B 1is the reciprocal temperature). However,

the power s(B,h) obtained in Ref, 4) tends to zero when h- O.

We show below that the correlations decay at least like
r-(s-2v-a), where o is arbitrarily small and v is the space dimension ,
for arbitrarily small values of h(# 0) and arbitrary values of B. The
fixed loss of power, i.e., 2v, is due to technical reasons > , and it
seems safe to conjecture that the correlations decay like r_S arbitra-

rily close to critical points.

Theorem 2 Being given a ferromagnetic two-body interaction J = o

satisfying the bound

J(xl'xz) < Jo (7+/3{,-X2/)-$(4)

there exists, for any non-zero magnetic field ho, any
reciprocal temperature B and any o > 0, a constant
C(B,ho,oz) such that :



Lo (x, %, A B T)]
< CBAR) (14xy-x,1) C2%2.,

The proof, given below, uses analyticity with respect to the
potential and magnetic field, instead of using only analyticity with respect
to the magnetic field (Which, alone, cannot lead to a fixed power of decrease
for the correlations). It is based on the fact that the correlation function
oT(x1,y2;ho,B,J) can be obtained, by analytic continuation, from the cor-
relation function of a system with an interaction decreasing much quicker

than J and with large magnetic field.
Proof

We consider the analytic mapping t- (z(t),5(r,t)), tee, |t| <1,
defined by :

2(0)= (¢5)" 2, (6)

7(r) iF r<n,

T(r, t) =
J(r) (7+r)‘sm it ryr 7

where

2(H)- e-Zﬂb((’) ) 20:6-2/%}:.,)
So >0,

and where the choice of Sy Ty T, is given below, We note that

s(B) = s, (b-B)f 1-5-27-4 24,

S eI S 1)) e ©

x € 2"\{o} x ¢ 2"\{o}

Tet a Dbe a given number such that 0 < a < ho/2. If n satisfies the

bound



fp-hlo < e - S (9)

and if r =~ is chosen (independently of So n) such that ¥r = r,o

%[BL (7+r)'[2y+d) ]

[2Bac@)]” (o) @72,
[exp (2B () + 1 ]°

cw)’ - = }(mx/)'(”%)

with

x ¢ 27\ {o

then Proposition 4-2 of Ref. 6) allows one to show that zA({h(t)HX},
8,J(.5t))#0 for arbitrary 4, whenever [t| <1 and ]AX] < a,
¥x € A (ZA is the partition function for the finite box LA and )\X

is an additional magnetic field at each point x).

By the methods of Ref. 7), this result in turn ensures that
T T ) . .
o (X1,X2;t) =g (x1,X2;h(t),S,J(.;t)) is analytic with respect to t in

the domain lt] < 1 and satisfies there the bound :

)O‘T(x,)xz;f)/ < (, (1)

where the constant 01 is independent of x1,x2,'t.

On the other hand, let 2z, > 0 be chosen (independently of
so) such that (ZZ’BJ) is in the low activity region (i.e., the analy-
ticity domain obtained from the Kirkwood-Salzburg domain by the Lee-Yang

isomorphism). If m > 0 is such that :

(ét;_?)” 2z, < 2, (12)

then the low activity methods of Ref, 4) (Part II) allow one to derive,
in the region ]t] < t,-m, the bound :



JU—T(XJ., x, ,é)/
< ¢, (14 /x,-xz/)'[@s'”)’y'd

where € > 0 1is any given number and 02 is independent of X1, x and t,

(13)

The analyticity for [t] < 1 then leads to a simple interpo-
lation between the bounds (11) and (13) by a method analogous to that used
in the proof of Theorem 3 in Ref, 4), or alternatively by more general

methods based on the study of holomorphy envelopes 8>. It yields

lo7(x,, x,: 6)] ,
<o (1+}x,—le)"[7S°+S'y'€]"/£ﬁ—"/ag(r.-7)l »

where C5 is independent of Xyy Xoe
The bound (5) of Theorem 2 follows by choosing s, sufficiently
large and, for instance, 7= (so)_1/5, n= (so)+2/3. Q.E.D.

Remarks

1) The methods of the Appendix allow one to obtain, at sufficiently low
activity, bounds of the type (13) in which the power of decrease

(nso+ sS-v-¢) is replaced by MS,+ Se The power of decrease in the

bound (14) is correspondingly replaced by (nso+ s)(]1og tol/flog(to—n)l).

This method involves, however, a few technical complications and does not

lead to a better uniform bound than s-2v -a on the power of decrease in

Theorem 2.

2) The potential J can be considered as the sum of a finite range
potential and of a small perturbation decreasing like r—s. This
remark, together with methods and results of Ref. 9) leads to an alter-
native proof of Theorem 2. For related technical reasons, the power of
decrease obtained is not better than in Theorem 2., However, this method
confirms the conjecture that the correlations decay as a matter of fact

like r~°.
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We now present the following extension of Theorem 2 to n point

functions :

Theorem 3 Being given a ferromagnetic interaction J = 0 satisfying

the bound

Tlx, -x,) < T, (14 /x,-x,1)"

there exists, for any non-zero magnetic field ho, any
reciprocal temperature B and any o > 0 a constant
C(B,ho,a) such that the following "strong cluster pro-
perty" holds

'U-T/x ,---,xn,’/oa IE 'T) l
\< ¢ (ﬂ) X’)X) " Zﬁ("z;"»"a)

(7+ [x. - '/) -« -zy‘x)“ 5

(x, /)ef
where the sum £ runs over all trees on the points

KpsooesX, (i.e., connected graphs without closed looPs)c

Proof
The bound (11) in the proof of Theorem 2 is adapted to the case

of n point functions by methods analogous to those of Theorem 4 in Ref.
10). The bounds (13) and consequently (14) are adapted by the methods of
Ref. 4)., The bound (14) is replaced by

}U-T[x X f)l < C n,....nf [(7S'+S y.g) 7/[- 7)}] L(

where L(X) is the minimal length of all trees constructed on the points
XyseoosX, of X, and possibly on other supplementary vertices, with
respect to the distance d(x,y)::log(1+~]x—yf) (the factor n11...nﬁ
appears when the points XyreeesX, ~are not all distinct and occupy only

p positions Xi,...,xﬁ occurring respectively n1,...,np times).
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The bound (15) of Theorem 3 follows from the bound (16) and the
result of the Appendix of Ref. 11). Q.E.D.

The bounds (15) of Theorem 3 are an extension to the case of
slowly decreasing potentials of the results previously proved in 10) for
finite range potentials. As the latter, they are adapted in a straight-
forward way to systems of complex magnetic fields {hx} (with non-zero
real parts). As a consequence, they yield, by using the same methods as
in Ref. 12) [see Eq. (3.62, the following central limit theorem previously
proved for finite range potentials or exponentially decreasing pair coxr-

13)

relations :

Corrolary For any ferromagnetic system with interaction
J(r) < C/(‘l+r)3\)+e and non-zero magnetic field,
the characteristic function of the block spin distri-
bution tends to that of a Gaussian as the size of the
block spin tends to infinity.

12),14) concerning corrections for large size

The observations
L of block-spins and their interpretation also apply to the present si-

tuation.

We conclude this note with the following remarks., The methods
and results presented above can apply to various other systems as soon as
one can have similar analyticity properties with respect to the potential,
In particular in the case of systems with arbitrary potentials and arbi-
trary activities the results of Ref. 6) on the location of the zeros of
the partition function together with the methods of the present paper and
of Ref, 12) lead to analogous results on the decay of two-point and n

point correlations, and on central limit theorems at high temperature.
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APPENDIX ¢ LOW ACTIVITY RESULTS

We indicate here a method which is slightly different from
that of %) for deriving decay properties at low activity. It does not
use the FPouriler transformation and then avoids loosing a factor rY
in the decay of the correlations r%he method is also valid for continuous
systems. The bound assumed on ¢ is then to be replaced by a similar
bound on f(IQ:: @(r/_1] The connected pair correlation is denoted

below by pT.

Theorem Being given a potential & such that

[§ < §. (7+yr)'x (r#o)

where @O, X > v, v >0 are given numbers, there exist
constants R > 0 and C such that for fz] <R

} 67(’(1))(2.5}) f)/
L C (1 ybax)®

Proof
It follows from Ref. 3) that there exist R. > 0 and K

1 1
such that the following bounds hold for ]z] <R

07 (x, 7,2 0 <

2 (3 h) =] ML VAL

n2o -
where f(r):ei)(r)ﬁ . }1 / Xenne & IF(},‘-xZ )1

1

The theorem is then a consequence of the following lemma
together with the remark that

”/r)] <(1+ @,,Cf’) (Ifrr)-l Vre2”



Lemma

,,y[(7+ y Ix //) eyl )
}1,»» xeex (14 yln- x,]) €]

< K(y,x)n (7+ }’/Xi-xz/)'x

Proof of the Lemma

This result is proved by induction on n, by using the

following inequality :

/Zéz (1ol gV € e ply 1)
<( Zﬁz Levipn ) e (14 pbap D7

which is obtained by dividing the yq sSpace into the two regions
)x,//[}// =, /<£}//

[in the case of continuous systems the sums are replaced by integrals,
and a further factor (14—y)x appears in the right-hand side of the
last ine quality.]

Note

At the moment of publishing this work, we learn that low
activity results related to those of the present Appendix have been

recently obtained independently by M. Lavaud (to be published).
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