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Abstract

The influence of angular momentum on
the extension of deformed regions is studied.
Techniques based on the similarity between
pairing rotational bands and ordinary
rotational bands are used. Indications for
an increase of deformation with increasing
spin is obtained for rare-earth nuclei with
neutron numbers N = 88-90. The yrast states
of odd and even nuclei and of positive and
negative parity are compared on an absolute
scale. It is found that, in the rare-earth
region, the odd-even energy difference has
almost disappeared for I 2 14. However, by
considering both positive- and negative-
parity yrast states, it is concluded that a
substantial pairing gap exists also at
higher spins.

1. 1Introduction

In the study of nuclei far from
stability, different regions of deformation
have attached a great interest. However,
these investigations have mainly been
limited to the ground state or the low-spin
states. Recently, it has been possible to
follow a large number of nuclei up to gquite
high-spin states, I = 20-30 or even higher.
In the words of Bohr and Mottelson'), this
opens a new dimension in our study of nuclei
and it becomes possible to map out the
regions of deformation, not only as functions
of neutron and proton number but also as
functions of angular momentum. Recent
theoretical studies suggest that at very
high angular momenta, almost all nuclei
become strongly deformed. This is simply a
consequence of the centrifugal foces as was
first quantitatively accounted for in ref.
2). In the present study, we will consider
lower spins where the macroscopic centri-
fugal forces are of minor importance. For
such spins, say I = 10-30 for nuclei with
A ~ 150, it is mainly single-particle
effects which are important. Our studies are
thus strongly related to the change of the
shell effects with angular momentum. Are
there any new structures which can be
observed at these angular momenta? Another
question is what happens to the pairing
energies with increasing spin. At which spin
do the pairing correlations disappear®)? Is
it possible to observe any odd-even mass
difference also at high spin?

Let us start by a more qualitative
discussion in an attempt to clarify and
relate some of the methods we will use (see

Denmark

also ref. *)). In the rare-earth region,
pairing is of great importance and in
analogy with the quadrupole degree of
freedom, one may say that the rare-earth
region is well-deformed with respect to
pairing. One then also talks about pairing-
rotational bands (rotational bands in gauge
space). Such a band is essentially the
energy of a series of isotopes or isotones
as illustrated schematically in fig. 1. For
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Fig. 1. Schematic illustration of pairing-rotational

bands for spherical and deformed shape. With typical
energy spacings, the deformed region appears to
become larger with increasing spin. The inset shows
that the shape transition is expected to manifest
itself as a back-bend in an N vs. A_diagram. The
Fermi energy A is obtained as A = T

a pairing-rotational band, the energy E
varies as N?, N being the number of
particles, in a similar way as the variation
with I? for an ordinary rotational band.
When the pairing correlations are strong,
the local fluctuations are smeared out and
the Fermi energy A is proportional to N.
Furthermore, A is defined as X = %E. Thus,

« N which leads to E « N2 as stated above.
Tﬁe particle number N can be referred to as
angular momentum in gauge space. The Fermi
energy A then corresponds to the rotational
frequency in ordinary space, w. The analogy
can be put on a mathematically firm basis
(see e.g. refs. °’®)) and has consequences
for example on two-particle transfer which
have been experimentally tested.

In fig. 1 is illustrated schematically
how one pairing-rotational band is formed
for spherical shape and another for deformed
shape. If the transition was as sudden as

*) On leave of absence from Modern Physics Institute, Lanchow, China.
**) On leave of absence from Department of Mathematical Physics, Lund.
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shown in the figure, it would lead to an
abrupt change in the derivative #f = A. In
a plot of N vs. A, this would show up as a
very pronounced back-bend at the critical
particle number, Ng, where the transition
occurs (see fig. 1, inset). The analogy to
conventional back-bending plots, which can
for example be drawn as I=I(w), is obvious.
It should also be mentioned that plots of A
as a function of N are often used to
identify ground-state shape transitions.
However, A or rather 2) is then generally
referred to as the two-particle separation
energy.

Pairing-rotational bands can also be
drawn for non-zero angular momenta. In the
spherical region, the low-angular momentum
states are generally obtained from vibra-
tional excitations of the nucleus. These
excitations are approximately equally spaced
in energy with a typical spacing of 600 keV
in the rare-earth region. In the well-
deformed region, rotational motion takes
over and the excitation energies follow the
AI(I+1) systematics with A =~ 15 keV. This
means that for the excited pairing-rota-
tional bands in fig. 1 a gradual decrease of
Nc with increasing spin is observed. From
these oversimplified but general arguments
one may expect an increase of the deformed
regions with increasing spin. In practice,
this may be seen for a transitional nucleus,
being mainly vibrational at low spins and
becoming more rotational at higher spins.

In sect. 2, we study the experimental
shell energy vs. neutron number in realistic
cases using plots similar to fig. 1. However,
the evaluation of the shell energy requires
that a macroscopic liquid-drop energy is
subtracted and thus involves some arbitrari-
ness. The model independent method of the
inset in fig. 1 is therefore employed as an
alternative in sect. 3. This method further-
more has the advantage to magnify the
irregularities at a shape transition. The
results obtained in sects. 2 and 3 may be
put together in diagrams showing the
different phases, defined by shape, particle
alignment etc., which nuclei undergo with
varying particle number and spin (sect. 4).
In sect. 5 we concentrate on the single-
particle excitations. The quasiparticle
energies in the rotating frame are studied
both as functions of rotational frequency in
ordinary space (w) and in gauge space (}).
One important purpose of these single-
particle studies is to find out what the
observed spectra could tell about the
disappearance of pairing at high spin. In
this connection we also study the odd-even
mass-difference as a function of spin.

2. Shell energies from experimental
masses and excitation energies

For the Dy-nuclei, both masses and
spectra up to high spins are known for a
long chain of nuclei down to the very
neutron deficient ones. Furthermore, the
lightest isotopes with N around 82 are
clearly spherical, those with N = 88-90 are
transitional and the heaviest ones with
N = 98-100 are strongly deformed. In fig. 2
we plot the energy in a similar way as in
fig. 1. However, to make the variation

anticipated in fig. 1 visible, the liquid-
drop energy for spherical shape has been
subtracted leaving what is generally
referred to as the experimental shell
correction. The yrast-spectra up to a
maximum spin of 18 are then also plotted on
top of the experimental shell corrections.
For the liquid-drop energy, we have used the
recent formula of Mller and Nix’) which
seems to describe also nuclei far from
stability with a high accuracy. However,
other formula would lead to the same general
appearance of the figure which thus can be
considered as arising primarily from experi-
mental data.

The curve for the ground state in fig.
2 is well-known. For N=82, the nucleus is
spherical with a negative shell energy. With
increasing neutron number away from N=82,
the shell energy then increases and becomes
positive. If the nuclei had stayed spherical,
the shell energy would increase to a maximum
somewhere in the middle between the magic
numbers N=82 and N=126 and then decrease to
a new minimum at N=126. However, long before
this maximum is reached, it becomes more
favourable for the nuclei to go deformed; a
band-crossing in the language of fig. 1. The
shell energy then flattens out or generally
even begins to decrease because of shell
effects for the deformed shape. For the Dy-
isotopes, the maximum in the spin-zero curve
is observed at N =~ 90 which is thus the
transition point from spherical to deformed
shape.

The way we plot the yrast bands in fig.
2 makes it possible to see, in a similar way
as for the ground state, the transition
point from spherical to deformed shape also
for the higher spin states. One observes
that with increasing spin, the maximum moves
towards a smaller neutron number. Thus, for
154Dygs, the low-spin states are expected to
be of vibrational type but a transition to
rotational motion appears to occur somewhere
around I=6. As was discussed in the introduc-
tion (see fig. 1), the enlargement of the
deformed region is easy to understand from
the lower excitation energies in the rota-
tional than in the vibrational bands. It is,
however,only up to spins 10-14 that this
enlargement is expected. Higher spins are for
all nuclei formed from configurations
involving p-h excitations in which case no
systematic difference between spherical and
deformed nuclei is expected. This is also
what comes out from the Dy-isotopes where
for spins between 10 and 20 the maximum stays
between N=87 and 88. The small fluctuations
are mainly due to irregular structure of the
yrast spectrum of !®2Dy which is known to be
built from p-h excitations. Let us also
mention that at somewhat higher spins we
expect another enlargement of the deformed
regions. The mechanism behind is, however,
different and can be understood from the
classical centrifugal forces as mentioned in
the introduction.

The overall impression from fig. 2 is
that the general structure is very stable
with increasing spin. Thus for spins up to
at least 20 the shell effects appear to be
very similar to those of the ground state.
Away from the critical neutron number Nc,
the transition from the ground to the S-band
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Fig. 2. The yrast levels for I = 0-18 of ¢Dy plotted relative to the liquid-drop energy

for spherical shape. The experimental masses are taken from refs.

excitation energies from ref. 10).

879) and the

The arrows indicate the maxima, which should

roughly correspond to the shape transition. For odd nuclei, we indicate the
ground-state energies by filled circles and some higher spin states by open
circles. The energy of for example I=10 for an odd nucleus is obtained as the

mean value of the I = 19/2 and I =

21/2 yrast energies. The fact that almost no

odd-even mass difference is observed for I 2 14 does not imply that the pairing

gap is zero.

is seen only as a small disturbance on the
character of the yrast spectra. This
disturbance is far from changing the fact
that,at least for N > 90,the nuclei are
deformed and rotate in a collective way,
while for N < 86 the spin is built from
p-h excitations at no or small deformation.
In the transitional region, however, such
small disturbances might have a rather
drastic effect on the yrast spectra. Note
also that for spins I = 10-20, the nucleus
1%2pyse is energetically very close to
getting deformed with collective rotation.

The experimental shell energies for
some odd nuclei are also shown in fig. 2.
For the ground states, the odd-even mass
differences are clearly seen. The excitation
energies of the higher spin states are
plotted as the mean values of the I - 1/2
and I + 1/2 yrast energies where I = ... 10,
12, 14, 16, ... . This makes the comparison
to the even nuclei straight-forward. It is
interesting to observe that at spin 10, most
of the odd-even mass difference has
disappeared and that very little of this
difference is left for higher spins. This
seems rather natural, because when the even

nucleus begins to break pairs it should be
similar to an odd nucleus (cf. sect. 5
below). It is also consistent with the fact
that for N =~ 85, the odd-even mass difference
disappears at even lower spins because for
the surrounding even nuclei, already the
low-spin states are more or less pure
particle-hole excitations. Observe, however,
that even if the odd-even mass difference
disappears at a rather low spin, it does not
mean that the pairing gap,A,is zero for this
spin.

The ground-state experimental shell
energies of the ,,Zr-isotopes are exhibited
in fig. 3. Also shown are the known excita-
tion energies of the yrast 2% and 4% states.
The mass for '°2%Zr is not known so here we
have used a calculated value 7). This mass
is however not important for our discussion
below but makes the figure somewhat more
clear.

For the ground state we observe in
addition to the expected shell-energy minimum
at N=50 also a second irregularity at N=56.
For this latter neutron number, the shell
energy is 500-600 keV lower than would be
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Fig. 3. Yrast energies of the Zr-isotopes plotted in
a similar way as for the Dy-isotopes in fig. 2. The
mass of lﬂ%erg has not been measured and is taken
from calculations. Note the low 0% state for N=56
while the corresponding 2% state fits the
systematics of neighbouring isotopes.

expected from the trend of neighbouring even
nuclei. The low value for °®Zr has earlier
been discussed (see e.g. '!)) and is clearly
associated with the sub-shell closure at
N=56. It is,however,interesting to observe
that for the 2¥ state, the irregularity at
N=56 has disappeared and a smooth trend is
observed. Thus, in °%Zr it seems more
appropriate to state that the 0% state is
unusually low than that the 2% state is
unusually high. Going away from the °%2r
ground state, not in spin but instead in
neutron number, one notes again that the
strong binding at N=56 disappears. The strong
binding of °%Zr thus seems to be associated
with the combination of the subshell closure
at Z=40 and N=56. As soon as one of these
subshells is broken, either from particle-
hole excitations or from addition or removal
of particles, the extra binding disappears.

In fig. 3, one also observes how the
Zr-isotopes get deformed around N=60. If
only the measured masses (N<60) are
considered this does not show up for the
ground state but quite clearly for the 2t
states. This is so because, in a similar
way as for the Dy-isotopes, the transition
to deformed shapes seems to occur at a lower
neutron number for the 2% states than for
the ground states.

3. Back-bending in gauge space

The analogy between the three-dimen-
sional ordinary space and the two-dimen-
sional gauge space was pointed out in the
introduction. For the study of shape transi-
tions, one may therefore directly adopt the
experience obtained from the study of
irregularities in ordinary rotational bands.
Such irregularities are conventionally

magnified in back-bending plots showing the
angular momentum (or moment of inertia) as a
function of the rotational frequency. The
analogous plot in gauge space is the particle
number N versus the Fermi energy X as
discussed in the introduction.

In fig. 4, we exhibit a plot of
calculated N-values vs. A for two fixed
deformations, £€=0 and €=0.25, respectively.
The A-values have been obtained from the
BCS-equations which were applied to the
Nilsson model orbitals. One observes that
around N=82, the marginal energy cost to add
one additional neutron, = Xps is about
equal for spherical and deformed shape while
for higher particle numbers the energy cost
is largest for spherical shape. However, it
is first for N =~ 88 that the total energy
becomes lower for deformed than for spherical
shape. With the reasonable assumption that
152D¥Bs is spherical, '°“Dygs is transitional
and '°®Dys, is clearly deformed,the back-bend
would show up as indicated by the dashed line
in fig. 4.

100
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Fig. 4. Calculated neutron numbers, N, vs. Fermi
energies A for spherical shape, €=0, and deformed
shape, €=0.25. The Fermi energies were calculated
from standard Nilsson model single-particle energies
and a BCS-code. The back-bend,which would arise from
the reasonable assumption that the nucleus is
spherical for N=86, transitional for N=88 and deformed
for N=90,is indicated.

The analogy between properties in gauge
space and in ordinary space can be seen in
the Cranking Hartree-Fock Bogolyubov (CHFB)-
formalism. Using the mean field approximation
for the quadrupole as well as the pairing
field, one obtains the CHFB-Hamiltonian:

H' = H

- “+ - - -
o T £Q - A(P +P) - AN - wI,

]
The notations used in this equation should
be self-explanatory. In a similar way as the
quadrupole field may break the spherical
symmetry in ordinary space, the pair field
may break this symmetry in gauge space. Thus
the two Lagrangian multipliers, X and w,
enter on the same footing. They can both be
derived from experimental energies, namely

A (Z2,N,I,v) = 3E(Z,N,I,v)
P WA (2)
~ E(Z+1,N,I,v)-E(2-1,N,I,v)
2
An(Z’N’I’V) = ﬁglgéngLil
(3)

~ E(2,N+1,I,v)-E(%,N-1,1,v)
2
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3E(Z,N,I,v)
o1
X
_ E(Z,N,I+1,v)-E(Z,N,I-1,v)
-~ IX(I+1)—IX(I—1)

w(Z,N,I,v) =
(4)

where we have distinguished between the
neutron and the proton Fermi energies. The
nuclear energy of a state with angular
momentum I and the additional quantum
numbers v is defined as

E(Z,N,I,v) =-EB(Z,N)+Eex(Z,N,I,V) (5)

where Ep(Z,N) is the ground state binding
energy and E..(%,N,I,v) is the excitation
energy relative to the ground state.

We have applied the equations above to
the yrast states of the Dy-isotopes. Thus,
N is plotted as a function of A, in fig. 5.
In agreement with fig. 2, a strong
irregularity appears around neutron number
88 at spin zero. For higher spins we observe
a similar irregularity but now at lower
neutron numbers. As was discussed above,
this irregularity is connected with a shape
transition from near-spherical shape at
lower N-values to well-deformed shape at

higher N-values. The curve corresponding to
the spherical liquid drop is also shown in
fig. 5.

The experimental shell-correction
energy in fig. 2 was defined as

Eshell

(Z2,N,I,v) =
exp N (6)
_gSP
Eexp(Z,N,I,v) E-T. (2,N)
At the maximum points in fig. 2
sgshell(z n,1,v)
exXp = 0. (7)

9N

It therefore follows immediately that the
maxima in fig. 2 correspond to the points
where the experimental curves are crossed by
the liquid-drop curve in fig. 5. It is
obvious that the crossing point with the
liquid-drop curve does not exactly coincide
with the inflexion point in the experimental
N(Ap)-curve. This is consistent with our
general understanding of a shape transition
as a smooth process with no really well-
defined transition point.

N T T T T
97

95

93

T

91

89

87

85

83

=95

=75

Fig. 5. Neutron number N vs. Fermi energy A for even Dy-isotopes. The values for angular

momentum I = 0-14 are calculated from experimental masses and yrast spectra. It is
indicated that, in analogy with angular momentum alignment, one can define a
particle number alignment of AN=3.5 for the Dy-isotopes. The figure also shows the

behaviour of the spherical liquid drop

. The short-dashed line and the crosses

give theoretical values of X calculated in a similar way as in fig. 4. The inflexion
points, defining the N-values, Nc(I), are indicated by arrows.
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Fig. 6. Phase diagrams, obtained from ex erimental quantities, for even Gd, Dy and Er isotopes. The critical
q P

N-values of the shape transitions (points) are

determined from N(A) plots (fig. 5) while the

critical angular momentum, Ic, for the transition to two-quasiparticle (crosses) and four-quasi-
particle bands (squares) are extracted from ordinary back-bending plots, I vs. w. Above the
shadowed line, no experimental data are available. In many cases, the transition from one phase

to another is not sharp but occurs gradually.

4. Phase diagrams

The critical neutron numbers, Ng,
determined from the inflexion points in the
N(An)-diagram can be summarized together
with the critical angular momentum,Ig,
determined from the Iy(w) diagrams, in a
phase diagram (fig. 6). Such a diagram, as
introduced in refs. '3/!*),shows the
different phases nuclei undergo with
increasing angular momentum in ordinary
space and in gauge space (the latter being
the neutron number N). The interplay between
these two types of "angular momenta" is thus
nicely illustrated. In particular, one can
read out at what neutron number the transi-
tion from near spherical to deformed shapes
takes place. Thus for Dy we see a gradual
decrease of N (transition spherical-
deformed), when going from I=0 to I ~ 6, as
discussed in the introduction and in sect.
2.

Comparing the phase diagrams of ¢,Gd,
¢sDy and ggEr (fig. 6), we observe the ten-
dency that the N¢ values increase and the Ig
values (transition g-band - s-band) decrease
when going from Gd to Er. The increase of N¢
indicates that the Gd-isotopes (in the
region N 2 88) are softer towards deforma-
tion than the Er-isotopes (cf. ref. '%)).
The suggested smaller deformation in Er
makes the orbitals easier to align (a larger
slope in a plot like fig. 9) and thus leads
to a decrease of Ic.

As shown in these phase diagrams, the
shape of some special nuclei (e.g. N=88)
will change from near spherical to well
deformed along the yrast line. Such a shape
transition may play an important role in
causing back bending in ordinary space (see
e.g. 1%)).

A support for an increase of the
deformation along the yrast line was recently
obtained by a Risg-Oslo collaboration'’). At
low spins for the nucleus 'g}Hos, they
observed a fairly large signature splitting.
As the odd proton is in the orbital
[523 7/2], originating from h11/2, this
requires a quite small deformation. Above
the backbending, caused by the alignment of
two i13/2 neutrons, no signature splitting
was observed in this 7/27-band. A possible
explanation is that the deformation has
increased!'’). This interpretation of the
data is consistent with the fact that when
the same band is observed in heavier isotopes
(with a large deformation), it does not show
any signature splitting.

5. The pair field at
high angular momentum
In sect. 2 we observed that most of the

odd-even energy difference disappeared at
angular momentum I ~ 14 when we compared
energies of positive-parity states in Dy-
isotopes. The high-spin yrast states of the
odd-N isotopes belong to the iq3/2-band. In
CHFB-calculations (sect. 3) of the quasi-
particle levels as functions of the rota-
tional frequency w ®), the levels of the
i13/2 high-j intruder shell penetrate into
the pair gap already at low rotational
frequencies. This explains why the energy of
the iq93/2 bands do not reveal the existence
of a pair field at high angular momentum.
However, if we had plotted the energy of the
negative-parity yrast states of the odd
isotopes in fig. 2, we would have seen a
significant odd-even energy difference up to
the highest spins.

To illustrate the difference between
the two parities, fig. 7 was prepared. We
have considered the Yb-isotopes, which to
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Fig. 7. Positive- and negative-parity yrast states
for ;0Yb drawn in a similar way as for ggDy in fig.
2. For I=10, 14, 18 and 22 the lowest positive-
(solid lines) as well as negative- (dashed lines)
parity states are exhibited. For odd nuclei, the
energy for even spin is defined from interpolations
in the favoured band. This is also the case for
negative parity in even nuclei if a band with odd
spins is favoured. The high-spin spectrum is known
also for lighter isotopes but the masses are not.
Indeed, the mass for N=94 has been extrapolated
from the heavier isotopes. Note that above spin 14,
it is only the negative-parity states which reveal
the existence of a pairing gap.

our knowled?e are best known in the high-
spin region!®-2'). The yrast levels are
plotted in a similar way as in fig. 2.
However, in fig. 7 the two parities have
been treated independently. As expected, the
i13/2 positive-parity levels of the odd
isotopes approximately coincide with the
yrast spectra of the even isotopes for

I z 14. The negative-parity yrast states on
the other hand, both for odd and even
neutron numbers, come at a substantially
higher energy all the way up to I=22. This
seems to be connected with the fact that
these states have one unpaired quasiparticle
in a negative-parity orbital.

In order to understand this difference
between the odd and the even parity states
we have to investigate the quasiparticle
spectrum at high frequencies. However, it
may be useful to first discuss a couple of
simpler cases, like the quasiparticle levels
in non-rotating nuclei.Thus,fig. 8 shows the
quasi-particle energies, E{ = VTéi-x)2+A§,
as functions of the Fermi energy,X. The
energies of the single-particle levels are
denoted by ej. The deformation (¢,e4) and
the pairing gap have been varied with A (or
neutron number) to be realistic for the
ssEr isotopes. In fig. 8 is also given the
energies of some measured band heads. The

E,
hw,
0.20
0.6 F
0.12
0.08 -
101 ]
1 | 1 1 1
640 645 650 655 660

Ahwo

Fig. 8. Theoretical quasiparticle levels for Er at
w=0. The deformation and the pairing gap has been
varied as a function of N as calculated for the
ground states of the Er—isotopeszz). Experimental
band-head energies for a number - as we believe -
relatively pure quasiparticle configurations in the
odd-N isotopes are also included. The position of
the experimental points has been adjusted in such a
way that the ground state coincides with the
corresponding theoretical level.

good agreement between theory and experiment
shows that these calculations can be
considered as quite reliable.

The energies E} of fig. 8 are obtained
from the simple BCS-equations. When the
nucleus rotates, the more involved CHFB-
equation (sect. 3) must be used instead. The
quasiparticle levels in the intrinsic system
can then be calculated as functions of the
rotational frequency,w '®). Such a figure is
provided in fig. 9. In contrast to fig. 8,
also the conjugate partner (the mirror image)
of each quasiparticle is shown at a negative
energy. Furthermore, the time-reversal
symmetry is broken for w#0 and each quasi-
particle level splits up into two branches
which can be distinguished by a new quantum
number, the signature, which takes the
values o = 1/2 and a = -1/2. At =0, the
energies of fig. 9 should, except for small
parameter differences, coincide with the
N=94 (A = 6.44 Wwo) energies of fig. 8. With
increasing w, we then see how the large pair
gap gradually disappears when the quasi-
particle levels dive down into the gap.
There is, however, a clear difference
between the (high-j) positive- and (low-j)
negative-parity levels. Thus, the positive-
parity levels ([642 5/2] at w=0 in fig. 9),
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Fig. 9. Quasiparticle energies for neutrons plotted
as functions of the rotational frequency w. The
deformation (€,€4), the pairing gap A and the Fermi
energy A have been chosen to describe the ground
state for lqubgq. For w#0, the time-reversal
symmetry is broken and the levels split into two
signatures which are distinguished by dashed and
solid lines, respectively. For each pair of
conjugate states, a label [NnzAQ] is indicated on
either the level with positive energy or the one
with negative energy, depending on whether the
corresponding single-particle level (for w=0) is
situated above or below the Fermi surface.

reach the middle of the gap at w/wg =~ 0.03
and then give rise to a back-bend when the
two-quasiparticle state become yrast.
However, no negative-parity quasiparticle
energy comes close to zero in the frequency
interval displayed in fig. 9 (the highest
frequency w/wo = 0.05 corresponds roughly to
angular momentum 30). Since the energy of
the quasiparticle level occupied by the odd
quasiparticle is equal to the excitation
energy relative to the even-even vacuum, we
can easily understand why the positive-
parity yrast states in the odd-N nuclei do
not show any significant energy difference
as compared to the even-even yrast states
above w/wp ~ 0.03 (I=14), while the
opposite is true for the negative-parity
yrast states. This understanding is obtained
with a fixed pairing gap and without
considering blocking effects.

We are now prepared to investigate the
quasiparticle energies for a fixed value of

Ei
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015 %
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0054 ™
91 e (642 5/2]——f : :
T
640 650 6.60 6.70
An/ha,
Fig. 10. Theoretical and experimental quasineutron

energies for Yb-isotopes at a fixed rotational
frequency, w/Wo = 0.03 drawn as functions of the
Fermi energy, A (i.e. the rotational frequency in
gauge space). The positive-parity levels are drawn
with solid (signature, 0=1/2) and short-dashed
(@=-1/2) lines, the negative-parity levels with dot-
dashed (0=1/2) and long-dashed (0=-1/2) lines. If a
level has reasonably pure Nilsson labels, these are
shown in square brackets [NnzAQ]; other levels are
only labelled [vm;a] where v indicates the number of
a level within its symmetry group, (mw,a), counted
from the Fermi surface and w is the parity. In some
cases, Nilsson quantum numbers are given in round
parenthesis, indicating the dominating component in
the wave-function. The dominating component of the
i13/2 levels lying inside the gap is also indicated
(for example [633 7/2] in the region

6.53 < A/Hwo < 6.66). The thin lines show the non-
interacting i13/2-levels. They are indicated with
thin lines also in fig. 9. For odd nuclei, due to
the blocking effect described in the text, it is
these non-interacting levels which should be compared
to experiment. The deformation has been varied in a
similar way as in fig. 8 while the pairing gap is
reduced by 20% relative to the experimental odd-even
mass differences. This reduced pairing gap varies in
the interval 0.10-0.12 Hwo for neutron numbers
N=91-99 and decreases for larger neutron numbers to
reach a value of ~ 0.06 Hwo for N=105. The neutron
numbers are given in the bottom of the figure. The
experimental energies are extracted from the observed
bands and interpolated to w/wo = 0.03 (corresponding
to I~ 10-14). Encircled symbols are used for the even
isotopes. When it is not obvious with which
theoretical level an experimental point should be
compared, this is shown by an arrow. The good agree-
ment between theory and experiment suggests that the
chosen pairing gap is approximately correct.
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w and drawn as functions of the Fermi energy
A. Such a diagram for w = 0.03 wp, roughly
corresponding to the frequency of the first
back-bend, is exhibited in fig. 10, where
it is evident that the single-particle
levels are mixed in a much more complicated
way than in the non-rotating case (fig. 8).
However, also for w/wg = 0.03, one clearly
observes a pairing gap, which survives for
all particle numbers shown. It is only the
high-j i13/2 levels, denoted by [1+, -1/2]
and [1+, 1/2], which penetrate deeply into
this gap. Other orbitals like [514 7/2] and
[521 1/2] which come from lower-3j shells
behave roughly as in the w=0 case (fig. 8).

It is interesting to observe that the
difference between the two parities survive
through all the particle numbers of fig. 10.
However, with the Fermi level in the upper
part of the iq3/2-shell, the positive-parity
orbitals should become more difficult to
align and thus more similar to the negative
parity orbitals. This is also what comes out
from the quasiparticle levels of fig. 10.
One would thus expect that for the heavier
isotopes the odd-even energy difference
would remain to higher spins also for the
positive-parity states in the odd isotopes.
Furthermore, the general appearance of the
I=10 states in fig. 7 appear to support this
conclusion.

In the rotational case of fig. 10, the
experimental energies must be interpolated
from the observed states in the spin region
I ~ 10-14, see ref. '®). Before comparing
theoretical and experimental data in fig.
10, it is also necessary to understand how
the presence of an excited quasiparticle in
one of the lowest iq3/2-levels effects the
interaction between the quasiparticle levels
a and -b (or b and -a) of fig. 9, that is
the so called blocking effect. Thus, in the
favoured i13/2-band the levels a and -b are
both filled (the levels b and -a are empty),
which means that the interaction at w/wo =
0.035 only mixes the wavefunctions of two
occupied levels, leaving the total many-
particle wavefunction unchanged. The
experimental quasiparticle energies, will
therefore behave as if there were no inter-
action, following the thin downsloping solid
line in fig. 9, which is a theoretical
reconstruction of the non-interacting quasi-
particle level. When making comparisons with
experimental quasiparticle energies one must
therefore use the non-interacting quasi-
particle levels, which are also included in
fig. 10 as the thin lines [A], [B], [-2]
and [-B].

The frequency at which the non-
interacting quasiparticle levels cross
depend on A. At the frequency w/wo = 0.03
used in fig. 10 we are below the crossing
frequency for A > 6.46 KHwpo and above the
crossing frequency for A < 6.46 Hwg. This
increase of the crossing frequency with
increasing X is a manifestation of the fact
that the low-energy iq3/2-orbitals are more
easy to align than those higher up in the
shell. The strong oscillations in the
quasiparticle levels [1+; 1/2]1, [1+; -1/2]
and their conjugate partners is a result of
the oscillating interaction matrix element
at the first crossing that involves these
levelst®r23)

When comparing experimental and
theoretical quasiparticle energies in fig.
10, we use the favoured iq3/p band as a
reference for the odd isotopes. Also the
energies which can be extracted from the
side-bands of even isotopes are given
relative to the favoured iq3/2 level. This
explains why one experimental point always
coincide with the level [A] in fig. 10.

It is very satisfying that relative to
level [A], the experimental quasiparticle
energies show the same pattern as the
theoretical ones. The negative-parity states
are systematically pushed up in energy
compared to the positive-parity states. This
would not be the case in absence of pair
correlations, since then the positive- and
negative-parity states would alternate as
the lowest states, when the single-particle
levels cross each other. Furthermore, the
good quantitative agreement between experi-
ment and theory in fig. 10 indicates that,
for one- and two-quasiparticle configura-
tions in the vicinity of the backbending
frequency, the gap parameter must be close
to the one used in the calculation.

6. Summary and conclusion

In the present paper we have studied
systematics of nuclear properties as a
function of particle number and spin.

Special emphasis was put on the question of
shape transitions. The analogy between such
transitions and the transition to for example
two-quasiparticle states at high spin (back-
bend in gauge space and in ordinary space,
respectively) was pointed out. The variation
with spin of the critical particle number,
No, where the shape transition occurs was
studied. Two methods were used to extract Ng
(sect. 2 and sect. 3). In sect. 2 we thus
studied irregularities in the experimental
shell energies. In sect. 3 these
irregularities, manifesting the shape transi-
tion, were blown up in plots of the neutron
number versus the Fermi energy.In sect. 4,all
the information on N¢ and I were put together
in phase diagrams (fig. 6) to illustrate the
interplay between rotation, deformation and
pairing. We then studied the single-particle
degree of freedom in some detail. The
consequences of a pairing gap on the high-
spin yrast spectrum was investigated.

The main conclusion of our study are:

i) The deformed regions appear to become
larger with increasing spin. Transi-
tional nuclei may thus be vibrational
like at low spin and rotational at high
igin (e.g. '2%Gdgs, 'E¢Dyss and

28Erss) .

ii) In the sequence of isotopes ¢4Gd, 6Dy
and ¢gEr, the Gd and Dy isotopes get
deformed at a lower N-value than the Er
isotopes. This is so in s?ite of the
semimagic properties of “6Gq.

iii) A strong binding for the 0" state of a
nucleus may have disappeared already
for 2% state (fig. 3).

iv) In the rare-earth region, the odd-even
energy difference has almost dis-
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appeared for I > 14. However, if both
positive- and negative-parity yrast
states are considered, the existence
of a substantial pairing gap also at
high spin is revealed.

V) The systematics of low- and high-spin
states as a function of particle number
is well described by calculated quasi-
particle energies.

Our studies could become more complete
if the masses and yrast spectra were known
over larger regions of neutron (or proton)
number. For example, for the Yb-isotopes,
the yrast spectra are quite well-known for
the neutron-deficient isotopes with N=90-94
while the masses are not known. Similarly,
if the masses were known for the neutron-
deficient Hg-isotopes, we believe that some
interesting results could be obtained with
the present methods.
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