J. Genevey

Institut des Sciences Nucléaires, Grenoble, France

G. Marguier, A. Charvet,

Institut de Physique Nucléaire, Lyon, France

C. Richard-Serre,

IN2P3/CERN, Genève, Suisse

A. Knipper,

Centre de Recherches Nucléaires, Strasbourg, France

J. Crawford*,

Mc Gill University, Montreal, Canada

and the ISOLDE Collaboration

Abstract

The decays of neutron-deficient $^{117}_{\text{Cs}}$, $^{119\text{m+g}}_{\text{Cs}}$, $^{121\text{m+g}}_{\text{Cs}}$ have been investigated at the Isolde facility. Systematics of low-lying energy levels, both in cesium and xenon nuclei are presented.

1. Introduction

The decays of even-mass cesium isotopes from A=124 to A=116 have already been studied by our group $^{1)}$ at the Isolde facility. Until recently, little was known about the decay of odd-A cesium nuclei with A<125.

Earlier this year our study of the decay of 123m+gCs was published 2) and here, we present preliminary results concerning the β -decay of neutron deficient 117, 119m+g, 121m+g Cs to the related xenon levels. Systematics of low-lying energy levels in odd-A cesium and xenon nuclei are presented, including our own data and published results.

2. Experimental procedure

Cesium isotopes were produced at the Isolde separator using the target of molten lanthanum bombarded by the 600 MeV proton beam of the CERN $\,$

synchrocyclotron. The on-line mass separated cesium sources were collected and carried in front of the detectors using a tape transport system. They were analyzed through a complete set of spectroscopic online measurements including studies with high resolution Ge(Li) and Si(Li) detectors, a $4\pi\beta$ plastic scintillator, $\gamma-\gamma-t$, $\gamma-e^--t$, $4\pi\beta-\gamma$ coincidences, an $e-\gamma$ multipolemeter experiment, and multianalysis of the gamma-rays. The data were recorded with a Plurimat 20 computer.

3. $\frac{121 \text{m}}{\text{Cs}}$ decay and odd-A Cs level structure

Preliminary results have been published previously $^4)$. The half-lives of $^{121m}\text{Cs}\,(\text{T}_{1/2}=122\pm3\text{s})$, $^{121}\text{gCs}\,(\text{T}_{1/2}=155\pm4\text{s})$, $^{119m}\text{Cs}\,(\text{T}_{1/2}=29\pm2\text{s})$, and $^{1199}\text{Cs}\,(\text{T}_{1/2}=44\pm2\text{s})$ were measured with better accuracy. In the e- γ multipolemeter experiment for A = 121, a 68.5 keV line was found, with α_L and α_M values which indicated a $\Delta\ell=3$ character. The presence of K $_{\alpha}$ (Cs) X-rays does not allow us to measure its α_K^{α} value nor to distinguish between E3 and M3 multipolarity for this transition. However, it may be pointed out that the Weisskopf estimate for the lifetime of a 68.5 keV M3 line is in agreement with the measured half-life of ^{121m}Cs ; hence this line probably represents the isomeric transition between the $9/2^+$ level and the ground state.

Figure 1

^{*} Present address, Institut des Sciences Nucléaires, Grenoble, France

Figure 2

Fig. 1 shows the systematics of odd-A cesium nuclei. It includes spin measurements from Ekstrom et al 5), Fisher et al 6) and data from Garg et al 7), d'Auria et al 8) as well as the present results. The $(9/2^+)$ spin and parity for $^{117}\mathrm{Cs}$ was tentatively proposed according to the $\beta\text{-decay}$ of this nucleus (see section 4). No half-life greater than 1s belonging to a hypothetical isomeric state, has been found in $^{117}\mathrm{Cs}$.

4. Level structure in $117,119,121_{Xe}$

Decay schemes for 117,119m+g,121m+gCs have been built from available experimental data. From these, we propose a spin $5/2^+$ for the ground state of 119Xe and 121Xe. A few details of the level structure at low excitation are shown in figs.2 and 3, which present the systematics of the series of odd-A Xe isotopes. It may be seen that the $1/2^+$ state, which was the ground state for nuclei with A > 123 lies at an excitation energy of 153.9 keV in 121Xe and 246.9 keV in 119Xe. It decays to the ground state by an E2 transition. The half-life of this line was found to be \sim 80 ns in both nuclei, in agreement with the Weisskopf estimate. As in heavier isotopes, the $3/2^+$ level lies \sim 90 keV above the $1/2^+$. The first members of $\Delta I = 2$ bands built on these levels (clearly seen in 123,125Xe 9,10) are found in 121Xe with energy spacings close to those in the 120Xe core. The $7/2^-$ state $(g_{7/2}^{-1})$ was also observed.

For the negative parity states (h_{11/2} system) in odd-A ¹²³⁻¹²⁹Xe a level pattern was proposed by Gizon and Gizon ¹¹⁾, and Luukko et al ^{9,10)}. In ¹²¹Xe the same arrangement was established in our decay study and from in-beam experiments ¹²⁾. The tendency for the ^{9/2} level to rise in energy and for the ^{11/2} level to fall as A is decreased is confirmed by their relative position in ¹¹⁹Xe (our measurements) and ¹¹⁷Xe ¹³⁾.

In this last nucleus, two E1 transitions are observed in the decay studies. The first ($E_{\gamma}\!=\!205 keV$) which de-excites the $11/2^-$ level was also observed by Chowdhury et al 13), although the second, from the 7/2 level ($E_{\gamma}=243$ keV) was not observed in that in-beam experiment. This permits us to establish the excitation energy of the 7/2 level and to propose, tentatively, 9/2 for the spin and parity of the ground state of ^{117}Xe . This ground state is strongly fed by an allowed β transition from ^{1179}Cs , which may also have $J^{\pi}=(9/2^+)$.

A complete report on this study will soon be published.

Figure 3

References

- J. Genevey-Rivier, A. Charvet, G. Marguier,
 C. Richard-Serre, J. d'Auria, A. Huck, G. Klotz,
 A. Knipper, G. Walter, the Isolde Collaboration
 Nucl. Phys. A283 (1977) 45
 - A. Charvet, J. Genevey-Rivier, L.C. Carraz, C. Richard-Serre, A. Knipper, G. Walter, the Isolde Collaboration, J. Phys. Lettres, 38 (1977) L241
 - G. Marguier, A. Charvet, J. Genevey, C. Richard-Serre, A. Knipper, G. Walter, the Isolde Collaboration, Nucl. Phys. A342 (1980) 301
- G. Marguier, A. Charvet, J. Genevey, C. Richard-Serre, A. Knipper, G. Walter, the Isolde Collaboration, J. Phys. G., Nucl. Phys. 7 (1981) 101
- H.L. Ravn, S. Sundell, L. Westgaard, Nucl. Inst. & Methods, 123 (1975) 131
- A. Charvet, J. Genevey-Rivier, A. Huck, G. Klotz,
 A. Knipper, G. Marguier, C. Richard-Serre,
 G. Walter, Conf. on Nucl. Phys. Edinburgh, 1978
 p. 97
- C. Ekström, S. Ingelman, G. Wannberg, M. Skarestadt, Nucl. Phys. A292 (1977) 144
 C. Ekström, G. Wannberg, J. Heinemeier, Phys. Lett. B76 (1978) 565
- H. Fisher, P. Dabkiewicz, P. Freilinger, H.J. Kluge, H. Kremmling, R. Neugart, E.W. Otten, Z. Physik, A284 (1978) 3
- U. Garg, T.P. Sjoreen, D.B. Fossan, Phys. Rev. C19 (1979) 207 and 217
- J.M. d'Auria, J.W. Grüter, E. Hagberg, P.G.Hansen, J.C. Hardy, P. Hornshoj, B. Jonson, S. Mattson, H.L. Ravn, P. Tidemand-Petersson, the Isolde Collaboration, Nucl. Phys. A301 (1978) 397
- H. Helppi, J. Hattula, A. Luukko, Nucl. Phys. A332 (1979) 183
- 10.A. Luukko, J. Hattula, H. Helppi, O. Knuuttila, F. Dönau, Nucl. Phys. A357 (1981) 319
- 11.A. Gizon, J. Gizon, Z. Phys. A289 (1978) 59
- 12.V. Barci, A. Gizon, J. Crawford, J. Genevey, J. Gizon, A. Pløchocki, communication to this conference
- 13.P. Chowdhury, U. Garg, T.P. Sjoreen, D.B. Fossan, Phys. Rev. C23 (1981) 733