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1. Introduction

In
systems

the present work the theory of finite Fermi-
is applied to description of the multipole
(S=0) and spin-multipole (S=1) charge-exchange
nuclear excitations. The experimental data on the
isobaric analog states (IAS) and Gamow-Teller reso-
nances (GTR) recently obtained from the (p,n) studies
are used to specify some characteristics of the
charge-exchange effective interactions which are
then employed to predict properties of the L =1,2,3
resonances.

The calculations have shown that to reproduce
the observed energy of IAS and its escape width,
one should introduce the strong density dependence
in the isovector interaction. Such a density depen-
dence affects noticeably the energies of other multi-
pole resonances.

The influence of the one-pion-exchange poten-
tial on the §-1 resonances is studied. The value
of the Landau-Migdal parameter g” 1is deduced by
comparing the calculated energies of the GTR with
the experimental ones. The dependence of the
strength functions on the momentum transfer is also
studied. Our calculations have shown that the 8=0
and S=1 resonances with the same spin and parity
possess quite different properties.

The microscopic calculations were carrled out
for such isobaric palrs as 9%Fe- 5600, 907~ ONp
and 208pp-208Bj byt in this short report we discuss
mainly the results obtained for the latter case.

2. Effective interactions

The 1sosp1n—dependent 1nteract1ons used in this
paper were chosen in the form
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One can see that the isovector amplitude ¥~
contains both the zero and finite range components
and the term with the linear density dependence
(p*=pp+p p ), the latter arising from the consistency
condition between the irreducible amplitudes of two-
and three-partlcle interactions!), The function
v is taken in the Yukawa form with the range
Iy = 0.8 fm and is normalized as fv@) ar =

The spin—isospin repulsive 1nteract1on G has
the familiar Landau-Migdal form. It is generalized
by including the direct one-pion-exchange amplitude
‘G, which contains both the effect of renormaliza-
tion of the pion-nucleon interaction in nuclear
matter and the contribution of virtual isobar-hole
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excitations. The latter is effectively taken into
account through the polarization operator Pp =
=-0.9q% /(1+0.23q%/m2) (see, e.g. ref. 2)y,

The following parameters were fixed in calcu-
lations: ¢ =0.05, g; =—1.15, Co = 300 MeV fm3 and
po =0.172 fm™3.

The isotopic invariance of nuclear interactions
gives rise to the consistency condition!) between
3~ , the isovector demnsity p~=pp—pp and the iso-
vector potential U :

U@ =fFET)p" @) a”. )
For a given U-'G) this condition leads to the rela-
tion between strength parameters a3 ,a’ and b,
which can be written in the form of an integral
equation for the potential symmetry energy:

U@ @ daf=[p O FE.0)p @NdTdr" =
3)
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Note that the amplitudes 'G™ and G, make no
contribution to the self-consistent field, hence we
have no consistency conditions for them.

3. Effective fields and strength functions

The charge-exchange (p,n~Y) and (n,p~!) excita-
tions are described by means of the effective fields
V which appear in the nucleus upon the application
of the external field Vg . The integral equation for
V can be written3) in a symbolic form

V=e,v0:+Fav, %)
where e, is the local quasiparticle charge with
respect to the field Vo and A the particle-hole
propagator.

The external fields were taken as

v ) =l@L+) 1/ 5 @D Yy

V) @ a,0) =[@L+ D/ T () loxY 1Py, (5)

where jj, is the spherical Bessel function and g
the momentum transfer. The former fields generate
familiar S=0 multipole excitations, while the
latter give rise to the 8=1 spin-multipole ones
with J=L, L+1 . In the limit q-» 0 expressions (5)
become the standard operators involved in allowed
beta decays. In a general case, using eq. (5) one
can study the form factors of resonance states as
well as the redistribution of the transition strength
over the excitation spectrum with changing q .

The excitation spectrum in the field V is cha-
racterized by the strength function

S(w, q) =—%Im(qu0AV), (6)
where o is the excitation energy. The particle-hole
propagators A are evaluated and eq. (4) for the

effective field V is solved in the coordinate space
which makes it possible to accurately allow for the
one-particle continuum in our calculations. Thus we
work here using the complete one-particle basis.



4. Results and discussion

Given below are the numerical results for the
isobaric pair 208Pb-298Bi. The one-particle basis was
generated by the Woods—Saxon potential (r=n,p):

7 7 ryg 1 afp = -
U1 =_'V0 ‘fr (r)_VES ‘(TO) T -—dl‘—'(g " 8)s
r- R, -1 T /3 @
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The Coulomb potential has a standard form correspond-
ing to the uniformly charged sphere of the radius
1.2A1/3 fm. The following values of the parameters
are used:

V! = 47 Mev, Vz: =211 MeV, rg =122 fm,

n
0

. ®)
VY =60.2MeV, V0 =27.5 MeV, rg=1.26fm,
a = 0.65 fm.

Such a parametrization reproduces the experimental
values for the rms charge radius <r2>” = 5.5 fm and
the neutron-proton rms difference Ar = 0.1 fm. To
reproduce the observed ope-particle spectra near
208ph  the well depth V{ were varied within =1 MeV
for each £j . Then the obtained one-particle basis
was used in calculations for all the modes discussed
below.

According to the consistency condition the iso-
vector potential Uy =U -U, introduced through eq.
(7) should coincide with the potential U™ given by
eq. (2). We have tried to satisfy this condition
using the following procedure. Equation (3) in which
the quantities U™ and p~are replaced by those cor-
responding to the Woods-Saxon potential (7) was used
to determine the value of ajf , the other parameters
(a2, and b ) being varied so as to achieve the best
consistency between U~ (eq. (2)) and Uyg (especially
in the surface region) and to obtain the experimen-—
tal value 18.85 MeV for the IAS energy (Coulomb
shift energy). The potentials U~ and Uygprove to be
close to each other in the surface region provided
there is a strong density dependence in 7 (see
fig. 1). It should be noticed that the IAS energy
increases from 16.3 to 18.85 MeV with the increase
of b from O to 3.94. The variation of the strength
of the finite range interaction a] does not affect
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Fig. 1. The Woods—Saxon isovector po-
tential Uyg (solid line) and
self-consistent potentials U~
(dashed lines) calculated from
eq. (2) with the parameters:
1)a§= 0.16,a7 = 0.8, b =0;
2)a’ = 1.72,a; = 0.8, b =3.94;
3)ay = 0,a,=2.66, b =4, In
all the cases the calculated
value of B is equal to
29.5 MeV,

sym

noticeably the IAS energy, but it plays an important
part in smoothing down the volume oscillations of

U™ and in changing its slope at the surface. For this
reason we have used both the zero and finite range
amplitudes in ™ (compare curves 2 and 3 in fig.l,
both corresponding to the same IAS energy 18.85 MeV).
Thus the following best-fit set of the parameters

was obtained:

agy =172, a; =0.8, b=3.94. 9)
We would like to emphasize that the neutron skin
thickness plays an important role in the fitting
procedure. Indeed, if we use the Woods—Saxon poten—
tial with r§=rf = 1.24 fm which yields <r2>%=5.4 fm
and Arnp = 0.23 fm, then for any variations of the
force parameters in J~  satisfying eq. (3) the IAS
appears at least 1 MeV below the observed one.

In terms of the force parameter f~ =2f’ of the
theory of finite Fermi systems3 the set (9) corres-
ponds to the change of f~ from fi ~1 inside the
nucleus to f_, =5 outside of it. While such a sharp
interpolation is needed to achieve an agreement
between theory and experiment, it does not seem
quite realistic. To elucidate this problem the fully
self-consistent calculations are in progress now and
the results will be published elsewhere. Anyhow it
is already apparent that the density dependence of
the 3~ interaction is of a crucial importance for
the self-consistent description of the IAS and other
S = 0 multipole resonances. In order to demonstrate
the effects expected due to the interpolation in the
f-channel, we present below the results for the set
(9) and for another one which satisfies relation
(3) at b =0, i.e. without any interpolation.

As to the spin-isospin interaction, the Landau-
Migdal parameter g° was deduced by comparing the
calculated energy of the GIR with the experimental
one S ~ 19.2 MeV with respect to the ground state
of 298pp ). In the case of g, =0, we have found
g’ = 0.95, while the inclusion of the one-pion
exchange (g, = -1.15) increases g” to 1.1.

Shown in fig. 2 are the strength functions for
the TIAS and GTR calculated with the parameters (9)
and g” = 1.1,g, = -1.15, respectively. Due to the
influence of the one-particle continuum which is
properly included in our calculations the resonance
states above the neutron (proton) threshold in the
daughter nucleus with Tz=Ty-1(Tz=Tp+1)acquire the
escape width I'gge.The estimates of I'gg, are given in
the figure.In the case of IAS,the value of Iy, is
close to the total experimental width (= 230 keV)3);
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Fig. 2. Strength functions for
the TIAS and GTR in 208p;, .
The energy is given with re- 208
spect to the ground state of Pb.
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in the case of GTR, the calculated ['gg, is much
smaller than the experimental width observed in (p,n) -
reaction (= 4.1 MeV)%), Such a difference is
associated with the difference of the isotopic spin
in these resonances. The beta-decay matrix elements
shown in fig. 2 are also estimated on the basis of
the strength functions obtained:

M2 =4 [S(0, q=0) do ~ 27 T, Sy, » (10)
where Spmay 1s the maximum value of S . The value
of M43T=73 means that approx1mate1y 55% of the sum
rule 3GQ Z) for GT beta-decay is located in the GTR.
This is 1.5 times greater than Mgy deduced from
the (p, n) studyA). To achieve an agreement with the
experimental data, it is sufficient to introduce the
local charge e [ar]z(1—2§s) =~0.8 for the axial-vec-
tor field in accordance with the traditional esti-
mate 4 < 0.1 3), But our calculations for GIR in
0Np y1e1d Mgt = 22 which is about 3 times as
large as the experimental result®). Such a big dif-
ference cannot be removed by introducing the local
charge alone. The pairing correlations in the ground
state of “°Zr do not essentially improve the situa-
tion since these correlations reduce Mgr by
approximately 157 only. Thus the problem of the GT
strength quenching in medium and heavy nuclei re-
mains open.

To simplify the numerical calculations for
greater energy intervals, we introduced the shift
yp of the poles of the one-particle Green func-
tions into the complex plane (i.e., the damping of
quasiparticles). As a result, all the states acquire
the artificial width I'y=4yp in addition to the
escape width. This procedure, of course, does not
affect the sum rule. All the results discussed below
(figs. 3-6) are obtained with I'p = 1 Mev.

In fig. 3 there are shown the stren%th functi-
ons for the J7=1%"(L=0) excitations in calcu-
lated for several sets of parameters g° and g, as
well as for various momentum transfers. It is seen
that the effective interactions change essentially
the distribution of the transition probability and
give rise to the GTR. The inclusion of the one-pion
exchange does not change qualitatively the behaviour
of the strength function at q =0. The arrowed num-—
bers in the upper part of fig. 3 show the relative
contribution of the 1% excitations to the sum rule
up to the corresponding energy (for &glorl=1),
approximately 90 per cent of the sum rule being
exhausted below 40 MeV. One can see from the lower
part of fig. 3 that the shape of the strength
function chan%es essentially with the increase of q .
For q =1 fm~! we observe the relative increase of
S(w) 1n the low-energy region, the peak in the GTR
region almost disappearing and the new broad peak
appearing in the vicinity of 25 MeV. We should like
to emphasize that the one-pion exchange is largely
responsible for the relative enhancement of S(w)
at small energies though the value of g° = 1.1 used
in the calculations is noticeably greater than the
estimated critical value of g; =0.6 which corres-
ponds to the instability of the pion-like modes with
positive parity for the nuclei considered.

Figs. 4-6 display the strength functions
S(w, q =0) for the multiplets of excitations with
L = 1,2,3. Horizontal bars in figs. 4 and 5 indicate
the locations and widths of the L =1 and L =2 reso-
nances observed in the (p,n) experiment4’7 . The
one-pion exchange potential contributes to S(w) only
in the J=L +1 cases (parts a and b 1in these
figures), while in the J=L cases S(®w) depends on
both the G~ and J~ amplitudes, the spin-flip
(§=1) resonances (part c) being mainly sensitive
to the variation of the parameter g’ , and the S =0
resonances (parts d), to the variation of the force
parameters in J~. It can be seen that the interac-
tions shift the unperturbed distributions with L =1
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Fig. 3. Strength functlons for the 1 L =0
excitations in 298Bj. . Upper part:
S(w, q=0) at g —g,,—O (dotted line),
at g’ =1.1, g, =0 (dashed line) and
at g’ =1.1, g, =-1.15 (solid line).
Lower part: S(w,q) at g’ =1.1, g, =
= ~1.15 for various q . The location
and the width of the GTR4) are shown
with the horizontal bar.

and L =2 (shown by dotted lines) in the right direc-
tion and make the resonance structure in S(w) much
more pronounced. For theL =3 excitations, the dist-
ributions come out fragmented.

The inclusion of the density dependence in ~
noticeably pushes the § =0 resonance up. In the
dipole case for example, the maximum of the corres-
ponding distribution shifts through almost 4 MeV as
b increases from O to = 4 which should be compared
with the 2.5 MeV shift in the case of IAS.

The influence of the one-pion exchange on S(w)
is also noticeable. One can note that its effect on
the resonance energies cannot be simulated by a
simple renormalization of g’ because this renorma-
lization greatly depends on L . Indeed, when g, » O
we should decrease g° from 1.1 to 0.65 in order to
keep the O~ resonance at 28 MeV. If the same proce-
dure is applied to the GIR the value of 8  should
be decreased from 1.1 to 0.95 only, as was mentioned
above. In the case of the L =2 spin-quadrupole reso-
nance with S =1 (fig. 5) the corresponding decrease
of g° is even more pronounced.

By comparing our results with the experlmental
data%s7) the conclusion can be drawn that in the
regions of the observed L=1,2 resonances one should
expect the contribution from all the spin-multiplet
modes.
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Fig. 4. Strength functions S(w, q=0) for theL=1, 8§=0,1-exci-
tations in Bi . Dotted lines: unperturbed S(w,q=0)
when the effective interactions are switched off; dashed
(solid) lines in parts a) and b): calculations at g’ =1.1,
g,=0 (g =1.1, g, = -1.15); solid lines in parts c) and
d): calculations with the force parameters of eq. (9) and
with g’= 1.1; dashed line in part d): S(w,q=0) at b=0 (this
case corresponds to the curve 1 in fig. 1); horizontal bars:
the location and the width of the L=1 resonance s 7).
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Fig. 5. As in fig. 4 but for the L =2 excitations.
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Fig. 6. As in fig. 4 but for theL =3 excitations and dashed
lines in parts a) and b) corresponding to g’ =0.95 and g, =0.
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