J. Treherne*, R. Beraud⁺, A. Charvet⁺, R. Duffait⁺, J. Genevey*, M. Meyer⁺.

Up to now, a very little information has been available on Cadmium isotopes with A < 103, and only the half-life on the ground state of $^{102}\mathrm{Cd}$ was known. Recently, the new isotope $^{102}\mathrm{In}$ (T $_{1/2}=24\pm4$ s) which feeds the first levels of $^{102}\mathrm{Cd}$ by $\beta\text{-decay}$ has been identified using an on-line mass isotopic separator. This work has been carried out by the Lyon-Grenoble collaboration $^{1)}$. This study has allowed us to extract the high spin level structure of $^{102}\mathrm{Cd}$, from the in-beam experiments, observed in the $^{92}\mathrm{Mo}\,(^{12}\mathrm{C},2\mathrm{n})$ reaction.

 $\frac{\text{Fig. 1}}{92}$: Level scheme of $\frac{102}{2}$ Cd deduced from $\frac{92}{2}$ Mo($\frac{12}{2}$ C,2n) $\frac{102}{2}$ reaction, * indicates composite lines.

The 102 Cd nucleus has been investigated at 50 MeV bombarding energy with the 12 C beam of the Grenoble variable energy cyclotron. The level scheme shown in fig. 1 has been established by using data from γ ray single and $\gamma-\gamma-t$ coincidence experiments. Angular distribution measurements were performed at several angles including 0° and 90° relative to the incident beam.

An isomeric state was found at 2.718 MeV energy. Its half-life was measured by γ -RF coincidence and estimated to be approximately 25 ns. The uncertainty in this value is due to the weak feeding of this isomeric level ($^{\circ}$ 10%). Moreover the 157.4 and 487.5 keV transitions are strongly mixed with lines belonging to other reaction products.

Fig. 2 : Systematics of light even Cadmium nuclei

The 923 keV line with an A_2 = + 0.19 $^+$ 0.09 seems to be a pure E_2 transition. Thus the spin of the 2560.8 keV level is probably 6^+ . It should also be noted that in 104,106,108 Cd (fig. 2) a second 6^+ state is excited from the nuclear reaction. The energy spacing between 6^+ levels is minimum at A = 106. The second 6^+ state can be interpreted as a two quasi-particle excitation (vg 7/2) $_6^2$ +.

REFERENCE

R. Béraud, J. Treherne, A. Charvet, R. Duffait,
J. Genevey, A. Gizon, J. Gizon, M. Meyer,
Zeit. für Phys., A 299 (1981) 279.

^{*}Institut des Sciences Nucléaires (et IN2P3) 53, avenue des Martyrs, 38026 Grenoble-Cedex, France

⁺Institut de Physique Nucléaire (et IN2P3) Lyon-1 43, Boulevard du 11 novembre 1918, 69622 Villeurbanne-Cedex France.