A STUDY OF LIGHT NEUTRON-RICH NUCLEI BY TWO-BODY NUCLEAR REACTIONS

F. Naulin, C. Détraz, M. Roy-Stephan, M. Bernas, J. de Boer*, D. Guillemaud, M. Langevin, F. Pougheon and P. Roussel

Institut de Physique Nucléaire B.P. no. 1, 91406 Orsay, France

Abstract

 $^{14}\mathrm{C}$ or $^{18}\mathrm{O-induced}$ two-body nuclear reactions are used to measure the mass excess and in some cases the excited state energies of $^{14}\mathrm{B}$, $^{18}\mathrm{C}$, $^{18}\mathrm{N}$ and $^{19}\mathrm{N}$. Upper limits only are obtained for the cross sections of the ($^{14}\mathrm{C}$, $^{14}\mathrm{Be}$) and ($^{18}\mathrm{O}$, $^{22}\mathrm{O}$) reactions.

1 - Introduction

Charge-exchange, double charge exchange and complex rearrangement reactions induced by the $^{14}\mathrm{C}$ and $^{18}\mathrm{O}$ beams from the Orsay MP-Tandem have been used to produce the neutron-rich nuclei $^{14}\mathrm{Be}$, $^{18}\mathrm{B}$, $^{18}\mathrm{N}$, $^{19}\mathrm{N}$ and $^{22}\mathrm{O}$. For each of the two-body reactions studied, we tried to observe the exotic nucleus itself with an experimental method which is described in detail elsewhere $^{1,2,3,4)}$.

The reaction $^{48}\text{Ca}(^{14}\text{C},^{14}\text{Be})^{48}\text{Ti}$ was used to try to measure the mass of particle-bound ^{14}Be . The target was 1.3mg thick, the incident energy was 87.4 MeV and the angle of the detected ejectiles was in the range between 4° to 8°. The solid angle of the detecting system was 4.8 msr. No ^{14}Be event was detected within an energy range of 8 MeV encompassing the expected energy of ^{14}Be particles calculated from the mass predictions. One single event would have corresponded to 20 nb sr $^{-1}$ in the laboratory system.

 $3-\frac{14_B}{14}$ The $^{14}\text{C}(^{14}\text{C},^{14}\text{B})^{14}\text{N}$ single charge exchange reaction was induced on a 50µg cm $^{-2}$ ^{14}C target. The energy spectrum of the ^{14}B emitted nuclei appears in fig. 1.

Fig. 1

The ground state peak corresponds to a 23.67 \pm 0.03 MeV mass excess for ^{14}B . This is in agreement with previous values $^{1,5)}$. The ground state cross section is 7 $\mu b~\text{sr}^{-1}$ in the laboratory system.

However there is no evidence for the reported (excited level at 0.74 MeV. One event corresponds to an excitation energy of 0.575 MeV. The full width at

A total of 43 18 C nuclei have been produced in the 48 Ca(18 O, 18 C) 48 Ti reaction on a 1.3 mg/cm² thick 48 Ca target. The energy spectrum of these nu-

Fig. 2a

Fig. 2b

Fig. 2c

half maximum of a peak in the energy spectrum is 120 keV. The total statistics collected so far in our study of $^{14}{\rm B}$ yields 50 events for the $^{14}{\rm B}$ ground state and none for the reported excited state at 0.74 MeV (ref.¹) and this work). Therefore either this level does not exist or its production is strongly inhibited in the $(^{14}{\rm C}, ^{14}{\rm B})$ reaction.

^{*} On leave from München Universität (W. Germany)

clei is given in fig. 2c, along with the spectra of $^{16}\mathrm{C}$ and $^{17}\mathrm{C}$ (fig. 2a and 2b, respectively) simultaneously collected.

The $^{16}\mathrm{C}$ spectrum provides an energy calibration. The 14 events lying in a 1 MeV interval at high energy in fig. 2c are assigned to the ground state transition. Their centrold corresponds to a 24.82 \pm 0.3 MeV mass excess for $^{18}\mathrm{C}$ and their laboratory cross section is 40 nb sr $^{-1}$.

The mass measured agrees with the value $24.91~\pm~0.15~\text{MeV}$ obtained from the $^{18}\text{O}(~\pi^-,~\pi^+)^{18}\text{C}$ reaction $^6)$ and the predictions from the Garvey-Kelson formula calculated $^6)$ with the most recent values of the ^{17}C and ^{19}N masses.

The $(^{18}\text{O}, ^{18}\text{C})$ reaction is the first double charge exchange nuclear reaction observed which increases T. The difference between the $(^{14}\text{C}, ^{14}\text{Be})$ and $(^{18}\text{O}, ^{18}\text{C})$ cross sections should be due to the difference between the reaction Q-values, -33.68 MeV and -21.33 MeV, respectively.

$$5.$$
 ^{18}N

The energy spectrum (fig. 3) of the $18_0(18_0,18_N)^{18}\mathrm{F}$ reaction confirms the occurence of a (0.575 ± 0.025) MeV excited state in $^{18}\mathrm{N}$ reported in ref.1). The $18\mathrm{N}$ mass measured is 13.207 ± 0.035 MeV, in agreement with previous values 1 ,5).

Fig. 3

6. ¹⁹N

The complex rearrangement reaction $18_0(18_0,19_N)17_F$ was used to study 19_N . The 19_N energy spectrum is shown in fig. 4. Two unknown excited states of 19_N appear at 1.12 ± 0.04 and 1.59 ± 0.04 MeV. The 19_N mass excess is measured as 15.856 ± 0.05 MeV in agreement with but more accurately than previous reported values 7.8). The laboratory cross section for the ground state transition is $4.9~\mu b~sr^{-1}$.

Fig. 4

7.
$$\frac{22}{0}$$

An attempt was made to observe $^{22}\mathrm{O}$ from the $18_0(^{18}\mathrm{O},~220)^{14}\mathrm{O}$ reaction between 4° and 8°. No event was obtained in an energy range of $^{\pm}$ 2 MeV around the expected position from the reported $^{22}\mathrm{O}$ mass $^9)$. On event would have corresponded to a 42 nb sr $^{-1}$ laboratory cross section.

A 450 nb sr $^{-1}$ laboratory cross section was measured elsewhere 9) at 10° for the (180 , 140) reaction on 180 . If one assumes that the cross section measured 9) at 9 0 at 9 1 would remains constant over the whole C.M. angular range from 10° to 20° in our work, the reported cross section of ref. 9 9) would corresponds then to 14 22 0 events under the conditions of our study. This discrepancy is yet to be understood.

Références

- F. Naulin et al., J. de Phys. Lettres, <u>41</u> (1980) L79
- 2) P. Roussel et al., Nucl. Instr. Meth. <u>153</u> (1978)111
- F. Naulin, E. Kashy and M. Roy-Stephan, Nucl. Instr. Meth. <u>180</u> (1981) 647
- 4) F. Naulin, PhD Thesis, Orsay, in preparation
- 5) G.C. Ball et al. Phys. Rev. Lett. <u>31</u> (1973) 395
- 6) K.K. Seth et al. Phys. Rev. Lett. $\overline{41}$ (1978) 1589
- 7) C. Détraz et al. Phys. Rev. <u>C5</u> (1977) 1738 8) G.C. Ball et al. B.A.P.S. <u>22</u> (1977) 552
- 9) G.T. Hickey et al. Phys. Rev. Lett. <u>3</u> (1976) 130