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Abstact. 1In the first part of this paper the history of the 168/F work at CERN is
reviewed, this is followed by a short description of the harduare and software in use and
finally some examples of future applications are given. In the second part of the paper the
limitations of the present 168/E design are discussed and the ways that a new design, Mark
2, could overcome them are presented.

INTRODNUCTION

In any discussion on the organisation of High Energy Physics experiments, there are a num-
ber of oft recuring themes, amongst which are:

* “hou can we record the data from even more interactions per second?’

* “how can we ensure that a higher percentage of the interactions recorded can be
analysed ?7/

* 7in any case hou can we analyse the many thousands of tapes that we fill with
data each year?’.

For a number of years now various forms of harduired logic and special processors have been
applied successfully to the first two of these themes or problems. The present conference
is evidence of this work and its interest to the High Energy Physics community. The 168/E
is a special, microprogrammed processor that uas originally conceived by Paul Kunz as an
attempt to solve the third of these problems for a particular experiment, the LASS Spec-
trometer at SLAC [1,2]. This the processor does by emulating almost bit for bit a large
IBM 370 computer executing programs largely written in FORTRAN. As such this is an
entirely generalised soluticn to the problem of how to do the so called, off-line data ana-
lysis for large High Energy Physics experiments at a relatively louw cost.

Some time after its conception it was realised that the 168/E was not just limited to
this role of off-line analysis. Because of its speed, its ability to compute more complex
algorithms, its relative ease of use and lou cost, it could be applied to the second of the
above problems, i.e. to do an ‘on-line filtering” to improve the “quality’ of the data
being recorded.

This paper first of all presents a brief outline of the past work at CERN on the 168/E
followed by brief descriptions of the harduare and software at CERN. The last chapter of
the first part of this paper revieus some of the future applications foreseen. The second
part presents the lines on uhich we are thinking to improve the 168/E.

JHE PAST.

The work at CERN on the 168/E started in the Spring of 1978. The SLAC prototype with sin-
gle precision floating point, running test programs had been seen. As a consequence it uas
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decided to build a prototype according to the design we had obtained from Paul Kunz. In
this way ue at CERN planned to gain experience with the harduare and softuare of this pro-
cessor and to examine its performance and ease of application.

This prototype was completed and was operational by November 1979. Since then this
first system has been our test-bed used for checking the elements of the other systems that
we and the members of the experiments NA3 and NA4 have constructed. By the time that this
prototype uas working, the EMC collaboration had become interested in the idea of using the
168/E to run their off-line analysis program, i.e. an application similar to that of Kunz
at SLAC [3]. However the size of this analysis program and its data structures largely
exceeds the maximum memory size of a 168/E processor. It was necessary therefore to have a
mechanism for rapidly overlaying segments of program and data from memories external to the
168/E. A means of providing such a mechanism, knoun as the Bermuda Triangle, had been
desiagned at SLAC [3,4] and again, to economise time and effort, we decided to construct a
Bermuda Triangle, but with a number of modifications arising from the fact that ue uwere
connecting our 168/E systems to our computer centre via CERN”s standard networks (CERNET
and OMNET) rather than attaching directly to a channel on one of the large IBM computers,
as was done at SLAC

The first Bermuda Triangle was finished by Summer 1980 and we had started to test it
with its 168/E processor. In the meantime it had been decided that we should build a sec-
ond system to be used by the SFM collaboration to provide a more sophisticated on-line fil-
ter. Because of the algorithms they wished to use, overlaying of program and data was
going to be necessary, so that despite the very different application, the harduare and
softuare they required uas almost identical to that needed for EMC. Both of these systems
were completed and under test at the application level by the end of 1980. The experiences
and successes of these tuwo collaborations’ use of the 168/E are described in tuwo papers
already prescnted at this conference [5,6].

In parallel with this work some people from Saclay, working at CERN on the experiments
NA3 and NA4, have constructed two 168/E processors. These are connected to the CAMAC sys-
tems on their data acquisition computers, via an interface module that they developed, fol-
lowing a suggestion of Kunz. It is their intention, uhen these experiments resume opera-
tion this summer, to use the processors to do on-line filtering that should reduce the the
number of events that they wurite to tape by some 50%.

THE 168/E HARDMARE.
The 168/E harduare was designed to emulate quite efficiently a large portion of the IBM
370,168 basic instruction repertoire. It is a microcoded processor, but is unusual in that
the interpretation of the IBM 370 machine instructions into 168/E microinstructions is not
done by part of its harduare at program execution time. Instead it is done as an off-line
process by a Translation program. This translation is done as part of a normal batch job
which runs on an IBM 370. The resulting microinstructions are then loaded into one of the
168/E’s memories and executed from there.

The 168/E itself consists of an integer CPU, a floating point processor, memory, and an
interface (see Figure 1). For systems where overlaying is required, then a pair of Bermuda
Triangles and buffer memories are added. Integer CPU

The integer CPU circuit is based on the AMD 2901, which is an LSI bit slice microproces-
sor chip. This handles the following types of IBM 360/370 instructions: 16 bit integer,
32 bit integer, 32 bit logical, all conditional branching, and all memory addressing. It
has a 150 nsec cycle time. The throughput on FORTRAN prcgrams has been measured to be bet-
ween 1.3 to 1.8 times slower than a 370/168. The only noticeably slow instruction when
compared to the 370-168 is multiplication.

Floating Point

The floating point processor consists of two circuit boards. This processor handles all
IBM 370 single precision floating point instructins with exactly the same results, bit for
bit, as the 370/168. But since the single precision format of IBM contains only a 24 bit
mantissa, some form of extended precision is required for High Energy Physics analysis pro-
grams. It has been found experimentally for the LASS Spectrometer at SLAC that about 8
more bits are required in the mantissa to do the calculation with sufficient precision. On
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the 1BM 370, one declares the important variables double precision uhich adds 32 additional
bits to the mantissa. On the 168/E, a compromise was made between true emulation and cir-
cuit cost and complexity. So the floating point processor has pseudo-double precision
instructions which add 16 bits to the mantissa. Thus the processor can do either 32 bit of
48 bit floating point arithmetic. The cycle time of the processor varies betuween 100 and
200 nsec depending on the type of instruction and the phase of its executien. It operates
with an internal Programmable Read-Only-Memory (PROM) to control the detailed steps in the
execution of a floating point instruction. The performance of the Floating Point processor
is about a factor of two slower than the 370/168. Again, only multiplication is a notice-
ably slou instruction when compared to the 370/168.

Memory

The memory for the 168/E is in two parts, one for the program and the other for the
data. Both are based on the Intel 2147 memory I.C. This circuit contains 4,096 words of 1
bit each uith a 55 nsec access and cycle time. It has a unique feature in that when the
memory is not being addressed, it powers doun to 1/5 of its normal operating current. Thus
a processor with 8 memory boards draws only as much pouwer as one memory board plus 7/5 of
one memory hoard. The cost of these memory circuits (there are some 450 of them in a
168/E) is a dominant factor in the cost of the processor. The current price in Europe is
about $10 each in large quantities. Each memory board is divided into two parts, one con-
taining 32 memory circuits for data and the other containing 24 memory circuits for pro-
gram. That is, one memory board centains exactly 16 Kbytes of data ar 1 4096 microinstruc-
tions which is enquivalent to about 8 Kbytes of IBM object code, or about 500 lines of
FORTRAN.

The 168/FE is not really capable, as currently designed, of doing any input or output
operations, as it has no mechanism for handling interrupts. 1t can only address its memo-
ries. The 168/E therefore has an interface board via which a real computer, acting as its
controller and Inputsoutput svstem, is able to load the memories with program and data and
to read the processed results. The interface is very simple . Either the processcr or the
interface controls the memory and never both simultaneously. The interface control logic
can shut off the processor so that it releases the memory busses. Then the interface can
take the busses, read or urite to the memory, and start the processor. The interface bet-
ween this board and, for example, the control computer appears as tuo separate FASTBUS-like
ports (one for data and one for program).

Thus, before a 168/E can be attached, for example, to a PDP-11 an interface betueen this
FASTRUS variant and its UNIBUS is required. Several alternatives for this interface exist
i.e. the Bermuda Triangle and CAMFAST, both described below, and a simple one directly to
the UNIBUS.

Bermuda Triangle System

As already menticned, a typical analysis program and its associated data structures are
too large to fit in the memories of the processor itself. The Bermuda Triangle system is a
means of overcoming this difficulty by providing a mechanism for doing fast overlays,
whilst at the same time providing a way of running several 168/E processors together (see
Figure 2). In this system there are two Triangle boards, each of uhich is a three way
interface betueen 1/0 ports to a large buffer memory, a PDP-11 UNIBUS and a FASTBUS-1like
bus to the 168/FE procecsors. Data may be transfered bi-directionally betueen any tuwo
ports. One is used for program memory overlays and one for the data memory overlays. Over-
lays to both memories can done simultaneously.

The first port of the Bermuda Triangle is to the buffer memories. The program buffer
memory, with up to 128 Kuwords of 24 bits, is large enough to hold a program of some 20K
lines of FORTRAN. This is enough for quite a large program, that of EMNC only needs half of
this. The data buffer memory, with up to 128 Kuords of 32 bits (512 Khytes), is large
enough to hold all the local variahles and constants and copies of the constant COMMON
blocks. The data buffer memory also buffers events on input and results on output. The
memory used is slower but much less expensive than the memories in the 1638/E. These buffer
memories are implemented with general purpose memory cards purchased from Mostck Memory
Systems. The cycle time is 500 nsec with an access time of 275 nsec. We have also used
the backplane and chassis that Mostek provides for PDP-11/70 add-on memory.
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The second port of the Triangle is the bus to the processors. It is a 50 line flat
cable with TTL Tri-state drivers and receivers. The transfer uses a protocol which is
essentially a primitive version of the FASTBUS protocol. A 24 bit address field and 32
bit data field are used. They are time multiplexed on a set of 32 bus lines. The four
most significant bits of the address field are decoded to select one processor with the
remaining bits selecting the internal addresses of the processor’s memory. Thus, the bus
allous direct access to any location within any processor. The rate of transfer on this
bus is one word in 700 nsec. Thus the transfer rate on the data side is nearly 6 Mbytes
per second and on the program side it is equivalent to nearly 3 Mbytes per second of IBMN
object code. Transfers betueen the buffer memories and the 168/E memories are aluays in
block mode under control of the Triangles themselves.

The third port of the Triangle is attached to an interface on the cuntrolling PDP-11.
It is in this port that the CERN and SLAC Triangle designs differ. A DMA control is incor-
porated in this interface. From the point of vieuw of the PDP-11, the Bermuda Triangle sys-
tem appears as a special peripheral with seven control registers and a data register.
Appropriate loading of these control registers will initiate transters backuwards and for-
wards across any of the Triangle’s sides. Transfers betueen the PDP-11 and the buffer
memories can either be under program or DMA control. The Triangles also provide packing and
unpacking between the 16 bit PDP-11 words and the 24 or 32 bit words of the buffer or 168/E
memories. Besides the normal end of transfer interrupts, the PDP-11 interface also con-
tains a card that receives interrupts from individual 168/Es to announce that they have
stopped processing.

CAMFAST module.

In order that 168/Es could be attached to NA4 (using a ND-100 as daca acquisition compu-
ter) and NA3 (using a PDP-11/45), people from Saclay developed a CAMAC to “168/E-FASTBUS’
interface module. This aodule is functionally similar to the /SNOOP’ module developed at
SLAC [71].

With this module data can be transferred betueen the computer hosting the 168/E and the
168/E’s memories in program or block transfer mode. This allous loading/reading of the
168/E’s memories, controls/status register and Program Counter. The module has an external
input through which it can receive a Halt interrupt from the processor. Upon receipt of
this interrupt a LAM is generated which can then be treated by the host computer.

The module may be switched into a SPY-mode, whence it can spy on Read or Write functions
on the CAMAC dataway. In this way all or part of the data being read by the controller can
simultaneously be entered into the data memory of a 168/E.

An internal status register is provided which can be interrogated to verify that a given
function sent to the module has been correctly received and interpreted. A complete list of
the functions to which this CAMFAST module will respond is given in Table 1.

Construction Techniques.
The first prototype versions of all of the boards have been done using wire-urapping for
the interconnections on general boards having the same dimensions as the Hex-boards used in
DEC POP-11 computers. As many memory cards are used and as they are quite simple, a 4-layer
printed circuit version was produced some time ago and has proved very satisfactory.

The wire-urap boards for the Integer and Floating Point processors have problems with
noise and cross-talk that have only been cured by changing a significant number of “long
run’ connections into tuisted-pair connections. SLAC has been developing printed circuit
versions of these boards, houwever these have to have eight layers so this has not been an
easy task. We elected to use a different technique called “multi-wire’. This has a number
of advantages. The wire lists used to control our wire-urap machine can be taken and used
directly to define the multi-uire connections once the wire-wrap prototype has been debug-
ged. This conversion from wire-urap to multi-wire can therefore be done uwith the introduc-
tion of no further errors. Another important advantage is that this type of board can have
very complete ground and power planes, hence noise and cross-talk problems are minimised.
Finally the same density of circuits can be maintained on a multi-wire board as on a wire-
urapped board.
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Preparation of Application Software.

Every program that is run on a 168/E is written in either FORTRAN or in Assembler lan-
guage (but following certain rules, so that it will have the same form as the code produced
by the FORTRAN H-Ext compiler). The Object modules produced by the compiler or assembler
have to be converted into the 168/E’s microcode. These converted modules must then be
linked together with converted FORTRAN library modules and previously partially linked
modules to form Load modules (one for program and one for data). It is these Load modules
that are transfered via CERNET/OMNET to the controlling minicomputer for loading into the
168/E for execution (see Figure 3).

These tuo operations of translating and linking are done by tuo programs knoun as
HYPERTRANS (see Figure 4) and HYPERLINK. These programs are run as steps in normal Batch
jobs on the IBM computers of our Computer Centre.

HYPERLINK also has facilities that help the placement of COMMON blocks in the data
memory. This is important when dealing with programs that have been split into overlays. In
this case the use of the 1638/E data memory has to be carefully planned. COMNON blocks that
are used in several consecutive overlays must be kept in the same position in the 168/E
data memory, whilst still leaving sufficient space for those COMMON blocks that have to be
moved into memory with each succesive overlay.

In planning the way tiat the system should handle a program that is being overlayed, uwe
followed a simple stategy that even if we have several processors in the same system, all
of them will execute the same program and that each processor will take an event all the
way through the overlays needed to process it. Furthermore ue attempt to structure the
overlays of such a program so that each one is brought in and executed only once per event.

These programs along with a number of other useful aids uere given to us by SLAC and we
have been able to use them with very little modification.

control Softuare.

Although the tuo systems currently in operation at CERN are for two different environ-
ments, off-line analysis (EMC) and on-line filtering (SFM), because they both have Bermuda
Triangles, PDP-11s as control computers and connections to our Computer Centre via
CERNET/OMNET, the control software used in their minicomputers has a lot in common. In the
case of the system for EMC, the whole operation is controlled by a JOB running in the IBM
3707168 that first of all transmits to the 163/E system the progam and data overlays of the
program to be executed; it then loops on reading and transfering event data to the 168/E
system and then getting results back and writing them to an output file. In the final
stages of this job it recovers statistics on the run uhich it prints out.

The control softuare in the PDP-11 [8] is based on an 1/0-driver (IE) for the Bermuda
Triangle-168/E harduare, a Buffer Manager (BM) and three main tasks (INI168, ETRANS and
EPT):

(a) 1E. This is a specially wuritten RSX-11M driver. Besides providing the
basic functions of 168/E control and the transfer of words betuween the
PDP-11, buffer memories and the 168/Es, it also accepts lists of functions
that it should carry out. In this way when a 168/E requires a neuw overlay,
this is handled within the driver itself, thus avoiding the considerable
overhead of task suitching under RSX-11M.

(b) BM. This driver is the manager of the event/result Buffers. It handles
requests from the other tasks for access to the event/result Buffers in the
data buffer memory and to change their status [9].

(c) INI168. This task initialises the 168/E system, opens a network link and
establishes contact with JOB running in the IBM. It receives the program and
data overlays via the link and asks for them to be uritten to the buffer
memories. After this it initiates the setting up of a number of buffers in
the data buffer memory to contain event data and results. INI163 then

spauns the other main tasks and hands over control tables [10] to them; it
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then goes to sleep until a task terminates at which time it tries to get in
contact with another JOB in the 1BM and then to repeat the above.

(d) ETRANS. This is the task that is responsible for the transfer of event data

and results between JOB and the buffers in the buffer memory. It also con-
trols the four modes of operation of the system i.e.:

+ Non-pipelined. In this mode an event is snalysed and its result
is returned to JOB before the data of the next event is trans-
fered.

+ Filling. In this mode all of the Buffers in the data buffer
memory are filled with event data and then the mode automatically
changes to

+ Pipelined. This is the mode for normal processing. It ensures
that the best throughput is obtained by overlapping the transfers
of data and results uwith execution in the 168/E. When there is a
Buffer containing a result, ETRANS sends it to JOB and then uaits
for JOB to return the data for a new event which it puts into the
emptied Buffer. In this way ETRANS uses the Buffers to smooth out
variations in speed of the CERNET links and 168/E processing.

+ Flushing. At the end of a run, e.g. when a JOB comes to the end
of its input file, there will in general be some Buffers contain-
ing results. This mode empties these Buffers by transfering their
contents to JOB.

(e) EPT. There is one of these tasks for each of the 168/Es active in the sys-
tem. It loops on obtaining a Buffer containing event data, passing a list
of functions to the 168/E-driver (IE) to get it to do the necessary overlay-
ing so that its 168/E will process that event. When the processing is done
it requests BM to flag the Buffer as containing results.

Test Softuare.

The test softuare that we use can be divided into tuo broad categories. the first is a
set of basic diagnostic programs that test in detail the processors of the 168/E itself and
its memories. These programs, which were supplied to us by SLAC, are uritten in IBM Assem-
bler language; after normal translation and linking they are loaded doun into the 168/E
where they run until an error is detected. After an error is found the contents of the Gen-
eral and Floating Point registers are dumped to the 168/E’s data memory and then a basic
test control system running under CATY, a simple interpretive language, [11] in the PDP-11
can read out the values that were dumped.

The second category is a set of programs developed at CERN that are run in the PDP-11,
which make use of the 168/E-driver (IE) and are written in CATY. These programs check out
for example: the buffer memories, the various types of transfer betueen the PDP-11, the
buffer memories and the 168/E. They also check out the control of the 168/Es and the inter-
rupts it generates. Recause of the use of CATY this set of programs can be very readily
changed to study any new problem when it arises.

We have standardized the external specifications for a set of FORTRAN-callable subrout-
ines [12] for the 168/E, CAMFAST and Bermuda Triangle interfaces. In this way all of our
CATY based test softuare is portable betuween systems using different interfaces.

EXTENSIONS T0O EXISTING APPLICATIONS AND NEW ONES.

EMC. As mentioned in a parer [6] already presented to this conference, the data rates at
the experiment itself are such that a total of between 4 and 6 163/E processors devoted to
the analysis of EMC data, would bhe able to keep up uith the experiment. As a first step
towards this we are constructing and testing another processor. Tests have already started
to check that all is well when a second processor interface is added to the EMC system’s
FFASTBUS’. The control software has already been uritten with the handling of several pro-
cessors built into it. Therefore uwe hope in the fairly immediate future to test this extra
processor con the EMC system.
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SFM. MWhen the SFM isn’t running it would be very convenient to be able to “play-back’ the
data tapes on the local data acquisition computer’s tape units and then to use the 168/E in
effectively an off-line mode to carry out the full analysis of the data. Work has been
going on for some time nou to transfer the SFM analysis programs to the 168/E.

The most serious problem in doing this, is the need to have in the data memory the very
large magnetic field map (some 200 Kbytes) of SFM. MWith the present data memory maximum
this is not practical. So we have designed a small change to the Integer Processor that
doubles the amount of data memory that can be addressed. To go with this a new double
capacity memory board has been designed and tested. We expect to be able to make a machine
available with this larger memory in the near future.

UA-1. The use of several 168/Es to provide a sophisticated last stage trigger for this
important pp experiment is under serious consideration at present. Speciftic examples of the
on-line uses it would have would be a refined calorimeter trigger and a trigger on the
momentum of charged tracks found locally in the Central Detector. These and other triggers
would certainly be of great help whilst the luminosity remains low.

The data will flow from the UA-1 detectors via five parallel Remus Branches to the Data
Acquisition NORD-100 computer. To gain the maximum benefit from the use of a 168/E it
cshould not slouw doun the rate at which data can be taken from the detectors of UA-1. To do
this it is necessary that tuo 168/Es be connected to the branch carrying the data on uhich
the trigger is to be based (ultimately triggers may be used that are based on several
branches). Such an arrangement gives a type of double-buffering so that the data of an
event can be read into the data memory of one 168/E and processing st: ~ted without delay,
in parallel with the second 168/E completing the processing of the previcus event and, if
it accepts that event, causing it to be read dowun to the NORD-100 or to Videotape. Figure
5 shows one way that this could be achieved using the CAMFAST module to interface to the
168/E. A faster version of the 168/E would certainly be of interest in this application.

CONCLUSIONS

CERN has now two operational 168/E systems that have shoun that they can be effectively
used for their planned applications. CERN is now in a position where it can relatively
easily construct further processors to extend these applications and to equip other experi-
ments.
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MARK 2.

The current processor is adequate for many experiments. If needed, overlaying with the Ber-
muda Triangle for off-line applications is not a big burden. In the case of the LASS spec-
trometer, for example, it accounts for less than 4% of the execution time. The effort to
organize an existing application program into overlays is not unreasonable, approximately
tuo months in the case of EMC. However future applications already present difficulties
due to, for example, very large event sizes and large field maps that cannot be dealt with
efficiently by using overlays. Futhermore wuhen one considers the problems involved in
manufacturing and supporting a significant number of 168/E systems, then the Bermuda Trian-
gle is an additional complication.

Besides producing very large amounts of data, most recent and future detectors will pro-
bably require a large amount of computer time per event because, for example, the jet
structure will group many individual tracks into a small volume. One would therefore like
to make a faster 168/E in order to handle a large volume of time consuming events with a
reasonable number of processors. Also many of the current and future applications are for
on-line triggering ands/or filtering. In these cases the rau speed of the processor is
important unless the whole event is buffered so that multiple processors can be used to
improve the throughput. To summarise, the present design of the 168/E has a number of
limitations :

1. The maximum data and programm memory sizes are limited to 128 Kbytes and 32
Kwords respectively (giving rise to the need to have the Bermuda Triangle to do over-
lays).

2. The Floating Point processor cannot do true double precision arithmetic

(i.e. 64 bit words). This considerably complicates the task of comparing results from
the 168/E with those from a real IBM 370.

3. No byte addressing or byte manipulation instructions. This has caused some
problems uhen translating the FORTLIB. This may also be a probley with code generated
by the new FORTRAN 77 compiler.

4. The 168/E processor has no mechanism to give its control computer direct
access to any of its internal registers. This complicates the task of testing the pro-
cessor.

Memory size and Addresses

The limitation in the size of the 168/E’s memories comes in part from the cost and dif-
ficulty in constructing memories several times larger and in part because the present pro-
cessor design is only able to generate 17 bit data memory addresses (but the least signifi-
cant bit is always zero) and 15 bit program memory addresses.

The cost of 4K Static memory circuits has now fallen to approximately $10 each in Europe
compared to a price of cver $40 each when we started constructing our first 168/E. 16K
static memory circuits are now starting to become available with 55 nsec access time hence
We can now design more compact memories, avoiding bus loading problems. At present they
are expensive but we can hope that their price will fall belou $40 per piece fairly soon at
which time we could multiply the memory size by a factor of eight whilst only doubling the
total memory cost, compared to that uhich it was for our first 168/E. This uwould then mean
we could think of equiping the processor with 1 Mbytes of data and 256 Kwords of program.

The data memory addressing could be extended by arranging to have a full machine cycle
to calculate the address of a data word (by adding a field of the instruction to the con-
tents of a general register) up to full 32 bit precision. This would not change the speed
of the machine for isolated load instructions. Houever it is possible to pipeline (i.e.
overlap) this address calculation with register loading or storing for a previous instruc-
tion, in uhich case there would be a gain in speed. In order to realise this new method of
address calculation, it would be be necessary to extend the micro-instruction word by 8
bits to 32 bits. These extra bits can be used to extend the addresses for branch instruc-
tions, i.e. this gives full 24 bit program addressing.
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I1f these changes uwere incorporated into the design of a new 168/E i.e. Mark2, this uould
to a very large extent eliminate the need to split large programs into overlays. It should
be remembered that the data memory size would no longer be limited by addressing but by
cost and perhaps physical dimensions. It is possible to envisage making the processor
asynchronous in its access to memory, in which case it would be possib.e to mix memories of
different speeds, densities and costs. For example part of the data memory could be made up
from cheap, high density dynamic memory circuits with a cycle times of say 500 nsec. This
part could then be used for data that was infrequently accessed, e.g. field maps, with lit-
tle overall loss in speed.

Since the existing 168/E uwas designed, a number of new LSI circuits have come onto the
market that will greatly facilitate the redesigning of the Floating Point processor. 1In
redesignirg this part of the 168/E, as the integer processor will be 1.33 faster, it seems
desirable to speed up these operations as well, in particular that of multiplication.

Using the new 8x8 and 24x24 multiplier circuits it will be possible to design a floating
point multiply unit that is simple, fast and capable of full 64 bit arithmetic. However it
is difficult to add to such a design the ability to effectively do floating point adds,
substracts and divides. Under these circumstances the best approach seems to be to design a
number of floating pcint functional units e.g. Register, Add/Substract, Multiply and Divide
units. Each one can then have the simplest design and what is more, being separate units
opens up further possibilities of pipelining of their use to gain even more in speed.

Pipe Line Control

One of the difficulties in designing a pipelined processor is the design of all of the
interlock control that delays the execution of an instruction if a functional unit isn’t
ready or if one of the operands it wishes to use is still being generated by another func-
tional unit, etc. Houwever in the case of the 168/E, this is not necessary hecause the con-
trol of the pipelines can be built into HYPERTRANS. As a part of the translation process
it is possihle to schedule uhen each micro-instruction is executed on the basis of when the
functional unit it needs becomes free and when the necessary operands are available. This
has the added convenience that the processor can be checked out initially without pipelin-
ing, which will be much simpler, and then pipelining can be introduced progressively.

Diaanostic Capabilities

The task of testing and repairing the present 168/E processors is made difficult because
the General and Floating Point registers cannot be accessed directly by the control compu-
ter, but only indirectly by first dumping them to the processor’s memory. Furthermore
there are other internal registers that cannot be accessed at all by the control computer.
It would therefore be a very great aid if there was a special Maintenance Mode for the pro-
cessor, under which it would be possible to access their contents via a number of special
lines of the machine’s internal bus.

A new version of the 168/E designed on these lines has been estimated to be tuice as fast
as the present machine. It would to all intents and purposes eliminate memory size problems
along with the need to have Bermuda Triangles and it should be quite easy to construct and
test. 1Its application to a wide range of problems in the field of High Energy Physics
problems should be easier and more flexible than for the present processor. It therefore
seems quite likely that we in collaboration with SLAC, will construct such a machine in the
next one to tuwo years.
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ST

ST

SLL

BCR

ST

BCR

BCR

ST

SR

BCR

0,80(0,13)
0,96(0,13)
0,84(0,13)
0,92(0,13)
6,92(0,13)
6,2
7,12000,13)

0,006,7)

0,100(0,13)

5,140(0,13)
3,5
0,92(0,13)
0,84(0,13)
0,92(0,13)

0,88(0,13)

5,128(0,13)
12,5
5,144(0,13)
15,5
0,92(0,13)
0,96(0,13)

15,15

14,0(0,13)

15,14

DM2

DM2

DM2

bM2

DH2

oM2

PM

DM2

DM2

bM2

DbM2

PH

DM2

DM2

M2

bM2

DM2

Original IBM Code

000078

000088

00007C

000084

000084

0000A0

00008C

0000B4

000084

00007C

000084

000080

0000A8

0000B8

000084

000088

000028
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000050 L 0,80
LF 000011
MPS 000012

000060 ST 0,96
000013
WRYF 000014

000054 L 0,84
LF 000015
HPS 000016

00005C ST 0,92

000017
WRYF 000018
00005C L 6,92
LF 000019
MPS  00001A
PDC  00001B
SHML  00001C
000078 L 7,120
LF 00001D
MPS  O0000lE
MPS  0000LF
LFX 000020
MPS 000021
000064 C 0,100
LF 000022
MPSS 000023
o 000024
. MPSS 000025
00008C L 5,140
LF 000026
MPS 000027
MPS 000028
000029
00005C L 0,92
LF 00002A
MPS  00002B
000054 A 0,84
LF 00002C

MPSS 00002D
00005C ST 0,92

00002E
WRYF 00002F
000058 C 0,88
LF 000030
MPSS 000031
c 000032
MPSS 000033
000080 L 5,128
LF 000034
MPS 000035
MPS 000036
000037
000090 L 5,144
LF 000038
MPS 000039
MPS  00003A
000038
00005C L 0,92
LF 00003C
MPS  00003D
000060 ST 0,96
00003E
WRYF  00003F
MPSS 000040
000000 L 14,0
LF 000041
MPS 000042

MPS 000043
000044

168/E Program 168/E

Mnemonic Memory

CH
3680050 ¢ 050
08000DF 0 337
CcH
3600060 0 060
0B80073 0 163
cH
3680054 0 054
08000DF 0 337
CH
360005C 0 05C
0880073 0 163
CH
368005C 0 05C
080CODF 0 337
050000E 00E
0E4CIDB 0 733
CH
3680078 0 o078
080EODF 0 337
080EC41 6 101
0780000 0 000
08000DF 0 337
cH
3680064 0 064
092004D 0 115
1270026 E 0026
0900043 0 103
cH
368008C o osC
080AO0DF 0 337
0804043 o 103
0298000 3 0000
cH
368005C o o05C
08000DF 0 337
cH
3680054 0 054
09000C5 0 305
cH
360005C 0 05C
0880073 0 163
CH
3680058 0 058
0920040 0 115
1270034 E 0034
0900043 0 103
cH
3680080 0 080
080AODF 0 337
0804043 o 103
02E0000 € 0000
CH
3680050 0 090
080AQDF 0 337
080A043 o 103
02F8000 F 0000
CH
368005C 0 osC
08000DF 6 337
CH
3600060 0 060
0880073 0 163
093FECY Fo31l
CcH
3680000 o 000
081CODF 0 337
081€043 o 103
2F8000 F 0000
Instruction

Address

Y<B<D
Y<B
Y<B<D
Y<B
Y<B<D
B<%2<Y<B

Y<B<D
Y<A+B

Y<B<D

Y<A-D

Y<B
Y<B<D

Y<B
Y<B<D
Y<B<A+D

Y<B

Y<A-D

Y¥<B -
Y<B<D

Y<B

Y<B<D
Y<B
Y<B<D

Y<B

Y<B<B-A

Y<B<D

Y<B

Fig. 4 An example of translation into 168/E microcode
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REMUS
BRANCHES

#1 | #2| #3 |#4 | #5

RIF| F . EE,ESR RIr[r[r]e o
wlC alCa wlw
RDEA;SYI. 8|2 s|As 0 as\gg FF 0
M 3Im P | starT A P
oM 1M1 o|lolofo] &
[
R \ 7
: |
' )
i ]
i L
' )
] ]
Fl F
Cal€a o
Aglag c R
M T M T A w R
B 0
b P
DATA ACQUISITION

ND - 100

Fig. 5 Possible layout to use a double 168/E
system on one branch of the UA-1 read-out




