
The Message Logger for
the LHCb On-Line Farm

LHCb Technical Note
Issue: 1
Revision: 1

Reference: LHCb 2005-050 DAQ
Created: 4 Aug. 2005
Last modified: 23 Aug. 2005

Prepared By: F. Bonifazi, D. Bortolotti, A. Carbone, D. Galli, D. Gregori, U. Marconi,
G. Peco, and V. Vagnoni.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Table of Contents

page i

Abstract

The Message Logger is a utility which provide a logger facility for the processes running
on the nodes of the on-line farm. It can also be used to collect the processes’
stdout/stderr. The Message Logger can be exploited using two different policies:
either as a no-drop logger facility (messages cannot be lost, but a write to the logger
facility blocks in case of full-buffer condition, due e.g. to a network congestion) or as a
congestion-proof logger facility (a write to the logger facility never locks even in case of
network congestion, but, in this case, messages are dropped). The Message Logger
package includes a Linux DIM server (logSrv), a Linux terminal/command-line DIM
client (logViewer) and a PVSS DIM client.

Document Status Sheet

Table 1 Document Status Sheet

1. Document Title: The Message Logger for the LHCb On-Line Farm

2. Document Reference Number: LHCb 2005-050 DAQ

3. Issue 4. Revision 5. Date 6. Reason for change

Draft 0 4 Aug. 2005 First version

1 1 23 Aug. 2005 First released version

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Table of Contents

page ii

Table of Contents

LHCB TECHNICAL NOTE..I

ISSUE: 1..I

ABSTRACT..I

DOCUMENT STATUS SHEET...I

TABLE 1 DOCUMENT STATUS SHEET..I

LIST OF FIGURES... IV

1. REQUIREMENTS... 1

2. IMPLEMENTATION.. 3

2.1. DIM... 3
2.2. THE POSIX FIFO ... 4
2.3. OPENING A POSIX.1 FIFO.. 4
2.4. NO-DROP AND CONGESTION-PROOF BEHAVIOUR... 5
2.5. FIFO SIZE... 5
2.6. FIFO WRITE ATOMICITY.. 5
2.7. RECOGNIZING THE SEVERITY LEVEL.. 6

3. THE MESSAGE LOGGER SERVER (MLS)... 7

3.1. SYNOPSIS ... 7
3.2. DESCRIPTION .. 7
3.3. COMMAND LINE OPTIONS .. 7
3.4. ENVIRONMENT.. 8
3.5. EXAMPLES.. 8
3.6. SEE ALSO.. 9

4. THE COMMAND-LINE MESSAGE LOGGER CLIENT (MLC)... 10

4.1. SYNOPSIS ... 10
4.2. DESCRIPTION .. 10
4.3. OPTIONS... 11
4.4. ENVIRONMENT.. 11
4.5. EXAMPLES.. 12
4.6. SEE ALSO.. 12

5. THE PVSS MESSAGE LOGGER CLIENT (MLC)... 13

6. WRITING TO THE LOGGER ... 14

6.1. WRITING TO THE LOGGER BY REDIRECTING THE STDOUT/STDERR ... 14
6.2. WRITING TO THE LOGGER BY OPENING THE FIFO... 15
6.3. WRITING TO THE LOGGER BY USING THE MESSAGE UTILITY API .. 17

6.3.1. Synopsis ... 17
6.3.2. Description... 17
6.3.3. Arguments .. 18
6.3.4. Synopsis ... 18

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Requirements

 page iii iii

6.3.5. Description... 18
6.3.6. Arguments .. 18
6.3.7. Example ... 19

7. REFERENCES .. 20

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Requirements

page iv iv

List of Figures

Figure 1. The Message Logger deployment. ..1

Figure 2. The Message Logger’s collaboration diagram. s1-s2: Server start-up; c1-c3:
client start-up; r1-r3 message flow. ..3

Figure 3. Screen dump of the terminal version of the Message Logger Client
[logViewer]. ..10

Figure 4. Screen dump of the PVSS version of the Message Logger Client.13

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Requirements

 page 1 1

1. Requirements

During the operation of the on-line farm, several processes running on the farm nodes
may need to send messages either for debugging purpose or to signal some critic or
error conditions.

These messages cannot be sent to a terminal because the processes run in background,
not bound to a particular terminal and often as daemons (process group leader).

These messages could be written to one or several files, but, for a diskless farm, this
would mean to keep several NFS-like connections open. Moreover these files will
increase indefinitely their size, so they will need to be periodically trimmed.

Processes could also send directly the message through the network, e.g. publishing a
DIM service. This choice, however, has the drawback to have no buffer between the
processes and the network and to impose a blocking write mode to the processes: in case
of congested network, the application may block trying to send messages.

A better choice would be a client-server application (Figure 1), in which:

• the server (running on each farm node) collects in a small buffer the messages
from all the processes running on its node (avoiding interleaving them) and

Figure 1. The Message Logger deployment.

MLS
Message Logger Server

[logSrv]

process

process

process

Farm Node

MLS
Message Logger Server

[logSrv]

process

process

process

Farm Node

Monitor PC

MLC
Message Logger Client

[logViewer]

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Requirements

page 2 2

send them asynchronously through the network;

• the client (running on another PC) collects the messages from on one or more
specified nodes of the farm (even from a whole sub-farm or from the whole
farm), merges them together (avoiding interleaving them) and displays them in
a terminal-like window (which could be a true terminal, a terminal emulator
like xterm or gnome-terminal or a PVSS window).

Two different working policies can be required to this kind of utility:

• No-drop policy: preservation of all messages is privileged with respect to the
ability to run without blocking in network congestion conditions. Messages
cannot be lost, but a write to the logger facility blocks in case of a buffer full
condition due e.g. to a network congestion.

• Congestion-proof policy: ability to run without blocking, even in network
congestion condition, is privileged with respect to message preservation. A
write to the logger facility never locks, even in case of network congestion, but,
in this case, messages are dropped.

The congestion-proof policy is preferred for the LHCb on-line farm. As a matter of fact,
in critic farm conditions (e.g. due to a temporary network congestion), we prefer to loose
messages rather than to have all the control and monitor processes blocked, waiting to
send warning messages.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Implementation

 page 3 3

2. Implementation

The Message Logger System is implemented using DIM (Distributed Information
Management System) as network communication layer [1] and a POSIX FIFO as a buffer
and a method for inter-process communication (Figure 2).

2.1. DIM

DIM has client/server architecture and uses a Name Server mechanism to
publish/subscribe services (Figure 2).

Each farm node runs a Message Logger Server (MLS, whose executable name is
logSrv), which registers a service (/<HOSTNAME>/logger/log) with the DIM
Name Server and makes it available to the logger client (s2 in Figure 2).

The Message Logger Client (MLC, whose command-line executable is named
logViewer), asks the DIM Name Server which server makes the log services available
(c1 in Figure 2); once got the answer (c2) the MLC contacts directly the servers (c3) to
subscribe to the log services (to bring itself up-to-date about the new messages, r3 in
Figure 2).

Figure 2. The Message Logger’s collaboration diagram. s1-s2: Server start-up; c1-c3:
client start-up; r1-r3 message flow.

Monitor PC

MLS [tmSrv]
Message Logger
Server

process

process

process

r1.
Write
to
FIFO

r3. Send
messages

c1. Request
service

c2. Service
info

s2. Register
service

c3. Subscribe
to service

Farm Node

DIM
Server r2. Read

FIFO

DIM
Name
Server

DIM
Client

MLC [logViewer]
Message Logger
Client

 POSIX
FIFO

s1. Create
FIFO

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Implementation

page 4 4

2.2. The POSIX FIFO

A POSIX.1 unnamed pipe is a sequential, uni-directional, communication stream between
two processes, managed by the Operating System kernel.

A POSIX.1 FIFO (alias named pipe) is an extension to the classical unnamed pipe
concept, which allows bidirectional, multipoint communications between unrelated
processes.

A special file is always associated with a POSIX.1 FIFO. The FIFO special file is
created with the mkfifo(3) library call and can be opened by multiple processes for
reading or writing. When processes are exchanging data via the FIFO, the kernel passes
all data internally without writing them to the file system. Thus, the FIFO special file has
no contents on the file system; the file system entry merely serves as a reference point so
that processes can access the pipe using a name in the file system.

2.3. Opening a POSIX.1 FIFO

In Message Logger System, the Message Logger Server opens the FIFO for reading,
while the processes which need to send messages open the FIFO for writing. POSIX
standard foresees two modes for FIFO opening: blocking and non-blocking.

Opening a FIFO for reading only (O_RDONLY), in blocking mode (flag O_NONBLOCK
clear) will block the calling process until another process opens the FIFO for writing; in
non-blocking mode (flag O_NONBLOCK set) it will always return without delay, even
when there is no process writing the FIFO.

Opening a FIFO for writing only (O_WRONLY), in blocking mode (flag O_NONBLOCK
clear) will block the calling process until another process opens the FIFO for reading; in
non-blocking mode (flag O_NONBLOCK set) it will return an error (ENXIO) if no process
currently has the FIFO open for reading.

Opening a FIFO for reading and writing (O_RDWR) has undefined behaviour in
POSIX.1. In Linux implementation [2], open will never block and never return an error
(since the process is supposed to be able at least talk to itself).

In the Message Logger System:

• the MLS opens the FIFO for reading only, in non-blocking mode
(O_RDONLY|O_NONBLOCK),

• the application which needs to send messages can open the FIFO in 2 modes:

o Open the FIFO for writing only in blocking mode (O_WRONLY
|O_APPEND) to achieve no-drop behaviour.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Implementation

 page 5 5

o Open the FIFO for reading and writing in non-blocking mode
(O_RDWR|O_NONBLOCK|O_APPEND) to achieve congestion-proof
behaviour.

2.4. No-drop and congestion-proof behaviour

An application which needs to send messages to the Message Logger Server has to open
the FIFO and write messages to it (the LHCb Task Manager can do the work for you, and
then redirect to the FIFO the started process’s stdout/stderr).

If the application opens the FIFO for writing only in blocking mode
(O_WRONLY|O_APPEND) then the no-drop behaviour is achieved. If the application
opens the FIFO for reading and writing in non-blocking mode (O_RDWR
|O_NONBLOCK|O_APPEND) then the congestion-proof behaviour is achieved

We emphasize here that, using the congestion-proof policy in a network congestion
condition, the messages are dropped by the FIFO, non by the network (as would be
achieved by moving messages through network using UDP). This way, in a congestion
condition, no additional message traffic is sent through the network: messages are
dropped before they reach the network.

2.5. FIFO size

FIFOs and pipes implementation has changed in Linux kernel 2.6.11.

Before kernel 2.6.11 the pipe and FIFO data structure was a circular list which fitted
exactly in one memory page. The size of a FIFO buffer allocated by the Linux operating
system was therefore exactly the size of a memory page (PIPE_SIZE = PAGE_SIZE =
= 1 << 12 = 4 KiB, defined in /usr/include/linux/pipe_fs_i.h).

Starting with kernel 2.6.11, the pipe data structure has became a circular list of
memory pages (PIPE_BUFFERS = 16 memory pages, defined in
/usr/include/linux/pipe_fs_i.h as well), for a total of 64 KiB.

2.6. FIFO write atomicity

The maximum number of bytes which is possible to put in a FIFO in a single atomic write
operation is set by the parameter PIPE_BUF, which is set to 4 KiB in the header file
/usr/include/linux/pipe_fs_i.h.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Implementation

page 6 6

If the number of bytes written to a pipe exceeds the atomic limit for a single operation,
and multiple processes are writing to the pipe, the data will be “interleaved” or
“chunked”. In other words, one process may insert data into the pipeline between the
writes of another.

Thus the size of the messages sent to the logger must be limited to 4096 characters
(about 51 rows on a standard, 80 columns, terminal), in order to avoid message
interleaving.

2.7. Recognizing the Severity Level

If a message is sent from an application to the MLS using the provided library call
msgSend(fName,severity,msg), then a header string with the format
“MMMdd-hhmmss[SEVER]host:” (e.g.: “Aug10-142541[INFO]lhcbcn2:”) is
pre-pended by msgSend() to the message sent to the MLS.

Otherwise (if the square brackets [] of the header are not found in the message by the
MLS, that happens, for example, if the message is sent to the MLS by redirecting
stdout/stderr), the MLS itself adds a header, trying to recognize the severity level
by looking at the message for the strings (case-insensitive): “error” and “denied”: if such
strings are found then security level is set to ERROR, else security level is set to DEBUG.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
The Message Logger Server (MLS)

 page 7 7

3. The Message Logger Server (MLS)

The MLS, whose executable name is logSrv, have to run on each node of the farm. It
is recommended to start the MLS from the init process, using the respawn
inittab option in order to insure that it is always alive.

3.1. Synopsis

logSrv [-p fifo_path][-s srv_name]

logSrv [-h]

3.2. Description

Starts the MLS on the node. The MLS first creates a POSIX FIFO, opens the FIFO for
reading and registers the log service with the DIM Name Server; then continuously reads
messages from the FIFO, add them a header if it is not already present (see 2.6), and
publishes them using DIM, blocking when no new message arrives.

The default FIFO path name and the default DIM service name are, respectively:
/tmp/logSrv.fifo and /<HOSTNAME>/logger/log. These defaults can be
changed using -p and -s command line options.

The change in FIFO path name and in DIM service name can be useful to start more
than one logger on the same farm node (e.g. a logger for a certain group of processes and
another logger for another group of processes). In this case both the fifo_path and
the srvc_name must be different for the two loggers.

3.3. Command line options

-h Print the program usage and exit immediately.

-p fifo_path

Use fifo_path as the FIFO path name. Default FIFO path name:
/tmp/logSrv.fifo.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
The Message Logger Server (MLS)

page 8 8

-s srvc_name

Use /<HOSTNAME>/<srvc_name>/log as DIM service name. Default DIM
service name: /<HOSTNAME>/logger/log.

3.4. Environment

The program logSrv needs the two environment variables:

DIM_DNS_NODE

hostname.domain of DIM dns node.

LD_LIBRARY_PATH

Variable, in PATH format, which must contain the path of the shared libraries libdim.so
and libSFMutils.so.

3.5. Examples

The Message Logger Server logSrv can be started using the inittab, writing in
/etc/inittab an entry like:

 <Id>:<run_level>:respawn:/opt/SFM/sbin/startLogSrv.sh

where <Id> is a unique sequence of 1-4 characters which identifies an entry in the
inittab, <run_level> lists the run-levels for which the TMS have to run, and
startLogSrv.sh is a shell script like this:

#!/bin/sh
DIM_DNS_NODE=lhcbos1.lhcb-bo.infn.it
LD_LIBRARY_PATH=/opt/dim/linux:/opt/SFM/lib
export DIM_DNS_NODE LD_LIBRARY_PATH
pkill logSrv > /dev/null 2>&1
sleep 1
/opt/SFM/sbin/logSrv

With this script, TMS is started, using /tmp/logSrv.fifo as FIFO path and
/<HOSTNAME>/logger/log as DIM service name.

To run a second MLS on the same node, the following script can be used:

#!/bin/sh
DIM_DNS_NODE=lhcbos1.lhcb-bo.infn.it
LD_LIBRARY_PATH=/opt/dim/linux:/opt/SFM/lib
export DIM_DNS_NODE LD_LIBRARY_PATH

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
The Message Logger Server (MLS)

 page 9 9

/opt/SFM/sbin/logSrv –p /tmp/logSrv-2.fifo –s logger-2

With this script, a TMS is started, using /tmp/logSrv-2.fifo as FIFO path and
/<HOSTNAME>/logger-2/log as DIM service name, and can therefore live together
with the TMS started with the previous script.

3.6. See also

fifo(4), mkfifo(3), open(2), /usr/src/linux/fs/fifo.c.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
The Command-Line Message Logger Client (MLC)

page 10 10

4. The Command-Line Message Logger Client (MLC)

4.1. Synopsis

logViewer [-b][-l level][-s srvc_name]

logViewer [-h]

4.2. Description

Starts the MLC on the node. The MLC first tries to discover one or more DIM logger
services by looking into the DIM Name Server for services named (by default)
*/logger/log (where the asterisk is interpreted as wildcard). Then the MLC
subscribes to them and print to the standard terminal the messages received from the
subscribed logger services. The number of the subscribed logged services can be limited
by using the -s command line switch, which accepts the POSIX.2 standard wildcard ('*',
'?', character classes and ranges).

Figure 3. Screen dump of the terminal version of the Message Logger Client [logViewer].

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
The Command-Line Message Logger Client (MLC)

 page 11 11

The MLC recognizes the severity level of the logged messages and can print only
messages with a severity level greater than or equal to a chosen level, by means of the -l
command line switch. Severity of the messages is recognized by a label ([DEBUG],
[INFO], [WARN], [ERROR], [FATAL]) included in the message strings.

As a default, the MLC prints messaged using different colours, corresponding to the
different severity level, by using the ANSI escape sequences. The -b command line
switch can be used to print in black and white (useful for terminals which do not support
the ANSI escape sequences).

4.3. Options

-h Print the program usage and exit immediately.

-b Print the messages in black and white. Useful for terminal which do not support the
ANSI escape sequences.

-s srvc_name

Subscribe only to logger services matching the POSIX.2 wildcard expression
srvc_name (this can be useful to limit the number of messages printed on a
terminal). Recognized expressions include '*', '?', character classes, ranges,
complementation. Wildcard must be escaped (using either a backslash for the single
wildcard or a couple of double quotation marks for the whole string, see examples).
Default wildcard expression: */logger/log.

-l level

Print only logged messages with severity level greater than or equal to level. The
severity level can be specified either as an integer number (in the range 0…5) or as a
string (ALL, DEBUG, INFO, WARN, ERROR, FATAL).

4.4. Environment

The program logViewer needs the two environment variables:

DIM_DNS_NODE

hostname.domain of DIM dns node.

LD_LIBRARY_PATH

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
The Command-Line Message Logger Client (MLC)

page 12 12

Variable, in PATH format, which must contain the path of the shared library
libdim.so.

4.5. Examples

logViewer
logViewer –b
logViewer –l WARN
logViewer –l 3
logViewer –l INFO –b –s "*logger-2/log"
logViewer –l INFO –b –s *logger-2/log
logViewer –l WARN –s "/LXPLUS00[3-7]/logger/log"

4.6. See also

glob(7), fnmatch(3).

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
The PVSS Message Logger Client (MLC)

 page 13 13

5. The PVSS Message Logger Client (MLC)

Has the same functionalities of the Command-Line Message Logger Client but uses a
PVSS graphic window instead of a terminal or a terminal emulator.

Figure 4. Screen dump of the PVSS version of the Message Logger Client.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Writing to the logger

page 14 14

6. Writing to the logger

In the following sections we will show three different way for an application to send data
to the MLS.

6.1. Writing to the Logger by redirecting the stdout/stderr

The simplest way for a process to use the Message Logger consists in redirecting the
standard error and/or the standard output of the process to the logger FIFO
(/tmp/logSrv.fifo by default). This allows using the Message Logger with the
existing applications without modifying them.

Redirection can be achieved both by starting the process by the shell command-line
and by starting the process using the LHCb Task Manager [4].

The drawback of this method is the lack of control on the severity level and logging
policy. If the message contains the word (case-insensitive) “error” or “denied” the
severity level is set to ERROR, otherwise it is set to DEBUG; the logging policy is set to
no-drop by the shell command line and is set to congestion-free by the Task Manager
(which opens the FIFO using the O_RDWR|O_NONBLOCK flag).

For example, by using the bash shell command-line, you can type:

[user@host home]$ myapplication >/tmp/logSrv.fifo &

to redirect standard output to the MLS,

[user@host home]$ myapplication 2>/tmp/logSrv.fifo &

to redirect standard error to the MLS and

[user@host home]$ myapplication >/tmp/logSrv.fifo 2>&1 &

to redirect both standard output and standard error to the MLS.

By using the LHCb Task Manager the standard output and standard error can be
redirected to the default logger FIFO (/tmp/logSrv.fifo) using the -o and/or the
-e options. For example, by using the LHCb Task Manager from the command-line
client, you can type:

[user@host home]$ tmStart -o myapplication

to redirect standard output to the MLS,

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Writing to the logger

 page 15 15

[user@host home]$ tmStart –e myapplication

to redirect standard error to the MLS and

[user@host home]$ tmStart –o –e myapplication

to redirect both standard output and standard error to the MLS.

Messages can then be sent to the Message Logger Server using the standard library
calls printf(…) or fprintf(stderr,…).

6.2. Writing to the Logger by opening the FIFO

A process can open the logger FIFO (/tmp/logSrv.fifo) and write messages to it.

A FIFO can be opened in blocking mode to achieve a no-drop logging policy. An
example, which uses the buffered streams (fprintf(3)), is the following:

#include <stdio.h>
int main()
{
 FILE *fifoFP;
 char message[4096]=”my message”;
 fifoFP=fopen("/tmp/logSrv.fifo","a");
 setlinebuf(fifoFP); /* to avoid message interleave */
 fprintf(fifoFP,"%s",message);
 return 0;
}

Another example, which uses the low-level write(2), is the following:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
int main()
{
 int fifoFD;
 char message[4096]=”my message”;
 fifoFD=open("/tmp/logSrv.fifo",O_WRONLY|O_APPEND);
 write(fifoFD,message,1+strlen(message));
 return 0;
}

A further example, in which the process redirects the standard output from itself, is the
following:

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Writing to the logger

page 16 16

#include <stdio.h>
int main()
{
 char message[4096]=”my message”;
 freopen("/tmp/logSrv.fifo","a",stdout);
 setlinebuf(stdout); /* to avoid message interleave */
 printf("%s",message);
 return 0;
}

A FIFO can also be opened in non-blocking mode to achieve a congestion-free
logging policy. An example, which uses the buffered streams (fprintf(3)), is the
following:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdio.h>
int main()
{
 int fifoFD;
 FILE *fifoFP;
 char message[4096]=”my message”;
 fifoFD=open("/tmp/logSrv.fifo",O_RDWR|O_NONBLOCK|
 O_APPEND);
 fifoFP=fdopen(fifoFD,"a");
 setlinebuf(fifoFP); /* to avoid message interleave */
 fprintf(fifoFP,"%s",message);
 return 0;
}

Another example, which uses the low-level write(2), is the following:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main()
{
 int fifoFD;
 char message[4096]=”my message”;
 fifoFD=open("/tmp/logSrv.fifo",O_RDWR|O_NONBLOCK|
 O_APPEND);
 write(fifoFD,message,1+strlen(message));
 return 0;
}

A further example, in which the process redirects the standard output from itself, is the
following:

#include <sys/types.h>
#include <sys/stat.h>

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Writing to the logger

 page 17 17

#include <fcntl.h>
#include <stdio.h>
int main()
{
 int fifoFD;
 char message[4096]=”my message”;
 fifoFD=open("/tmp/logSrv.fifo",O_RDWR|O_NONBLOCK|
 O_APPEND);
 dup2(fifoFD,STDOUT_FILENO);
 printf("%s",message);
 return 0;
}

6.3. Writing to the Logger by using the Message Utility API

A process can send messages to the MLS using the API defined in the header
msgUtils.h and implemented in the shared library libSFMutils-0.so.

These utilities are thought to be able to send messages to three different destinations:
to the standard error, to the Message Logger (using the congestion-proof policy) and
published in a specific DIM service. To send messages to the Message Logger the
parameter loggerType must have the first (least significant) bit set.

To the sent messages is pre-pended the header:

MMMdd-hhmmss[SEVERITY]hostname: pName: fName():

where pName is the process name and fName is the function name. For example:

Aug11-104750[DEBUG]lhcbcn2: tmSrv: startCmndHandler():

6.3.1. Synopsis

#include “msgUtils.h”

int msgInit(char **argv, int loggerType, char *srvName);

6.3.2. Description

Initialize the message stream. Must be called before any msgSend() calls.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Writing to the logger

page 18 18

6.3.3. Arguments

char **argv
The argument vector, as passed to the main(int argc, char **argv)
function.

int loggerType
The message destination. Values allowed for loggerType are in the range 0...7.
The loggerType value must be the result of a bitwise OR of the following values:
0x0 NOLOG Don't write log at all.
0x1 DIMLOGGER Send messages to Message Logger.
0x2 STDERRLOG Send messages to the standard error stream.
0x4 DIMSVC Publish messages to a specific DIM service.
To use loggerType 0x4, the msgInit() call must be followed by the
msgStart(void) call or by another dis_start_serving() call for the DIM
server /<HOSTNAME>/srvName.

char *srvName
Used only by loggerType 0x4. Dummy parameter for the other loggerType.
Used to set-up the specific DIM service, whose name will be:
/<HOSTNAME>/srvName/log.

6.3.4. Synopsis

#include “msgUtils.h”

int msgSend(char *fName, int severity, char *message);

6.3.5. Description

Send a message to the logger destination chosen with msgInit().

6.3.6. Arguments

char *fName
The name of the function which send this message.

int severity
The severity level of the message. Must be in the range 1…5. The parameters
DEBUG, INFO, WARN, ERROR, FATAL, defined in msgUtils.h can be used
instead of the number.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
Writing to the logger

 page 19 19

char *message
The message to be sent.

6.3.7. Example

#include "msgUtils.h"
int main(int argc, char** argv)
{
 char message[4000]=”my message”;
 char *fName="main()";
 int loggerType=0x1;
 char srvName[]="";
 msgInit(argv,loggerType,srvName);
 msgSend(fName,INFO,msg);
 return 0;
}

The above program sends messages only to the Message Logger.

The Message Logger for the LHCb On-Line Farm Reference: LHCb 2005-050 DAQ
LHCb Technical Note Revision: 1
Issue: 1 Last modified: 23 Aug. 2005
References

page 20 20

7. References

[1] C. Gaspar, DIM, Distributed Information Management System: see URL
http://dim.web.cern.ch/dim/.

[2] see fifo(4) manual page and /usr/src/linux/fs/fifo.c.

[3] Circular pipes, see URL http://lwn.net/Articles/118750/, Linux Kernel Mailing List,
Patch: Make pipe data structure be a circular list of pages, rather than a circular
list of one page, see URL http://lwn.net/Articles/118751/, Linus Torvalds, Re: Make
pipe data structure be a circular list of pages, rather than, see URL
http://lwn.net/Articles/118756/, Linus Torvalds, Re: Make pipe data structure be a
circular list of pages, rather than, see URL http://lwn.net/Articles/118760/.

[4] F. Bonifazi, D. Bortolotti, A. Carbone, D. Galli, D. Gregori, U. Marconi, G. Peco,
V. Vagnoni, The Task Manager for the LHCb On-Line Farm, LHCb Technical note
2004-099 DAQ.

