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Abstract

Top-quark physics plays an important réle at hadron calidech as
the Tevatron at Fermilab or the LHC at CERN. Given the planned
precision at these colliders, precise theoretical prexfistare re-
quired. In this paper we present the complete electrowealeco
tions to QCD-induced top-quark pair production in quarkieprark
annihilation. In particular we provide compact analytipesssions
for the differential partonic cross section, which will bseful for
further theoretical investigations.



|. Introduction

At ongoing and upcoming collider experiments, top-quarkspts will play a cen-
tral réle. Although the top-quark was discovered alreadyyéérs ago, direct mea-
surements of its properties are still rather limited. Intigatar most of the quantum
numbers are only constrained from indirect measuremertis as the electroweak
precision observables. In the near future the hadron esflidlevatron at Fermilab and
LHC at CERN will provide unique possibilities for detaileceasurements in the top
sector. A necessary requirement for these analyses is duesprtheoretical under-
standing of reactions involving top-quarks. At hadronidelis both single top-quark
production as well as top-quark pair production have beedieat extensively in the
past. The differential cross section for top-quark pairmjoiction is known to next-to-
leading order (NLO) accuracy in quantum chromodynamicsQ[I, 2,3,[4 [5]. In
addition, the resummation of logarithmic enhanced coutiiims has been studied in
detail in Refs.[[5,17,18,19, 10, 11]. Recently also the spimelations between top-quark
and antitop-quark were calculated at NLO in QCDI[5, 12]. IfsR{L3,[14] the elec-
troweak corrections were investigated. However, for tharkantiquark annihilation
process, only the electroweak vertex corrections wereideresd — the contributions
from box diagrams were ignored. It is well known that in thghienergy region
s> myz the weak corrections can be enhanced by the presence ofldgy@gthms
(see e.g. Refsl 15, 116] and references therein) whichfipst detailed study of all
contributions. More recently the electroweak correctifums-quark production were
re-analysed in Refs. |1V, 118]. In particular, it was againfemed that the weak cor-
rections can lead to sizable corrections for specific oladdes. For a more detailed
theoretical investigation of these effects, it is usefuhéwe short analytic expressions
available. The aim of this work is to recalculate the weakexiions to top-quark pair
production — including the contribtution from box diagramsand give compact an-
alytic results. Note that we do not consider here the puréguiocorrections, which
form a separate gauge-invariant subset.

The outline of the paper is as follows. In section 2 we preskeatcalculation of
the virtual electroweak corrections to top-quark pair prcttbn in quark—antiquark
annihilation. The contributions involving box diagrame anfrared-divergent. The
singularities cancel when the virtual corrections are coedbwith the corresponding
real corrections, which we calculate in section 3. In secfiove discuss some checks
we performed and give numerical results for the total crestian.

Il. Virtual corrections

In this section we present the calculation of the electréwesarections. We work in
the 't Hooft gauge R¢-gauge) with the gauge parametéfsset to 1. In this gauge,
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apart from the physical fields, also unphysical fields cbaote. In particular we have
to consider the contribution from the fields denotedxbw, which are related to the
longitudinal degrees of freedom of the gauge bosons. Ircipi@in theRg-gauge also

ghosts need to be considered to cancel unphysical degrde=edbm. To the order
where we are working, the ghosts do not contribute. In agldjgiven that we neglect
the masses of the d, ¢, s quarks the unphysical fieldgandy only contribute in the

vertex corrections to the final gluon—top—antitop vertelxe Tenormalization is done in
renormalized perturbation theory. That is the bare Lageang is rewritten in terms

of renormalized fields and couplings:

£(Wo,A0,Mo,do) = £ (Z*Wr, Z¥ *Ar, ZniMr, ZgGR)

= L(WRr,AR,MR,0R) + Lct(WR, AR, MR, OR)- (1.1)

The contributionz (Wg, Ar,Mr,gr) gives just the ordinary Feynman rules, but with
the bare couplings replaced by the renormalized ones. Samels diagrams are
shown in FigL1l. The complete list of Feynman rules candenfl for example in
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Figure 11.1: Sample diagrams for the virtual corrections.

Ref. [19]. The second contribution in EQ_(Il.1); (¥R, Ar, MR, gr) Yields the counter-
terms, which render the calculation ultraviolet (UV)-fanifThe diagrams needed here
are shown in FiglILP. Note that although the electroweakemtions appear here
in one-loop approximation, they are the leading-orderted@eak contribution. The
interference term of the amplitude (qq — y,Z — tt) with the corresponding QCD
amplitude vanishes as a consequence of the specific cotogtige. Terms of order
osa are therefore absent. Thus no renormalization of the cogplbnstants is required

at the order under consideration here. This is differemhfem electroweak correction
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Figure 11.2: Counterterm diagrams.

to an electroweak amplitude, which would not be UV-finiteheiiit coupling-constant
renormalization. The whole contribution from the renonzetion is given by:

8|91 |2 = 2(8Zq+ 82 ) | M gl (1.2)

whereZ,, Z; denote the wave-function renormalization constants ofrtbeming light
guark and the outgoing top-quarK; (= 1+ 0Z;). The squared leading-order QCD
amplitude| 2 4q]2 in d dimensions is given by:

| Mg 1i]> = 16mP0as?(N? — 1)(2— B3(1—2) — 2¢), (11.3)
whereN is the number of coloursys the strong coupling constant adhe velocity

of the top-quark in the partonic centre-of-mass system:

mZ
B=y/1-4— (1.4)

(s denotes the partonic centre-of-mass energy squared). odneecof the scattering
angle is denoted by The parameter of dimensional regularizateos defined by

d=4-2¢. (1.5)

For the renormalization of the quark fields we use the onlsichleme. The renor-
malization constants in this scheme in terms of self-enérggrals and derivatives
thereof can be found for example in Réf.[19]. Before prasgrhe results, let us add
a few technical remarks. We used the Passarino —Veltmarctieduschemel[20] to
reduce the tensor integrals to scalar one-loop integralsthe scalar integrals we use
the following convention:

1 [ (2mu)2
Xo—@/d g i (11.6)

For the UV-divergent integrals we define the finite part fag tme-point integralgyg
and the two-point integralBy through

Ao(n?) = mPA+Ag(nP),
Bo(p?,ms,mg) = A-+Bo(p% M, mp), (1.7)
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with

A= (411)5r(1+s):—8L :%—y+ln(4n)+0(e). (11.8)
The vertex corrections do not contain infrared or mass sangies (IR singularities).
They contain only UV singularities, which are removed by dfierementioned renor-
malization. On the other hand the contribution involving laiagrams are UV-finite
but contain IR singularities. In order to regularize the IRysilarities, we use dimen-
sional regularization. To simplify their determinatione wxpress thd-dimensional
four-point scalar integral@S in terms of the(d + 2)-dimensional four-point integrals
DS*Z and a combination of three-point integralinlimensions. This can be done by
the following relation

DI+ = —2mDY, (11.9)

where the box integral in 6 dimensions is defined by

DY=(p2, p3, P3, P1- P2, P2 P3, P1- P3, M2, Mp2, me?, mu?)[1, £y, Ll .. ] =

1 /6 { (1,04, 0uly,. . ]
iT2 (02 —m2+ig)((£ + p1)2 — M2+ ig)
1
X . - 11.10
((£+p1+p2>2—m32+le>((€+p1+pz+p3>2—m42+I8)} (110

andD$, is the coefficient of the metric tensg, appearing in the Passarino—Veltman
decomposition[20] of the tensor integral

DY=6[¢,0] (11.11)

(see Eq. (F.3) in Refl]20]), which in turn can be expressedl lagear combination of
the scalar box integr.ibg and scalar triangle integraﬂ% in d dimensions. Owing to
the finiteness of the box integrals in 6 dimensions the ieftaingularities appear only
in the three-point integrals.

For the presentation of the results it is convenient to usdgading-order QCD cross
section which is given by:

dO-BOI’I’l
5 = 0p(2— B+ B%2D) (11.12)
with )
1 ,N2-1
oozénorg NG % (1.13)

A factor 1/(4N?) from averaging over the incoming spins and colour is inatude
a first step we present the corrections to the cross sectom tine contribution oZ
boson andV boson exchange to the light quark—gluon—vertex. The forthiefvertex
remains unchanged, its normalization is shifted by a fator 6F|'3”’W+Z), which
leads to a shift by

dGIn.7W+Z dOBorn

5 % 2RedFy Ve (11.14)
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with

INW+Z _

é%« 0+ 08 f1(p2) + 20w fl(pw)> (11.15)

and
f1(0) = 1+2[(1+In(x)) (2+3) - 2(1+%)? (Li <1+)—1() = f)] (11.16)

where we used the definition

pi = ﬁ. (11.17)

S

In Eq. (L158),a = %[ denotes the electromagnetic coupling.
The Cabibbo —-Kobayashi—Maskawa mixing matrix has beeroskt The vector and
axial vector couplings of neutral and charged currents mendyy

1

o = m(Tg—ZSNZQq), (11.18)
g = 728\/30\“;, (11.19)
o = N;s/v’ (11.20)

whereQq describes the electric charge in units of the elementarygetea sy is the
sine of the Weinberg angle = sin(Sw) , ow = cogdw)), andTSq denotes the weak
isospin. For the vertex corrections to the final vertex wé #p result into the contri-
bution fromZ boson exchang®y boson exchange, Higgs exchange and the contribu-
tions from the would-be Goldstone bosons including theeesye counter terms:

do.Fir‘I. _ do—Fin.,Z + dGFin"W + do.Fir‘I.,H + dGFin"x + dGFin"(p. (”21)

Note that only the sum has a physically meaningful integireb. For the individual
contributions we obtain

Fin.,Z
P~ o] 26 e+
1+ 7 2 2\ 1~ 2 = 2
+ 8(1_7[32>S(9£/ +0a ) (Ro(Mmz®) — Ag(m?))
- 4[(1_7[132)82(1—Bz+2[34(1—22)+7[3222—322> po(dh’+6.7)
+(1—522—3BZ(1—Z2))932— <3+22— Bz(l—zz))gﬂ BL(3,4)
+ 2| Stk + o) - 12 e - 300 - 41+ el B
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_|_

X

with

obtain:

28[4<f2(27[3) - (1+2)d, )pz+@fz(28)p§(g‘vz+géz>
(1 FP) (2 AL 2))t — (2- 367+ 80P+ 3B 7)) |

2s[2pz(gtvz+gtaz) +(1-p%) (gv — 305 ”

(2 B2(1— 22)> = BY(3.4)] oo } (1.22)

fo(z,B) = 1-32-2p%(1-2). (11.23)

The integrals are defined in the appendix. For the contobutiom theW boson we
do—Fin.,W o

_|_

o ooman?] 201+2) <82 Ralmi)Aolmy?)

312[(1 482)(1 32— B+ 782 + 284 (1~ 2) ) (pw— p)
+1- 32— 5p2(1+2) — 241 - z2>}§0(1 2)

Bz[4f2(z B)(pw — pv) +1 - 32— 5B%(1+ ) - 28*(1- 2)| B(L. 3
4072 822 B)(2Pw—00)” — (L+B)po) +1- 32— 163 —4p°Z + B
11342 — 2p5(1— 2) +8(1— 32 2p41-2) 3[32(1+22))pw}C6‘

s(2- - 2) [sou—po) — (18] S B2 e |- (120)

The contribution from the Higgs boson is given by

d Fin.,H 2
Odz =oo%[9w2%{—(l+zz)
427 Fo(me?) - Ao(m?)
(1—pR)s O™ m

N
L—

i EZ)BZ (1— B2 4 2p4(1—2) + TR%2 — 322) oH
1-2)(1-B9)] (1.2

[Zfz(Z, B)pn + B2 (5—322—4[32(1—22)”?3(1, 3)

2

—~

ELg ks

> | f2(2.B)pf +3B%(1 - 2)(1 - B2)pn — BA(1— B%) (2 B*(1-2) ) S
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+ 2s(2— [32(1—22)) [pH (- Bzﬂ % B3(1,2)

2 m? } (11.25)
For the unphysical fieldg and@we find

(Ao(m?) — Ao(mz?))

57 ga o2
322 [2f2<z B)p+B(1+7)|Bo(1,3)
- ﬁ 1B+ 2B 2) + TR - 32 piBo(3.9

[ Bp2 + 821~ 2) (1~ Bl 3

dUFinX 8 o> m? 1+72
= t { 2(1+£)—8m

BZ
+ 5(2_32(1_22))pr 53(3,4)\p2_m2}, (11.26)

in,@ _ a (1+22> A A
do™n@ = O'OE_[QWZ{ - EYS(]- +72)+ m ys(Po(mw?) — Ao(my?))
1

- m[4(1—322—[32+78222+284(1—22))y5
— 16(1-32 - B2+ 7B*2+ 28%(1— 2) ) oy — 16821 - B2)2(1— Plyg
+ (1-pY?(1- 32+ 321+ ) - 28*(1- ) ) ot |BO(L.2)

+ gz 4122 B) (e~ 4360~ 2679

+ (1—[32)<1—322+3Bz(1+22)—284(1—22)) *1]§3(1,3)

3282 [16f2(z B) (YsPw + 402y — 82) + 8(1 — B?)2 (1—322+282(1—22))
_ 16(1—322-|-[32+9[3222+2[34(1—22))pby¢,

. 4(1—[32><1—322—11;32—:>>[3222+2[34(1—22>)y(p

+ (1—32)2(1—322—7BZ+Bzz2+2B4(1—z2))pV—Vl}cg

s 1—B?)2
+ g [4ys— 1605y -+ 8(1~ B?)ye— ﬂ]
8 Pw
(2 B2(1— 22)> a5 BY(1,2)[ mz} (11.27)
where we used the abbreviations:
ys = 1—B?+4pp, (1.28)
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rnOZ

=7 (1.29)

Yo

Again only terms proportional tg{,z,gta2 or gw? are present. Let us now discuss
the contribution from the box diagrams. To the orders? considered here, we can
distinguish two different contributions:

1. The (box-type) electroweak correction to the QCD Born l#onge, interfering

with the QCD Born amplitude.

2. The QCD box diagram interfering with the electroweak Bammplitude.

In the following we will call the first the electroweak-box\(Ebox), and the second
the QCD-box contribution. For the EW-box we obtain

_|_

+ + + o+ 4

iz x
2(1—2p%+p%2) 4

1— Bz B

a2
% {Z(l +2B% - B2 ol + 292928] Bo(3.4)

%Bzu — 2%+ p*2) {gﬂg‘v - 929‘4 Bo(2.4)
. 21-p¥

QB(]- —B222)(1—p;
(B2 +28%2 — 2~ B*)p, — (~2B— 1+ B*2)p2 ) ol

2B (8222 — (1-P*2)pz+ p?) gggta} Co(1,3,4)

5(1_[32)11_ o {(2([3222—232+1)p§

(4— 57+ 2p%2+ p°Z — 2B°2 — B* + B*Z)p3
B(B3Z + 42— 2B32 — 4B + B°)p, + 3p%2 — 2337
2—4Pz— P2 B2+ B+ 2832) o’d},
2((B22 — 2B%+ 1)p3 + (~ 3+ 4B2 — 2B%2+ B°7 — B2 + B2)p?
(3—3Bz+P3z— 3B%+ 2p%2)p, — 2B°Z + B? — B3z+ B2
28z 1) g} C§(2.3,4)
1
1+ B2)(1—p,)2

EW-—box _n2
o — 6l { - % {Z(H 282 B2 ) g + 239292} Bo(1,4)

{gﬁgtv +0dh | Bo(2.4) +

[gﬁgtVZJr ggg‘aﬁ} By(1,3)

) {z(l-l— B2 — p22 — B4+ 2p2

{(3[32% 4 OB3R 424 4Bz — B2 — B2

5
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+ B —2B%z+B(RL — 4z— 2B%Z — 4B+ B3)p;
— (4—5B%—2p%z+B?2 + 2832 — B4+ B*2)p?

+ 2([3222—2[32+1)p§)gegtv+2<+2[32z2—[32—[33z+[33z3+2[3z+1
+ (—3—3Pz+B3z+3B%—2p%2)p;
+ (3—4p%—2p%2+B32+B*2 +B2)p?
~ (B2 287+ 1)p3) gggta} C5(2.3,4)

2p%(1-2)
(1-B2)(1—pz)?
+ 2(Bz—(1- BZ>pz+pz>gaga}SD3 oEM

2(1-7
- (1_2&32()1(1_ F),Z>2 [(3— B?+2B2(1+B2) — (1+B*+2B2)p, + 2p§) oNlo

+ 2(Bz+(1+B2p; pz)gaga}sDS GEWZ}

[(3— B2~ 2B2(1 - B2) — (1 2Bz+ BAp+ 207 ) ol

e pBB[(L-BICH(1.2.4) - (14 BACK(L.2.4)| + 0(c), (11.30)
with
B = —8roios(N* - 1)3_3,22 ((d—2—B2(1—2))gid, + Bz(d — 2)(d - 3)lgh ).

(1.31)
Note that the contributiodo®W—P% js UV-finite, as already mentioned. This can be
easily checked by replacing tiig integrals byA and verifying that this contribution
indeed vanishes. Since we are using box integrats-#6 dimensions, the IR sin-
gularities appear only in the three-point integrals. Intipatar, in the above result,
only the last line in Eq.L{IL30) is singular. As a consequepaly this term needs to
be evaluated il dimensions. Note that owing to the structure of the IR-slagties
in QCD we will not pick up finite terms of the forra/e. They will cancel with the
corresponding terms in the real corrections, as we will simtlve next section, where
the real corrections are discussed.

For the QCD-box we find

d QCD
e R L
1— B2 B
T 2ga gz 2){ <—1—232“3222)9395—B(1+Bzzz)gggg]Bé(1,4)
+ 1—1[3 [(1 2[32 [3222>9ng B(B— )(1+Bz)gaga} 5(2,4)
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— ﬁBZ{(1—282+[3222)939‘V+B(B+2)(1—BZ>9392]§§(2,4>

+ (11 §§2>[(1+BZ+BZ(1 B?)(1- Zz))Qvgv

+ (1+Bzzz)gaga} sC@PY(1,3,4)

- B {3+2821+Bz Bz)gﬂgf/-FZBZ@ga]SDg >

+ B2 (o~ 2bata— o) - 07) i + 2

- 6%[0(5$BB[(1— B2)CH(1.2.4)  (1+ BACE(1.2.4)] +0(e). (1.32)

Combining the two results in Eq4._(I[130) arld {I132), thedRergent part is thus
given by

- %&BB [(1 —B2)C5(1,2,4) — (1+B2)C5(L,2, 4)]
1%;$EB[S¢C0(1 2.4) -~ 54C5(1,2.4)] (11.33)
In particular, we obtain
s 1
_%TWEB[sth%(l,Z 4) - 54C3(1,2,4)|
- 3%;%%8(4n)8r(1+ s)[ In (:) +0(sqt) — (sqr)}, (11.34)

with 5; = 2k; - kj, where we have used

1
B124)= o [t P R0+ k- m?)

2,2
= —}(4ﬂ) F(1+8)$(8—12+ i (”;qt‘; ) +g(sqt)) +0(g), (11.35)

2
with
2
—n (G + 3 () - () 2 (5)
= +=In —2Li —=In{ — | .
o) = () (G )+ () —2 () - (5,
(1.36)
We note that the divergent three-point integral
1 (1.37)

i@ ) (204 kq) (0 + kg + k)2 —mz2)’

which could in principle also appear, cancels in the catouta
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l1l. Real corrections
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Figure 11.1: Sample diagrams for the real corrections.

As mentioned in the previous section the contribution fréwa ibox diagrams is IR-
divergent. To render the corrections to the total crossaeéinhite we need to include
the real corrections at the same order. A few sample diagaaenshown in FigTIL1L.
The diagram containing the triple gluon vertex (see Eigd)ltoes not contribute be-
cause of the colour structure. The calculation of the reakctions is straightforward.
The phase-space integration over the regions where théeengiuon is soft will pro-
duce the IR singular contribution needed to cancel the sparding singularities in
the virtual corrections. Note that owing to the colour stowe no collinear singularities
appear, because the interference between the two diagrdrere the gluon is emitted
from the initial state, vanishes. As a consequence no fiaeton of initial-state sin-
gularities is required. To extract the IR divergences, wethge so-called subtraction
method [211] 212, 23]. The basic idea of the subtraction meihtaladd and subtract a
term in such a way that the singularities appearing in thec@aections are matched
point-wise and that the term is simple enough to be intedraalytically ind dimen-
sions over the full phase space. Given that the same terndexdaahd subtracted, this
procedure does not change the result. The analyticallgiated term is combined
with the virtual corrections, while the unintegrated teexcombined with the real cor-
rections. Given that the term combined with the real commestmatch point-wise the
singularities of the squared matrix element, the integratian be done numerically
in 4 dimensions. Because of the universal structure of saftraass singularities in
QCD, the subtraction terms can be constructed in a very gewawy. For further de-
tails on the subtraction method, we refer to Refs! [21, 2&8eHve just reproduce the
necessary equations required for the case at hand.

Using the subtraction method the NLO contribution to thessrsection can be sym-
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Figure 111.2: Amplitude containing the triple gluon vertexThe diagram does not
contribute here because of the colour structure.

bolically written as[|21, 23]
O-NLO(kakq_) = O-V(k(bkq_) +0R(kq7kq_) =
/3{ [dor(kg, ks ke, ke Kg)] g — LZ (doLo ® dVaipole) (K, K ke, k6, kg)]
ipoles

|

e=0

+ /2[dov<kq,kq,kt,kt—)+doLo<kq,ka,kt,kr)®<lq+'q—>]gzo
+ /dx/zdoLo(XKq,kq,kt,k{)®(Kq+Pq)
n /dx/2 doLo (kg, Xkg; ke, ko) @ (K g+ Pg). (I1.1)

Heredog, doy denote the real and virtual corrections to the cross sedtgparticular
we have _
do.v _ do.lr‘l. + dO.FIn. + dO.EWbeX_i_ dO.QCbeOX. (|“2)

In Eq. (ILJ]) we label the integral symbols with an index 23to indicate that the
phase-space integral runs over a 2- or 3-particle final.stéte terms of the form

doLo®F (111.3)

with F = P, K, dVgipole deserve some explanation. In general the symbblitroduces
spin as well as colour correlation between the operitand the leading-order am-
plitude, which is a vector in colour space. Note that for theecstudied here, where
the gluon is always emitted from a quark line, no spin cotietaappears. For the
contribution from the integrated dipoles we obtain

1 16, _
010 (ke ke ke k)7 = 2220 P (0 1T]1 g+ 1gf 0 — 1)
05 1B (4mF (2 [sq B R
- 32n24N25I'(1—s){s|n(sqt)+H(Sqt) (s }
x  (qo — tt]TeT|qa — tt), (I11.4)
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with

o0 = 30() (%))

5
- ln<Q2(2 ) (QZ(::M)Z)
2 2 2
(E() () ()
- () 2 ()~ 5 ()

. (?(aﬁv ) m . 3n1 Iﬁ
3In< Q(sqt, M) ) Q(sqt,m)+m+6' (I1.5)

+ In

Following Ref. [21] we used the bra-ket notation to représies leading-order ampli-
tude as vector in colour space:

g — tt).

In the derivation we used the following result for

|q(8,

+

_|_

_|_

2. Qs (4m)® 1 2 & . 2
K5 {}, pa) = _E'[r(l—s) {thTq {CF (Q) (’VQ(Sqt,m,O,S,K) — 3)
2
Mo(K,m;€) +ygin (%) +VYq+ Kq}
1 2\ ° e 2
a'l'th |:C|: (%) (‘Vq(Sqt,O,m;S,Z/?)) - 3) + = Yq +Ygln <§q ) +yq+Kq:|

(th‘)}, (111.6)

which can be easily obtained from Ref. [23]. The definitiohs’g, 74, g, Yg. Kq can

be found in Ref.[[28]. The result fdg can be obtained from the above result by the
replacementq < q). TheT;, Tq appearing in the above equation are colour-charge op-
erators, which act on the leading-order amplitudes thatectors in colour space. The
calculation of this specific contribution was further siifiptl by noting that, because

of the simple colour structure of the process at hand, theviiaig relation holds:

The

(90— tt]TqTe[ g — tt) = — (g — tt[TaTe| g — tt)
= —(gg— tt|TqTt| qq — tt) = (qq — tt[TgTejagg—tt).  (llL.7)

square of the colour-correlated tree amplitudes isgye
(a0 — tt[TqTe|aq — tt)
~82Paa(N? ~ 1) 5 ((d -2 (L~ 2))d, + Beld - 2)(d - 3)ah)
4B, (111.8)

13



with B as defined in EqL{IL31). Comparing EG.(1134) with EJSLA), (IL3), it is
easy to see that when combining the real and virtual cooestihe IR singularities
indeed cancel. In addition, as promised already in the pusvsection, we see that
indeed noe/e terms appear, which must be due to tdedimensional’ factorization

of the infrared singularities. Thi€ andP operators can be calculated along the same
lines as described above for theperator. In particular we obtain

a

ZTS[Tth{K(X,Sqt,m) — K(X, 5, m)}, (11.9)

K q =
with

2

K(X, Ssqt,mt) = [JgQ (X7 %) } . T 2[%(] + In ((2 sz)_s;(t)—is?tm2>

m? m? ) 1 m?> 3 2m
S(1—%) | —I = =
o m[%tn<%rwn2 T2stm2 T2 St mitm
3, [ sgt—2m/Sq¢ + m2+2m? ] - ( (1—X)sqt )
* 2|n< Sot PRI T s+ me )
(111.10)

where the regular paRg;, of the evolution kerneP%9(x) is given by
P = —(1+X), (11.11)
and the Plus prescription defines distributions in the usag| through

1-n

F(2), = lim {@(1—z—n)F(z) —6(1—z—r])/0

F(y)dy}. (1n.12)
n—o0

The function [JgQ}+ is given in Eq. (5.58) of Ref[]23], and we reproduce it here
explicitly:

1-x 2
Iolxy?)], = [2(1_)(”2)2_1_)((1+|n(1_x+y2>)]+
2
+ == In(2+vy*—x). .13
lz_xL“ Y =x) (11.13)
For theP operator we find

_Us St
Pq= ETqu(x)Tthln (Q) , (1n.14)

with ) 3
PY(x) = Pﬁ%(x) + {E] X + écS(l—x). (11.15)
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Note that in deriving the above relations we used againiogldq. [TIL.4) to simplify
the colour charge algebra. The corresponding results &attiquark give the same
contribution for theK andP operators. Note that when calculating

/dx/zdoLo(qu,kq,kt,kt—)®(Kq-|—Pq), (111.16)

one has to replade, by xk; in the calculation of the colour-correlated matrix element
Eq. (IIL8) as well as in the phase-space measure. For detailcerning the evaluation
of the Plus prescriptions we refer to Réf.[[23]. A remark nligé in order concerning
the appearance of th€ andP operators. To the order we are working here, there is
no contribution from the factorization of initial-statengularities. At first sight the
fact that the evolution kernd?9 appears might thus look a bit strange. The reason
is just that a corresponding term is included in the dipoletigbution, which is com-
bined with the real corrections. If we apply the subtractioethod as it is described
in Ref. [23], we thus have to consider the contributions fiinaK andP operators

as shown above. In principle one could think of changinghsljgthe form of the
subtraction terms; but in that case the analytic integnatieer the subtraction terms
would also need to be redone. Let us close this section wittesemarks about the
subtraction term

(doLo ® dVaipole) (Kg, kg ki, ke kg) (11.17)
in Eq. {[IL1)), which is combined with the real correction$his contribution is ob-
tained as a sum over individual ‘dipolesj, D

d d 1 1 d 5
( OLo® Vdipole) Z_SW/ R%(kt7ktakg)<@tg+@tg+@ +@
+ pI94pH9 4 @tgg+a>t99). (111.18)

Herei and  are the unresolved partons, whaglays the role of a spectator. The ex-
plicit expressions for the 8 dipoles can be easily obtainech fRef. [23]. For example,
we get

q _
Dig =

1 1
j Mg

(ki kg2 —m2xggq
(alka) ) — t(R)T)|Ta- T a(ke) k) — tR)TTk))
1 1

X

= - q
- (ktkg)?—m? xtg,qvtg B‘kq_ﬁmkt_ﬁt’ (111.19)
where Ky ke + kg - kg — ki - kg
00 = T kT kg kg (111.20)
RE‘ = Xig,qKg: K=K+ Ky — (1—Xgq)K, (111.21)
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and )
2 . M
Vg =8Mlgy -——— —1—% — ——¢. 111.22
o s,{z_Xm_Zt 2 kt_kg} (1.22)
The four-momentum of partaris denoted bk;. The momentum fractior s defined
by
" kg ke
G=— 3 (111.23)
Kg- ke +Kg- kg

For the remaining dipoles the obtained results are similar.

The numerical implementation of the subtractions termsvshabove is straightfor-
ward. So far we have only discussed the calculation of thed tmbss section. In prin-
ciple also more exclusive quantities can be calculatedawitany significant change.
In the next section we will discuss our numerical resultstifi@r cross section. More
exclusive quantities will be discussed elsewhere.

V. Numerical results

100009999900 X Y
> z 1999999
00y
a)
9999
49999 -
i
X 99999999999 gamy
z

b)

Figure IV.1: Schematic representation of real correcttortae QCD-box contribution
(a) and the EW-box contribution (b).

*

In the following we will discuss numerical results for theakecorrections to the total
cross section. If not stated otherwise, we used the follgwalues for the masses

mz =91.1876 GeV my =80.425Ge\V. my =120 GeV\.
mp,=4.82GeV, m =1780 GeV,
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and

1
a(2m) = s, as=01, sw? =0.231

for the couplings. Usingnz andmyy as input parameters, the weak mixing angle can
be in principle calculated within the theory. However, girmur calculation is leading
order in the electroweak coupling, we expect that the nurakchoice forsy as given
within the MS-scheme, will give results closer to the actual valuesfogeshowing

0.02

O_QCD-Box [pb]

0.01

Figure 1V.2: Comparison with results available in the kterre [24].

our final results for the cross section, let us first discusersé checks we performed.
The analytic expressions for the vertex corrections toniftel vertex can be found in
the literature. We compared with the results given in R2fs,[26] and found complete
agreement. For the corrections to the final vertex, no sugtpegt expressions can be
found in the literature. Using the same input parametera &ef. [13] we compared
with plots shown in Ref[]13] and found agreement. Furtheev@precise numerical
comparison with Bernreuther, Flicker and[Si [29] who alseméyg finished an inde-
pendent calculation of the weak corrections, lead to cotagigreement. For the case
of the box diagrams it is possible to compare the contriloutibthe QCD boxes with
an analytic result available in the literaturel[24]. In R2#] the corrections to the to-
tal cross section were calculated using the optical theoteraur calculation we just
need to split the real corrections into the contributiorobging to the EW-box and that
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Figure 1V.3: Different contributions to the electroweak@tions for incoming up-
quarks: Initial vertices (long-dashed), final verticest{eld), EW-box (dash-dotted),
QCD-box (dashed). The sum is shown as a full line.
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belonging to the QCD box. As far as the matrix elements foréa corrections are
concerned, the contribution where the momentum flow inZipeopagator is the total
centre-of-mass energy belongs to the QCD box. On the othet, he contribution
where the momentum of the gluon propagator is equal to tla ¢entre-of-mass en-
ergy belongs to the EW-box contribution. Sample diagram$&d&oh contributions are
shown Fig[I\V1. For the subtraction terms there is no sufferéince, they have to be
distributed equally. This splitting might sound somewhdfiaial, but it allows a di-
rect comparison with Ref.[24]. In Fig._IM.2 we show the arti@lyesult from Ref.[24]
as a line. The crosses are obtained from the numerical attegrof our results for the
QCD box over the full phase space. We find complete agreerakingtthe numerical
uncertainties of the phase-space integration into accolms is a highly non-trivial
test, because the entire contribution from the subtractiethod is checked. In ad-
dition we compared again with the results by BernreutheckEiiand Si and found
perfect agreement [29].

Note that for the box contributions only the axial-vectortp@roportional togl,ga)
contributes to the total cross section thanks to the Fureprgm. We included the
vector part (proportional tg{,gﬂ) in our calculation as well, because our aim is to allow
also the calculation of differential quantities (with orthout cuts) where these terms
might contribute. We checked that for the total cross sadii@ vector part indeed
cancels in the numerical evaluation of the phase-spacgraite— providing a further
check of our numerical implementation. Terms proportidn@i,gg or gggf,‘ contribute
to parity violating observables only. They are relevantdpin dependent quantities
and have not been included in the present analyses. An iamiarbnsequence of
the Furry theorem is that the result for incoming down-typarggs can be obtained
directly from the one for up-type quarks as far as the boxesancerned. There is
just a relative sign between the two contributions, becatiiee sign difference in the
weak isospin. At the hadron level the contribution of the d@agrams is thus directly
proportional to the difference of the parton distributiamétions between up- and
down-type quarks. This leads to a suppression of the caniitoof the box diagrams.

Let us now discuss the numerical results for the cross sedtid-ig.[IV.3 we show the
separate contributions as well as the sum for the partoongscsection for incoming

up-quarks as a function of <

= 4mz 1. (IV.1)
For a Higgs mass afny = 120 GeV used in FidIV]3 the dominant contribution is
given by the vertex corrections. It can also be seen that éhé&ibution from EW-
boxes is much larger than the contribution from the QCD-BoxXé/e have checked
that the purely weak contributions, of ordef are completely negligible. At hadron
colliders the parton subenergies may reach the order of TeMbayond. In this re-
gion the suppression of the cross section by large Sudalgaritbms starts to be-
come important, similiarly to the situation for purely elewveak processes (see e.g.
Refs. [15/16]). In this region the weak corrections are efahder of 10% and more.

19



Furthermore, the vertex corrections depend strongly orHilggs mass as shown in

l? 10 LR | LR | LR | LR | LR |
él L
(7)]
[
2 0
(&)
o
S
x '10
®
(]
=
2 -20
©
o [
-3 -2 -1 2 3
10 10 © 10 1 10 10" 10
n

Figure IV.4: Relative change of the cross section from atioes to the final vertex
for different Higgs massesy = 120 GeV (full line),my = 180 GeV (dashed)ny =
240 GeV (dotted)my = 1000 GeV (dashed-dotted).

Fig.Z4, and this dependence is particularly pronouncettié threshold region. (For
a related discussion see Réf.J[27].) In particular for smmalland small velocity3 one

is still sensitive to the attractive Yukawa force. For largg and small3, on the other
hand, the Higgs contribution vanishes. In FigsV.5 And Ve total contribution
of the weak corrections to the quark—antiquark inducedgfatte hadronic cross sec-
tion is shown, which should be compared to the QCD correaitad tross section of
5.75 pb [11] and 833 ph 28] for 1.96 TeV and 14 TeV respectidly far as the total
cross section is concerned, the effects are evidently vestls Electroweak correc-
tions are, however, important for differential distritmris, which are enhanced in the
region of large parton subenergi&sli[30].
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Figure IV.5: Dependence of thgg induced hadronic cross section on the top mass
m (LHC) for 3 different Higgs massesnj = 120 solid line,my = 200 dashed line,
my = 1000 dashed-dotted line).
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V. Conclusion

In this article we have evaluated the complete electroweatections to top-quark
pair production in quark—antiquark annihilation inclugliterms from the interference
between QCD and electroweak amplitudes. In particular vesgart short analytical
results, which will be useful for further investigationss A first application we have
studied the impact of the weak corrections on the total cgestion. We confirm the
findings of Ref.[[13] that the correction to the total crosstiem is negligible.

Acknowledgments: We would like to thank W.Bernreuther, M. Flucker and Z.-G. Si
for useful discussions and for a detailed comparison oflt®puior to publication.

A. List of used integrals

Using the definitions

1 2 2€
Bo(pZ, mi2,mp?) — /dd (2r)

e Z(ez—m12+is)((z+ p1)2 — mp2 4 i)
Co(pi, p3, P1 - P2, M %, mp%, mg?) =
Ea Y (2rm)*
i (02— 2 +ig)((£+ p1)2 — mp2 +ig) (£ + p1+ p2)2 — mg2 +ig)
the integrals used in sectiam Il are

B3(1,3) = Bo(s,0,mz?) (A.1)
Bj(1.4) = Bo(m?0,m?) (A.2)
Bj(3,4) = Bo(m?m?,m?) (A.3)
BL(2,4) — Bo(—l;‘(l—sz)+m2,o,m2> (A.4)
B3(2.4) = Bo(—5(1+P2)+m?0m?) (A5)
B3(1.3) = Bo(smZm?) (A.6)
B3(1,2) = Bo(m? my?my?) (A7)
B3(L,3) = Bo(sm?,my?) (A.8)
B3(1,2) = Bo(m?m?my?) (A.9)
BS(1,3) Bo(s,0,0) (A.10)
Co(1,3,4) = Co(s,m?, S,O,rnzz,mtz) (A.11)
C3(1.24) = Co(0,—>(1-B2)+m? 2 (1-B2),0,0,m?) (A.12)
C2(1,2,4) — co(o,—g(lﬂsz)+m2,2(1+3z>,o,o,m[2) (A.13)
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C323.4) = Co(0.m?%—(1-B2),0,m% m?) (A.14)
C52.3.4) = Col0.m?%——(1+B2),0,m?% m?) (A.15)
cQCPY1,3,4) = co(s,mz,—g,o,o,m2) (A.16)
G = Co(mz,mz,g—mz,mz,mzz,mz) (A.17)
c = Co(mz,mz,g—mz,moz,rrwz,nbz) (A.18)
g = Co(mz,mz,g—mtz,mz,mHz,mz) (A.19)
DU=GEWL _ DS(0,0,mz,g,—Z(l B2), 281<1+BZ) 0,0,mz2, m3A.20)
DG "% — D§(0.0m% 3, ~2(1+ ). (1~ B2).0.0,m2 mAA.2L)
pi=61 _ DS(0,0,mz,g,—Z(l B2), - Z(HBZ),O,O,O,mZ) (A.22)
D§™®* = D§(0.0.m? 3 ~2(1+B2),~2(1-F2,0,0,0m?) (A23)
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