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ABSTRACT

Introduction of Regge +trajectories 1in addition to
the Pomeron, which appears in Mueller's approach to pioniza-
tion, is shown to predict a small dip. The analysis is moti-
vated by a multiperipheral approach. The question whether
this approach may lead to an understanding of the peak in the
pionic distribution or the asymmetry effect is discussed. A
new (polyperipheral) approach based on the exchange of seve-
ral chains is introduced in order to account for the observed
effects. It leads naturally to Mandelstam cuts and is com-

pared with a partonic picture.
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zation from a multiperipheral approach 2 . This model identifies the main bulk of the

TLet us begin with an intuitive derivation of Mueller's result for pioni-
cross-section with diagrams of the type shown in Fig. 1. Breaking up the intermediate
lines, one gets the production spectrum. In particular, by opening a single interme-
diate line, one obtains the representation of an inclusive cross-section indicated

in Fig. 2. We are interested in the situation in which the outgoing particle of momen-
tum p is almost equally separated (in CM longitudinal momentum space) from both the
projectile (q1) and the target (q2). This corresponds to the pionization limit.

If Fig. 1 can be associated with a representation of the two-body process (in the
conventional Regge description), then Fig. 2 represents a sum of such factorized parts

corresponding to specific Regge exchanges in the upper and lower parts.

The proceeding discussion of pionization will be based mainly on the above

Mueller diagram and will be repeated at various degrees of complexity.

a) The simple Pomeron-Pomeron limit

The kinematics of the problem are simply described in the CM system. For
simplicity, we discuss the case of pion production in proton-proton collision. We

find then
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from which the following important relation follows

X
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where the transverse mass My, is defined by
N :
kS .

The contribution of a double Regge exchange to an invariant inclusive cross-

section has the form

LA

E%i; = ‘fV’i 7-[4.4(0"7) (5)

Strictly speaking, Mueller's analysis yields

di )fa(' y, % 6
Eay = 5= Juil?) )

2p
In terms of the scaling variable x = —WI-'— one finds in the limit \/1 , 2% > »/‘ that
%%
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Choosing x ~ 0.05 and my X 0.3 GeV, we see that Eq. (6) reduces effectively to
Eq. (5) since the correction is negligible. We chose the variables V.], v2 and Y
to have the dimensions of masses in order to compare the situation here with conven-

tional Regge analysis of two-body scattering amplitudes.

The pionization limit corresponds to small x and large v s so that by

virtue of Eq. (2) and (3) we are interested in

ml,. v (8)
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The limit Y - ® corresponds, therefore, to v1, V2 — ® ., The dominant contribu-
tion of the form (5) will then be given by 0(1 - o, = a{p(o) = 1 (the Pomeron-

Pomeron limit)
A |
E 5 =+(m.) (9)
=7

This famous " %§ spectrum", originally derived in the framework of the multiperipheral
model of Amati, Fubini and Stanghelini 2 corresponds to the wee partons in Feynman's

3)

language , and it is satisfying that Mueller's analysis also yields it rather natu-

rally as the two Pomeron contribution.

A pionization formula that is based on two Pomeron exchanges, carries with it
more information than just the result (9), if one invokes the assumption of factori-

zation of the Pomeron. This leads to the result

J E -(5— - Fr(a" )
- T2 = (10)
a d?}, T .

where F(mT) is now a universal function independent of the incoming particles. Such

4)

factorization assumptions are known to work well in the fragmentation and diffrac-

5)

tion regions.

Available data in the energy ranges of 10-30 GeV do not seem to support the
universality relation (10) nor do they exhibit a scaling plateau. Conventional shapes
are of a Gaussian type in rapidity and recent comparison of Tfp reactions at 8 and
16 GeV indicate an increase of the distribution with energy 6). This suggests that
the simple Pomeron-Pomeron limit does not provide us with an adequate description of

the presently available data.

b) Corrections due to non-Pomeron exchanges

The most obvious correction to Eq. (9) comes from exchanges of non-Pomeron
Regge trajectories with o((O) ( 1. This seems particularly necessary since the energies
\?1

data. Contributions of non-leading trajectories (P', [4 etc.) are likely to be im-

and \)2 are relatively small, of the order of 1-2 GeV for presently available

portant and, if we rely on an analogy with T N collisions, they may be comparable
with the diffractive Pomeron component. Note, in particular, that ¥ 1 and ¥ o

are proportional to m, in Eq. (8) and, therefore, the deviations from the asymptotic

Pomeron-Pomeron limit gre expected to be enhanced in the smaller mT region. One
indeed observes that the distributions in x are more peaked for lower oy values.
The introduction of non-leading trajectories modifies the x T O distribution and
leads also to yell defined expectations for differences between distributions of dif-

ferent pions 7 .
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The analogy with two-body scattering amplitudes leads to the following

expression

Ejl_;‘; . ;’ (v+ar? ), +ay*) Flm,) (1)

The parameter a, which in general can also depend weakly on Dy is expected to be
positive. This follows directly from the analogy with two-body scattering amplitudes
where it is known experimentally that the cross-sections tend to decrease towards

their asymptotic values. There is a rather natural explanation of this fact in terms
of a "two component" theory of the total two-body cross-sections 8 . According to this
theory, the resonances contribute positively to the usual Regge exchanges and the posi-
tive background contribution builds up the Pomeron exchange. We extend this hypothesis
to the two subprocesses of Fig. 3. This figure is a pictorial representation of a
general pionization process. The two subprocesses involve forward scattering of vir-
tual particles which one, therefore, also expects to decrease towards their asymptotic

value., This is manifested by a positive a 1in Eq. (11).

The positivity of a together with the fact that o ¢ 1 and the constraint
on the product WV, V,, Eaq. (3), means that the point x = O will actually be a (weak)
minimum of E%%z' of Eq. (11). In addition, it implies that the value at x = O de-
creases towards its asymptotic value. Both of these trends are in contradiction with
the data quoted before. We see, therefore, that the addition of the lower Regge ex-
changes did not lead to a consistency with present data. In the forthcoming sections,
we will discuss various other alternatives that may shed light on this question. In
the meantime, let us assume that Eq. (11) is applicable in some higher energy range

and investigate its consequences in some more detail.

To see the effects of Eq. (11) we want to stay in the region where
ViV, % (m%/zm)v and to be able also to allow VY 4/ v2 & 1. The first condition
leads to /See Eq. (7)7 x° € ma/M°. The second condition is met when E-p.  is small
[see Eq. (2_)_7, namely pi, ms and x° > (2mT/W)2. The combined effect of the two
defines, therefore, the border region between fragmentation and pionization where
effects of Eq. (11) should be felt :

(‘-:-:111(<x‘<< (&) (12)

It follows then from Eq. (2) that
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which means that

'(, (g 2 (' -
vy »n LA B, In My
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This is clearly asymmetric since we chose V1/V ° & 1 thus approaching fragmenta-
tion of the projectile. We learn that, as expected, the leading contribution, achieved
when 0(2 = 1, 1s scaling in x. Hence the terms of Eq. (11) that survive in the

scaling 1limit (0(2 = 1) will be
3
d(df' o (
— 15)
E = f/h,)+ X gln)
which, with positive values for g(mT), leads to a decrease towards x = O. The
above quoted range of x was the one necessary for the mathematical manipulations.

In order to investigate when a Regge term may be assumed to dominate the physical
*

amplitude, let us require
v, Oh ‘{)'7 (16)

which leads to
M LB
— x —
v < < 2M1? ()

The upper limit of Ec. (17) is lower than that of Eq. (12) and leads characteristi-
cally to X‘< 0.05. The lower limit of Eq. (17) is at high energies below the lower
limit of Eq. (12). Hence, we may expect to see such effects when 2mT/W 4{ m§/2M2
or W » 4M2/mT, which is a condition that can be met by the ISR and NAL machines.

c) Effects of the exchange mechanism

If we use Fig. 3 as the guide for our study, then the relevant variables
are k1.q1 and k2.q2 rather than p.qy and P.q, respectively. Clearly k1 and
k2 cannot appear in the final formula since they are integrated upon. Therefore,
the distribution has to be given in terms of Y 1 and Y 0 the observed energy
variables. Within the framework of the multiperipheral model, this does not pose
a severe proplem because the ratio k,l.q,]/p.q1 peaks around a central value which
depends on the parameters of the model Zﬁef. 927.
) It should be pointed out that the unobserved invariant masses of the upper—a;d-ig;er
clusters in Fig. 3 are more relevant to the question of asymptotics that the observe
Vv, and Y,. In the most optimal configurations of a multiperipheral model those m

values are proportional to the respective y +values. This proportionality constant
may, however, be small.



In looking for possible deviations from the flat distributions predicted by
the multiperipheral model, it may seem worthwhile to evaluate directly the absorptive
loop diagram shown in Fig. 3. In doing so, we assume that thelupper and the lower
blobs are given simply by Pomeron exchange. The explicit (unknown) forms of the pro-
pagators Di(ki) enter into the resulting l:gp integral. These calculations are
rather involved. Bali, Pignotti and Steele , who studied this problem, have made
the simplifying approximation that the propagator falls off exponentially like
AR /2 - Qb+t 2

This leads to an e term in the integrand where ti = ki.

Furthermore, they argued that the strong damping factor allows us to conclude that the
'Il|t1+t2|min.

main features of the distribution are given by e For fixed si'= (ki+qi)2,

taken for simplicity to be equal Sy = 8, = s'y this minimum turns out to be

2
It,"tzLi‘ s (stH¥)x+s'xt s E’— (18)

*
which leads to the following distribution

exr {".Q.[(S'—H‘)’X’ +slate %.tt ]} Ip (rvzo X, S') (19)

where I1 is a slowly varying function of its arguments. Allowing 4 and s, to
vary over all the kinematical region, one finds that the over-all minimum of 't1+t2'
occurs at threshold s, = s, = M%. In this case, the linear term in x in Eq. (18)

drops and one is left with

E};f - opf-a[ne s I L (o (20)
10)

which is the result of Bali et al. . This is rather strange since one would not
like to ascribe the main bulk of the pionization phenomenon to the process pp — NNK,
In reality, we expect each of the two clusters of Fig. 3 to include many pions in
addition to the nucleon. Many of these pions are also emitted with low CM momenta,
Consequently 8, and s, are expected to be significantly higher than vM2. Returning
now to Eq,,(19) and choosing, e.g., s' = 3M2 we find it difficult to fit with the
single parameter fl both the Pp as well as the x behaviours. Nevertheless, the
functional form of Eq. (19) has some satisfying aspects - it provides for the peaking
of the distribution around x = O, The exponential cut-off in +t, which is the main
ingredient in this analysis, is strongly suggestive of some more complicated structure
than the one implicit in a simple ABFST model. Such a modification of a simple pro-
pagator corresponds presumably to multiple-exchange diagrams. This may suggest that
such diagrams should be taken into account in order to gain a better understanding of

the pionization phenomenon.



d) Unitarity corrections to the ABFST model

The prediction of the pionization plateau in the multiperipher: lds
in the limit of large numbers of particles produced 9 . In such a model, u:i-ci on
pion exchanges and T -T resonance production, the relevant number is the number of
resonances produced. This number cannot be larger than 3-4 at conventional machine
energies. One should, therefore, expect strong corrections (end effects). We comment
here on one particular such effect *) due to unitarity corrections 2). In all

likelihood this is not the main end effect, but it leads to interesting results.

To understand this effect, let us first compare Figs. 4a and 4b. Fig. 4a
corresponds to a simple ideal multiperipheral diagram and Fig. 4b shows a diffractive
correction. The contribution of Fig. 4b is suppressed by O'el(ln)/OE(IE) compared
to Fig. 4a. This ratio should be evaluated at the relevant TR W energies (ki - ki+m)2
Diffractive corrections of the type of Fig. 4c contribute to end effects. Here g
factor of a’el (ﬁN)/D’T (mN) should be introduced. In analogy with the relation
O'el(NN)/O'T(NN) > G'el(‘RN)/O'T('ItN) (values are 0.25 » 0.17 at 15 GeV) we
may expect also o’el(nN)/fT(nN) >o~el(1tr. )/ G'T('n.n) which would then mean
that diagrams 4c are more important than diagrams 4b. The effect of any diffractive
correction is to cause a depletion in an ideally flat distribution. If
Ggl(ﬂN)/O'T(‘KN) > O"el(ﬁt )/ O'T(tl' ) we expect a stronger depletion near the
ends., Obviously, this cannot explain the whole of the pionization peak effect since
diagram 44, relevant to T® N scattering, is not expected to cause a net depletion in
the direction of the incoming pion, whereas experimentally one observes pionization
peaks in both NN and TN collisions. It is amusing to note that the above discus-
sion suggests an asymmetry in the distribution of the outgoing pions in MW N collisions.
In particular, one would expect more pions to emerge in the incoming pion's direction
rather than in the nucleon's direction. This is gqualitatively in agreement with the

observed asymmetry in the pionic distributions 11).

e) Polyperipheral model

Our discussion so far was based on multiperipheral models and on factorizing
reggeized Mueller amplitudes. In this section we consider as a natural generalization

the "polyperipheral diagrams" involving several ladder exchanges as indicated in Fig. 5.

Even without any detailed estimates, it is obvious that such diagrams will
create a concentration of pions in the centre-of-mass. In order to see this, let us
assume for simplicity a symmetrical collision, i.e., k1 = k%, k2 = ké etc. Each
chain (i) will then yield n, pions in a uniform distribution of E d3GVH:p over
a range (—ki, ki) in the CM. In terms of the scaling variable x, each polyperi-
pheral diagram leads to a superposition of flat spectra, all with the same height.

Each such flat distribution extends only over a range 3 ki/PmaX rather than % 1.
If we use as a representative of all polyperipheral diagrams with m chains the diagram

with m equal chains we get



mhqx .
E :((h =£l <)X (9(x+;f)9(x+;") (21)

where A is some effective coupling parameter and c(m) is a combinatoric weight
representing the effect of all other diagrams with m chains. Obviously, the impor-
tant remaining task is to try and estimate the relative importance of diagrams with

m ) 1 terms in Eq. (21).

When diagrams of the type shown in Fig. 5 are closed by multiplying them by
their conjugates, one obtains Mandelstam cuts 12) in the elastic amplitude. This is
shown diagramatically in Fig. 6. It is generally believed that the contribution of
such cuts to the total cross-section is suppressed by 1/lns factors compared to the
(Regge) pole diagrams. Even if their effect on the total cross-section is relatively
small, their relative importance in the inclusive distribution is strongly enhanced by

the factor of m in Eq. (21).

The simple multiperipheral model leads not only to a uniform distribution

but also to clear correlations between the quantum numbers of neighbouring particles
13)
. A

polyperipheral diagram would destroy such correlations since neighbouring particles

on the chain. Preliminary searches for such correlations were unsuccessful

in momentum space may emerge from different chains. In addition, it also invalidates

a factorized reggeized Mueller approach such as discussed in Sections a) and b) above,

An alternative motivation for the introduction of polyperipheral diagrams is

14) of radius

a space-time picture viewing the colliding particles as extended objects
r. This is intuitively suggested by the fact that the diagram 5 corresponds to a
dissociation of the incoming particles into constituents which then scatter simulta-
neously and independently. The particle structure corresponds to the blobs in Fig. 5.
The relative importance of higher order polyperipheral diagrams depends on the relative

importance of this structure.

The "multiperipheral model" does, to a certain extent, deemphasize the
structure of the colliding particles. The latter is reflected only in the (a priori
unknown) residue functions ﬁ(t) of the Regge pole exchanges. A multiperipheral
chain with n links, based on Feynman diagrams with exchanges of particles of average
mass /l , leads to a diffraction radius given by (b2> oL n//l.z. This result 15)
follows from the fact that each propagator corresponds in transverse configuration
space to an average separation of 1/7; . The various propagators are uncorrelated
in direction thus leading to the above random walk result. Since, furthermore, within
the multiperipheral model the average chain length (or the average multiplicity) n

increases logarithmically with incident energy, one finds

8 w7l ot 4 Ls 4.«/-: (22)
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Experimental data 16) indicate that the pp diffraction peak does not shrink as fast
as the multiplicity n grows. This suggests that the multiperipheral chain is not
the sole reason for the range of interactions. One could perhaps regard the colliding
particles as extended objects of radius r » bo’ the constituents (partons) of which

interact via multiperipheral chains as in the polyperipheral diagram.

The strength of a double vs. single exchange of multiperipheral chains is
proportional to r2/b2. This is evident if we realize that the probability of the
second chain, that spreads in a range of b, +to terminate in a particle of radius r
is given by the ratio of the two areas. This corresponds to the 1/lns suppression
factor of the Regge cuts. We see, however, that if r and b are comparable, as

the small observed shrinkage suggests, the cuts may in practice be very big.

At this point, let us depart from the diagrammatical approach and concentrate
on a space-time picture. Let us define a distribution of partons in a three dimensional
space spanned by 3, the transverse vector in configuration space measured from the
centre of the particle, and p - a longitudinal momentum. The distribution f}a(ﬁ;p)

refers to particle A and has the properties

ﬁ,“—:/’) d%a// =N, ﬁﬁ(z:}’) d’(dfz P (23)

where is the longitudinal momentum of particle A and N is the average number

ap A
of partons in particle A. The density of partons projected on the transverse plane is

n (€)= ﬂ;, (4.p) dp o

We assume that the collision of particles A and B consists of essentially
independent collisions between partons belonging to A and B. The interactions
between the partons are described by a propagator g. The total cross-section is then

given in terms of a convolution

() [e4n8y 24080 5G40 D

o;(AB): Gnddé (1- e-,m) (26)
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bAB in Eq. (25) is the impact parameter between the centres of the two particles A
and B. The polyperipheral approach leads to a propagator g  that is built from a
multiperipheral chain and is, therefore, slowly varying with energy. In a usual pure

14) one assumes this interaction to be energy independent and

geometrical approach
short ranged. In the limit of small 7 one can expand the exponent in Eq. (26) to

obtain

6_;(03) x 4!4“ 7{{) = gNnN’ (27)

This corresponds then physically to the neglect of mutual shadowing effects. Diagramma-
tically such shadow effects correspond to unitarity corrections (e.g.y AFS cuts) in
which the same partons scatter several times. Such corrections would spoil the fac-
torization property of Eq. (27). It should be pointed out that such AFS shadow terms

cannot be obtained by a closure of polyperipheral diagrams.

The collision of a parton from A with a parton from B may be either
elastic or inelastic. The partons which scattered elastically, as well as those that
did not scatter at all, form new distributions JPA%' and f px Wnich constitute the
two fragmentation systems. Inelastic scatterings lead to formation of meson clouds,
thus building the pionization region. A consequence of Eq. (23) is that each
parton carries, on the average, a longitudinal momentum of %. The pionization dis-
tribution in longitudinal momentum will peak symmetrically at the CM system of the

parton pairs. This is the frame in which

' N,
’R:‘gd b 738 (28)
B

In the approximation of Eq. (27) one furthermore finds that this frame is

characterized by

G (AxX)
G, (8X)

R ~

(29)

1)

This last result is reminiscent of the "quark derivation" of the asymmetry para-

meter R. Our result, however, does not necessitate small numbers of partons. There-

3

fore, we do not get an a priori fixed value like R = 5 but, instead, a connection
of the type (29).
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Figure 2

Figure 3 :

Figure 4
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FIGURE CAPTIONS

The multiperipheral approach.

The pionization diagram.

The loop in the pionization diagram.

Unitarity effects on multiperipheral diagrams.

A polyperipheral diagram.

A Mandelstam cut produced by the polyperipheral diagram of

Fig.
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