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1. — CLUSTER DECOMPOSITION

1)

by a certain cyclic ordering of the N external lines. We wish to make 2 cluster de-

Consider first a single term in the K point Veneziano amplitude defined

composition of this amplitude in the manner illustrated in Fig. 1.

Such a term is given as a function of those Mandelstam variables correspond-
ing to the various partitions of the diagram without changing the ordering of the external
lines. However, the number of these variables is in general bigger than the number of
independent dynamical variables required to describe the N particle process in physical
four-dimensional space. They thus satisfy certain algebraic relations whick define a
sub-manifold in the space spanned by the original set of Mandelstam variables. ZFor rea-
sons which will be apparent, it is convenient for us first to treat these variables as
independent, working as if we were in a physical space of unlimited dimensions. Only
when the need arises shall we impose the four-dimensionality of space and restrict the

amplitude to the physical manifold.

In a physical space of unlimited dimentions then, the cluster decomposition

of Fig. 1 is defined as the 1limit of the amplitude when :

(1) IOLP| - ® for all o, dual to the Reggeized lines GQAB’ OQBC’ ete

P

(i1) all other variables are held fixed.

The directions in which the various OCP in (i) approach infinity will depend on the
physical region we are considering, or in other words, on which of the N 1lines we

choose as incoming and which as outgoing.

Now the integral representations with which one usually defines the Veneziano
amplitudes are convergent only in the region where all Re d@ < 0. In taking the limit
of Pig. 1, therefore, it is convenient to consider first the (unphysical) limit OLP - -
for all P dual to dﬁB’ O‘BC"" The physical limits for various physical regions

where some O¢P- +® + i& will be obtained by analytic continuation.

It turns out that a very simple rule exists which allows one to write down
explicitly the limits of the amplitude in general when OCP — -® corresponding to
Fig. 1. Before explaining the rule in full generality, we shall first illustrate it

with a few examples.
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A. - Six-point function, decomposed as in Fig. 2

Starting with the representation

—dy ~) ~dsge -1 ~dlag =\
B, = Jj)’ax, Axy &y X, ol x,moe (pax )T

CVTRA -ds3~1| ~dag +clay +clse

(4-%)" 4 (4-y) "7 (ox, )
. - olgy - d (1)
(4_)‘;%)-455-0-434 das (1_,"’(;‘})"‘ 34 + oAag + dss

we wish to take the limit 0434, 0(61, 0(24, %5 = -® with all other variables

held fixed. This is most conveniently done by changing the variable of integration

y to z 2):»

= -3/

“ L) 34 (2)
On taking the limit, some factors in (1) become exponentials, e.g. :

- dag +olay +olyy x ’

Lim  (A-%Y) - exb{-*i(-ot“.du)
olsa (3)
iy ¥ -0
One of the integrals can then be done explicitly yielding :
~ dyg -1

-y - —d, - =g =\
B¢ — T’(-"‘.s)jdxu LY} d“‘("-xc) b |jd"x L st (4=Xa)
()
» [-o(,. (A=%)(4 = Xa) =0lgy Xy Xa = ol g X (4 =%) = ol x‘(1-’x,)]

We note first that (4) contains two factors which are identical to the two four-point
vertices A and B of the Reggeon &13 were on shell. Indeed, if we put %13 = 0,
the last factor in (4) disappears and one just has a product of two B4, as one
should. It seems thus that the continuation of the vertices to off-mass-shell Reggeon
is accomplished simply by the last factor, raised to the appropriate power of the
(complex) Reggeon spin. Moreover, the factor

(ABY = [-dse (4=%)(4=%a) —lgy Kixa = dhug X\ (4=%) -5 x -(M-)] (5)
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which links A and B, has a simple structure ; it is minus the sum of all variables

°‘P which are dual to the Reggeized line a‘AB = o

own dual conjugates in both halves of the diagram.

139 each O‘P multiplied by its

B. - Eight-point function, decomposed as in Fig. 3

We may start from the twisted multiperipheral representation (Fig. 4) of
B8 which may be found, e.g., in Ref. 3). Then using the same technique as in A, one

obtains the following expression for the limit

B, — jqu dqs 4 e (A B>d”<BC>“'° U (edyg 1 Hpci ) (6)

where

qu <y = vertex A(B,C) when the connected Reggeon
A Co, lines are on-shell, i.e., when (7)

0, = oy = 0.

U (o, dajX) = jds.o\bn 5?“"'52*4“5[-5.-5..-3.3~/Jc] (8)

X = (1A|B B‘:£>
(ABC) (9)

In (9), we have generalized the notation of (5) in example A, so that < ABC > is
the sum of all Mandelstam variables linking A to C each multiplied by its dual
conjugates in A, B and C. Explicitly for the decomposition of Fig. 3, in the re-

presentation of Fig. 4 :

(ABC) = =dyy (=% )(1=%)§ = el % (14D § = g U=KD1 g -da XY 7 (10)

The definitions of < AB> and < BC > are similar.

One notes that again the same factors as in (4) and (5) continue the Reggeons
off-mass-shell. In addition, there is a two-Reggeon vertex function which describes in
a sense the relative polarization of the two Reggeons in terms of a Toller-type variable
X. This vertex U replaces the simple T’ function in (4).
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Comparing the form of Lf' given in (8) with the integral representation of
T’(-d.123) which occurs in (4), namely :

od Y
.r’(-d) = Jo d? } 'eXb{~ %} (11)

it is not difficult to guess the manner in which the formulas (4) and (6) are to be
generalized. For the general N point function decomposed in an arbitrary way as

shown in Fig. 1, we have

B, —*Sd% &qy - 4Q; (ABY*a8 (p*eC.. (YZ)*¥2 T (12)

where

dAg 1 -dpe-l -dyz =~

U = 543»"‘}“ d3vz tee 0 bz

* exb{' Tae - dec - ~dvz T é—g;é&l)ﬁuhc -

- {xyz> _{AB.--YD) (13)
xYXyz) e vz (aB)- --<Yz>3 )

The symbol < J...P > denotes as before minus the sum of all Mandelstam variables

linking J +to P, each multiplied by their dual conjugates in all clusters J,...,P.

That the formulas (12) and (13) are indeed valid in general can be seen most

readily from the original definition of the beta functions 1)

s

B T du, (——-)TT st o

where P runs over all partitions of the N point diagram, P' runs over some
independent set, and J is a volume element factor whose exact form is irrelevant for

our present discussion.

Consider first the simple case of a decomposition into two culsters A and
B, as in Fig. 5a. We can assume without loss of generality that the independent set
P' contains the line AB which is Reggeized. The decomposition is defined by the
limit o(,Q - -® for all partitions Q dual to AB. In this limit, the integral (14)
is dominated by the region uAB - 0 and it is convenient as in examples A and B to
examine this by a simple change of variables. Let a be an arbitrary line in cluster

A and b sanother in cluster B. Define 2z by :



Woo="%/dap (15)

as d'ab = =@ , uAB - 0. The factor J in (14) being a product of u variables
factorizes as usual. In the remaining product in the integrand, we can distinguish

three types of terms :

u

.
b

&) p+1 -o,p-

) s ) AB AB~1
(1) up 45 5 this just gives by (15) a factor l:—oéab_-[ z

(ii) up = Up, where R 1is not dual to AB ; these factors are not affected by the

limit g 0 and make up exactly those terms represented by the symbols

dCPA and d¢B in the notation of examples A and B ;
(iii) up = g where Q is dual to AB ; these terms will exponentiate when

d’ab—’ - ; using the duality condition

= - T
My 1 'g & (16)

one can write

e ek Tag]

where Q' # AB 1is dual to Q. Now when up =0 all u variables dual to
AB — 1. Hence

-dg-1 oda
J 1 —_ - —_— w .,
Q exb { § dab F” & (18)

where now Q" runs over only those partitions dual to Q which are neither
equal nor dual to AB.

4)

Collecting all these factors, then, one has

B = - 3, faeaads 7oy (F) W e {428

which by a simple change of variable

§’=_SA_§2§

°(¢\b (20)

reduces to the general form (12) as required.
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The arguments given above can readily be generalized to a decomposition into
more than two clusters. For each of the Reggeized lines, one makes a change of variables

as in (15) :

i 8 = - m 1] Abc_ S - s
AS Aap Ape (21)

The only new point in the argument is that the product in the integrand of (14) now
contains terms which are dual to several of the Reggeized lines. These in the limit

will give exponents involving several =z variables corresponding to the last terms

in (13). For example, let S be dual to BC and CD ; then as “bc’ o%d - -,
we have
-dg -1 oA
“‘5 —> 2xbp { ¥oc dcv [ ‘ uga)
Ape ecd T (22)

where S" runs over all partitions dual to S which are neither equal nor dual to

either BC or CD. The formulas (12) and (13) are otherwise obvious.

Finally, we note that the integral expression (12) is not factorized in
the usual sense, since the symbols < J...P > involve the integration variables in
all the clusters J,...,P. Factorization will only result when we restrict the di-

mension of our physical space, as we shall explain in the next section.

FACTORIZATION

In Fig. 1, the Reggeon ‘(AB carries spin. Thus the orientation of the
vertex A in space will in general affect the orientation of the vertex B. Simi-
larly, the orientation of B will affect the orientation of C, and so on, so that
in a space of unrestricted dimensions, the information of the A orientation will
propagate down the chain and there is no factorization. In the physical space of
four dimensions, however, the information will not propagate. Here, it is obvious
that once we fix the orientation of B relative to A, and C relative to B, we
fix also the orientation of C relative to A. We thus expect that when we restrict
the amplitude to the physical manifold by imposing the four-dimensionality of space,
the amplitude will properly factorize. In this section, we shall demonstrate how this

comes about for the integral (12) obtained above.

Consider an N point diagram divided into two parts separated by a Reggeon

line, as shown in Fig. 5a. Let 1 and be any two pairs of lines in the

parts A and B respectively > . In this section, we shall demonstrate how this

following relation is valid asymptotically between the Mandelstam variables :



S"-A“"B s'fA 8 - {
S .S . (23)
itk “4atn
where we have used the notation :
s Chi» bigy v + b4)°
.. = . * ‘0 e .
‘¢ ¢ + 4 (24)

The relation (23) is particularly easy to remember in terms of the dual diagram Fig. 5b,

where the left-hand side takes the form of a cross ratio.
The asymptotic relation (23) can be established in various ways. We shall

prove it here by evaluating the Gram determinant. Let p1,p2,...,p6 be any six vectors

in space satisfying the condition :

o

.- b*...... -Q.b
b ¢ (25)

A necessary and sufficient condition that these vectors be contained in a space of four

dimensions is that

A £ X (bb.b‘) = O (26)

where i,j = 1,...,5. Note that although we have written (26) in a form asymmetric
between pi and Pg>s the condition is in fact symmetric because of (25). Moreover,
because of (25) again, only nine of the (pi,pj) are linearly independent. We may
therefore choose to express them all in terms of the set of nine Mandelstam variables
obtained by partitions of the six-point diagram with p,‘,...,p6 as external lines
arranged in cyclic order, namely : s12, 323, 534, s45, 356’ 561’ s13, s24, 535
defined as in (24). 1In four-dimensional space, then, these Mandelstam variables
satisfy a condition which can be derived from (26). In particular, for the six-point

function, this condition A\ = 0 defines our physical manifold.

Consider now the asymptotic limit defined by Fig. 2 of example A.
A straightforward evaluation of A to leading non-vanishing order yields the following

expression :

A — T!G' Sy (Sye S¢) — Saa Sss)& (27)



The condition (26) then implies :

Sia”Se1 _ 4

514 ’535

(28)

which is a special case of (23). Further, if in the preceding arguments, one replaces
p1,...,p6 by the six vectors represented by the sides of the hexagon (solid lines) in

Fig. 5b, one obtains the asymptotic condition (23) in general.

It is noteworthy that the relation (23) remains valid even when some of the
particles in the clusters A and B of Fig. 5 are boosted to form new clusters, as
shown in Fig. 6 in a four-cluster case. Moreover, the derivation of (23) given above
is entirely algebraic and analytic. The asymptotic condition is thus valid not merely
in some physical regions of the multi-particle amplitude, but in all (complex) directions
on the physical manifold. Thus, in particular, it holds also in the unphysical region

with all @l < 0 for which the integral representation of BN is convergent.

With the relation (23), we shall now prove that the symbol < AB > intro-
duced in Section 1 factorizes into two parts depending only on variables respectively
in clusters A and B. Choose two arbitrary lines, a in A and b in B. Intro-

duce the notation :

(A} - g‘:b Z o“A" -D- uL”cA =)
‘a <
A

ob ¢

(s> = :!(_ Z d“"a -D- u":a (50)
B8 [

where the sum in (29) runs over all 1 while the product is taken over all up in

A’
A which are dual conjugate to 0CiAb. Diagrammatically, the terms in the sum or (29)
are represented by the dotted lines in Fig. 7a ; the conjugate variables up; which
multiply a certain OCiAb correspond to all lines in A which cross the line repre-

senting @ - The definition of [B> is similar.

We now claim the following :

(AB) = - da, {A].[B) (51)

This can be seen from Fig. 7b. In the product (31), there is a term with “EAb' déiB/acab
multiplied by the appropriate u variables. However, one sees immediately from Fig. 7b
that any line in A which crosses OLiAb and any line in B which crosses cgaiB must
also cross ociAiB and vice versa. The u variables multiplying o‘iAIYOLaiB/OLab in

the product a('ab <A_-[-|:B> are thus the same as those multiplying d'iAiB in < AB >.

Moreover, by (23), we have indeed



d,. :d'b-daib/o(ab

"h"s ‘A (32)

which therefore proves (31).

We note here two points. First, the vectors a and b appear only as
frames of reference to describe the orientations of the clusters in space and have no
special significance. It can easily be seen using (23) that <A] as defined by (29)

only depends on the choice of a and not on b

(et Sa, Tay =4 Z ke T u
“‘ZA Apb 1>~'A %, e R AC 7, LA

(33)

where ¢ need not even belong to cluster B. Second, the relation (31) is valid for
any two adjacent clusters which may occur anywhere along the chain of Fig. 1. Thus we

have in general

(RSY = - d,s {(R].LS)

(34)

The factorization theorem (34) is readily extended to symbols linking more
than two clusters. For example, consider the decomposition represented by the dual
diagram of Fig. 8. It is clear that all those and only those lines in B which cross
from one side of the diagram to the other are dual to variables linking A to C.

Hence the expression < ABC > has a common factor, namely

[ﬁ] = product of all u variables corresponding

to lines in B traversing the dual diagram (35)

A4pplying again the arguments in the preceding paragraphs, one easily sees then that the

following holds,

<AﬁC> s - o‘ac <A]. [b].[C)

(36)
The generalization to more than three clusters is obvious

(TK...P> = "0(1‘,', (33.[Kd. ... [P (37)

We turn now to the factorization of the integrals (12). For the decomposi-

tion into two clusters, one sees immediately that the amplitude factorizes :
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T7 (= dag) qu’A aqp (A 5>d“

= jd‘h (A1, {T"(-d“) [- d“]“u} (e [B5%As

(38)

For an end-cluster attached to only one keggeon line, we have thus a vertex function :

Ve (A) = fagy (A1 (59)

and for the Reggeon line, we have a factor :

D(AB) = T7 (-day) [- du]““ (0)

Next, from the factorization into three clusters [éee (8) and (9) for definitioné] :

\Sd“(’h aQs ¢ Qe (Ap)™ee <3C'>d'c U (day , e ; Je)

= V. (A) DcaB) V_(8) D(8C) V, (c) (41)

one defines also the vertex function for an internal cluster attached to two Reggeon

lines, namely

V, (8 = [Tldu T(=so)] " | dqy [BI™s ()™

- U (dpys doci € = = LB[>b§a] E.d“) e
ac

Together with (39) and (40), this then allows one to write down the factorized form of
(12) decomposed into any number of clusters. The proof that (12) in general does
factorize in such a manner is reduced by (37) to the proof of factorization in the

multi-Regge limit which may be found, e.g., in Ref. 6) and need not be repeated here.

It should be noted, however, that our procedure of factorization applies
so far only to the unphysical region where all & < 0 for which (12) is valid. The
continuation of the factorized form to the various physical regions is in general not

trivial and will be dealt with in the next section.
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- CONTINUATION TO PHYSICAL REGIONS

The factorized form of the amplitude obtained in the preceding section was

based on two conditions :
(i) the asymptotic limit defined by Fig. 1,

(ii) the four-dimensionality of space as embodied in Eq. (23).

Therefore, whether one can continue it from the unphysical region where it is defined to
a certain physical region depends on whether there exists a path connecting the two
regions which lies entirely in the asymptotic limit of the physical manifold as defined

by (i) and (ii). A simple example will demonstrate that this is in general not possible.

Consider the six-point function decomposed as in Fig. 2. We wish to continue
the factorized amplitude to the physical region R, say, where 2 and 5 are incoming
lines, while &all others are outgoing. One easily sees then that in R ; 834, S61 > 0,
>0, and R 1is de-

while s < 0. DNow, the amplitude has cuts for

9347 %62
have to remain above the cut. In order to reach R

247 535
fined such that both s34 S61

therefore from the unphysical region where

and

534, S61 < 0, one has to rotate both s
along an infinite arc in the clockwise direction. This one has to do

34

and - Sg,

continuously under the constraint

(43)

which is clearly impossible without bringing either Spq OT Sz, across their cuts

into their unphysical sheets.

It is seen that the situation met with in the preceding example is quite
general. Only in exceptional cases can the factorized form of the amplitude be conti-
nued from the unphysical region (all & < 0) to a Physical region, or from one phy-
sical region to another. This is true for any N particle amplitude, not merely for

the Veneziano model.

To obtain the factorized form of the amplitude in physical regions, there-
fore, one has to give up either (i) or (ii), namely, either (i) continue the amplitude
through the finite region of the physical manifold, or (ii) continue it outside the
physical manifold. We choose here the second alternative. The asymptotic
form (12) will first be continued treating all ol's as independent to the desired
physical region. Only then shall we impose the four-dimensionality condition to fac-

torize the amplitude.

Consider first a two-cluster decomposition as in Fig. 5. In a certain
physical region, say, some of the variables ©¢ dual to CCAB are positive 7).

Treating all oC's as independent, the amplitude can be continued just by relating all

such oL's along an infinite arc in the clockwise direction. Depending on the integra-

tion variables, < AB > will then sometimes be negative with phase e—lu . Hence,
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B(AB) = T7(-clay) [dga d@s [¢aBY|™

« [e (A + €T o (- B))] (14)

where

6(x) = v, x>0
o, X<O0

If now we express < AB > in terms of <A]| and [B> we find that (44)
does not factorize in general. This is understandable, since (44) has a mixture of
positive and negative signature exchanges. Even though the amplitudes for both signa-
tures factorize, a mixture of them does not if the vertex functions for positive and

negative signatures are different.

In order to factorize the full amplitude, we form the signaturized combi-

8
nations, B(z ) ( T=%), defined as follows

B(z) = B(AB) + = BC(Ax B) o)
45

where B(AxB) is obtained from B(AB) by twisting the Reggeized line, which means
that the ordering of the lines in cluster B 1is reversed. Under the reversal of the
ordering in B, the only quantity which changes in (44) is < AB > (dCPB being a

Veneziano integrand, is invariant under reflection). Hence,

BCAXB) = T7(-ap) [AQn dgs [<Ax BT

'[G A x B)) + \e~i1r°(A° 9(‘(AXB))] (46)

where < AXB > 1is defined as < AB > but with the ordering of the lines in B reversed.

Consider now an arbitrary term in the sum of < AB > : - d'iAiB multiplied
by its dual conjugate variables in A and B. There is a corresponding term in < AXB >

that involves the same conjugate variables, multiplied by the variable

— . Y
-d‘A"'b = - o([( P‘-A" oo 4 P"‘A + b"bﬂ* PR PNA*NQ)] (1)

(see Pig. 9 for notation). By momentum conservation

oA, , = °([(P.'A‘F""'bn.-"\‘bt""‘"bis):}=-d"'A"~a

Aplp (48)
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to leading order. Hence we find that

(Ax 8) = - {(AB)

(49)
As before, the phase of < AxB> is e ° " whenever it is negative. Thus
BCAXB) = T(-%g) |49, ¢Qs [(A Y| <A
. [e"’“" ©((a®)) + e(-<As>)] (50)

The signaturized amplitude (45) now becomes

B() = T (-App) (1 + e ar)

*jd%d% [(ad|™® o (<Ab))+=e(-(Ab>)] (51)

Using (34) and

Sxxs) + £ O ¢-%x) = [O(x) + IS NICIEN +TO(-%9) o2)
52

we have then the factorized form :

where

Ve (A, T)

4 1¢a1]**® Lo «a1) + z 6 (<)) (54)

“-z)/2

D(AB, ) = Tr(odag) T (4 +2€ ™) (sl ™ [5ign (o))

(55)

which define respectively the one-Reggeon vertex and the Reggeon "propagator" for

signaturized Reggeons.

A similar procedure can be applied to a three-cluster decomposition to
derive the two-Reggeon vertex for signaturized Reggeons. For this purpose it is
convenient to write the vertex function {J defined in (8) in terms of the confluent

hypergeometric function ﬁ(a,b;x) as 9)
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U(‘ﬁ ,0a; ) = )C-d' T7(-d) T7 (o) =) @(“'{l’ 1 wely~dky jIC)

4 )% T7 (=ot) T (=) B (~cka, 1 40l ~dkej X)

(56)

Since f(a,b;%) is analytic for finite X, substitution of (56) into the integral (6)
will exhibit the singularity structure in simple factors such as < AB > , etc. Again,
forming as before the combinations of amplitudes with definite signature exchanges, an
analogous calculation yields a factorized form for the amplitude decomposed into three

clusters :

B(zT,a - ZQQ) = Vg (A Tap) D(AB, Tpg) VI(B, Tup. Zso)

D(BC, Zoe) Vg (S, Tpe)

(57)
where the internal vertex function VI takes the following form :
V; (B, Zas, Tec)
- -iwd ~iw(Kyc -
1+Zge Thas, 7o T 0C, TagZpc € ' “"‘). T (%ye -dac)
-t -iT -
[1+Tas e T[40 pe @'Th]  T(-okec)

x ' &d. dhc, ‘dAO qub I<b]IdbC-“A5 [B]%[tAge(<BJ)+tg¢@(-<B])]

. >¢Bl) dap 4
« P (-dyp, 1+dpc=dags ‘%g— -_o(b.:&)

+ {Aesc (Bl (8>}

(58)
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With the vertices (54) and (58), and the Reggeon propagators (55), one can
now write down the factorized form of a general N point Veneziano amplitude decomposed

into any number of clusters in any physical region. Our program is thereby completed.
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We are of course going to continue to positive values only those variables
dual to ol AB® The variables o{ that are completely contained in one
cluster are always going to be kept negative, in order for the integral

representation to converge.
Our approach is analogous to that of Weis in the special case of the multiperi-
pheral limit.

J.H. Weis - M.I.T. Preprint (1971), to be published in Phys.Rev.

A. Biafas and S. Pokorski - Nuclear Phys. B10, 399 (1969).






Ig

\/

B

I
FIG. 5 (a)

i

Js

FIG. 6

(; B ey 1Wv\r=~z"1.w1\¢'§o~wr L Y

LU

» | AR\ /
\ l / \ / /
i

FIG. 5 (b)




FIG. 7{a) FIC. 7 (b)

FIG. 8



6°Sid

gxV gvVv




