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- INTRODUCTION

The purpose of this report is to cover and summarize some recent developments
in the studies of many-particle production. It is based on an invited talk presented at
the International Conference on Duality and Symmetry in Hadron Physics which took place
on April 1971 in Tel-Aviv. This field is right now in the process of very rapid growth
and, therefore, it turns out that even in the short period that passed since that confe-
rence took place, a lot of new information was gathered and analyzed. We try to cover
a big part of it in this paper. We do not intend to present a comprehensive review of
all theories and models which were developed during the years for the analysis and under-
standing of the production processes of many particles. Instead we concentrate on
theoretical models and phenomenological studies that are most strongly connected to those
topics that recently became very fashionable. Since the theoretical studies, as well as
the experimental analyses, are doing still their first steps, there exists of course the
danger that part of what is said here will change within a relatively short time. Never-
theless, this is also the reason for the interest in this field - since everything is in
stages of development new research works are called for to establish the character of

the phenomena involved.

The main obstacle that many theoretical approaches are faced with is the fact
that there are not really so many particles produced in the high energy experiments. We
are usually concerned with energy regions where the main contributions to the cross-
sections come from reactions in which five %o ten particles are produced. This number is
too big to allow a simple description in terms of well-defined exchanges as in two-body
production, and too small to be treated in a statistical fashicn. Since this number of
produced particles grows very slowly with energy, we will not be able to avoid this dif-
ficulty in the foreseeable futu;e. We have therefore to accept this impasse as a fact
of 1life that we have to learn to cope with. The same problem manifests itself also
in a different aspect - the difficulty in proving or disproving models of particle pro-
duction. Many models differ only in the description of "asymptotic" phenomena and it
is unclear yet what their corresponding energy ranges are and when they will be reached.
We will therefore follow the coumon trail of abstracting the general properties from
models and then trying to implement them in the analysis of available data. We try to
derive these properties in a simple intuitive fashion, and discuss their validity by

using many of the recent experimental results.

The study of many-particle production is a pragmatic trend in physics. The
feason is simply that in the high energy machines that are developed nowadays, a natural
emphasis will be given to the production of relatively large multiplicities. Neverthe-
less, the developments in the recent years have shown that it presents new challenges
and calls for new insights. Part of the achievements are discussed here. Many more will

certainly follow in the near future.
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- GENERAL PROPERTIES

In this section we will point out some of the more basic and well-known pro-
perties of many-particle production. For a more comprehensive review, as well as more
detailed numerical fits and estimates, we refer the reader to Wroblewski's rapporteur
talk at Kiev [ﬁj. Many of the more recent results are covered by Deutschmann E}]

in his rapporteur's talk at Amsterdam.

2.1. = Abundance of pions

A striking fact is that most particles that are produced in the high energy
collisions are pions. Thus, e.g., at 25 GeV R p reactions [}] only 16% of the produced
channels include strange particle production. Even these strange particles are usually
accompanied by pions. We note therefore that the problem at hand is far from being close
to the SU(3) 1limit. This is so although the sums of the various cross-sections, namely
the total cross-sections, do obey many symmetry relations. When we discuss many-particle
production, we are treating mainly the production of many pions together with one or two

baryons, as determined by the quantum numbers of the incoming particles.

2.2. - Poisson-type distributions

A typical distribution [}] of the cross-sections for the production of non-
strange particles in 16 GeV ® p reactions is plotted in Fig. 1.vs. the number of
prongs observed. They fall on a curve similar to a Poisson distribution. There exist
many papers on the question whether it is really a Poisson distribution, and if so in
which variable [ﬁ]. In order to avoid this problem right now we called it a "Poisson-
type" distribution referring to the characteristic structure of a broad peak for low
values of <1H:> and a steep fall for higher values. One normally leaves out the elastic
cross—section from these plots regarding it later as the shadow of all inelastic channels.

The elastic point is added in the figure for comparison.

2.3. - Low transverse momenta

The transverse momenta (pT) of the outgoing particles are usually of the
order of 300 MeV or so and do not change appreciably with the incoming energy. In Fig. 2
we present the transverse momentum distributions of pions produced in 1t—b experi-
ments [BI. One observes a peak at pg = 0 followed by a steep fall with a slope

varying between 10 to 3 (GevV) 2.

The production processes can be described within a cylinder in momentum space.
This is shown in Figs. 3 and 4 which also emphasize the two characteristic modes of pro-

duction discussed in the following paragraph.
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2.4. - Leading particles and pionization

In Fig. 3, we observe that the proton distribution is clearly concentrated
near the location of the incoming (target) proton. The T distribution (there are
two ® ~ mesons produced) has a strong tail in the direction of the incoming T .
These two particles that follow the trend of the incoming particles are referred to as
"leading particles". In contrast one finds all other pions around the c.m. origin.
This phenomenon, namely the existence of a cloud of.pions with low c.m. longitudinal
momenta (pL) is sometimes referred to as pionization. This concept was first intro-
duced by Pal and Peters [EJ in the context of a production mode in high energy colli-
sions. It is often used for describing a concentration of pions around the c.m. that
stays finite as one increases the incoming energy indefinitely. We will use it more

freely to describe the phenomenon that exists at available energies.

The description of the process in momentum space has one deceiving aspect
to it, namely, one may tend to think that this separation between the leading proton
and all the pions exists in configuration space. This is not true since if a proton
and a pion move with the same velocity, the ratio between their two momenta is mp/mu
thus favouring strongly a separation in momentum space. It means also that Fig. 3
does not preclude the existence of resonances in intermediate stages which then decay

into the proton and pions.

Figure 4 shows the average momentum vector of the outcoming particles as a
function of the multiplicity. One sees again the clear cut-off in Pp- We note also

the decrease in the leading particle effect as the multiplicity increases.

Figure 5 shows all the above-mentioned effects in the production spectra
of pp reactions [T]. Even after integrating upon all other emitted particles one
still clearly observes the leading effect in the proton distribution : it is flat
whereas all other distributions peak towards the c.m. The different scales in the
various distributions provide the evidence for the abundance of pions. Note also the
similarity in the pT distributions of all emitted particles. They are plotted here
vS. pT rather than p;, the variable used in Fig. 2.

An exception to the rule of leading particles is given by 5P annihilation
and we may justly ask ourselves whether the pP reactions fall into the same category
with the TCp and pp ones where annihilation is absent. ZFigure 6 shows the relative
importance of the various types of channels in ﬁp reactions. The total annihilation
cross-section is falling with energy. The highest point where this is measured is at
7 GeV. The data up to this point can be fitted by v =0.6£0.03 where V is the
incoming laboratory energy Eb]. We may expect therefore that, at higher energies, the
pp reactions will resemble more and more the pp ones. The proportion of the elastic
vs. the total cross-sections as well as the amount of strange particle production is
similar to that observed for other incoming particles when absorption channels are

absent.
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2.5. - Increase of the average muitiplicitx

The average multiplicity of the particles produced 'grows slowly with energy.
A compilation by Czyzewski and Rybicki E9] of data in the VYV range of tens of GeV
is consistent with a power increase of the multiplicity of charged particles, as WO'7,
where W = ﬁ is the total c.m. energy. Recent cosmic rays data [:10:[ provide evidence
for a logarithmic increase in the V¥  ranges of hundreds of GeV, as shown in Fig. 7.
Such energies are available in the ISR and soon will be available in NAL. One clearly
looks forward to a verification of these results, especially since recent emulsion
data [1] from Serpukhov seem to follow the wo-7

with the cosmic rays results of Ref. I:‘]o:[

behaviours in contradiction [:21

THE MULTIPERIPHERAL MODEL

The logarithmic increase of the multiplicity is one of the well-known results
of the multiperipheral model. This model, otherwise known also as the ABFST model [12],
was suggested in 1962 and is a straightforward generalization of the peripheral approach
to two-particle production amplitudes. A scattering amplitude is described by a diagram
of the form of Fig. 8. The two question marks refer to the two basic questions - what
is exchanged and what is produced. We know that eventually one observes pions, never-
theless it may be that they come mainly in forms of ? and perhaps G  mesons. We
will return to this question of correlations between the pions in the Section 11. Let
us just note here that a model of such meson production would be consistent with pion
exchanges. Indeed the original ABFST model dealt with pion exchanges. It was of course
soon generalized to include Regge pole exchanges Eﬂ The trouble with the multi-Regge
exchange model is that its application can be justified only for about 10% of the data
at conventional energies DA,__[ Although several successful modifications have been sug-
gested, such as the CLA model Dﬂ and multi-Veneziano formulae |:16j, we saw in the last

two years a return to the old pion-exchange model E'ﬂ

The arguments that we are going to bring here for the derivation of the loga-
rithmic increase of the multiplicity are quite general and independent of the exact
details of the model. We follow Fubini [18] and note that if one changes all the coupling
constants by a continuous parameter then all n particle cross-sections (Gn) will

change accordingly as

m > o
G;\—PAG; O;_=ZO;—)Z)O; 1)
N2 L1237

It follows from Eq. (1) that

(2)
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We assume now that the total cross-section has a leading power behaviour, namely

«() -
O;_(l) a’P(I\) S (3)

and the choice ) = 1 leads to the expected asymptotic result o = 1. It follows
then that

0)
ty = (was + )| = ades o4 "

Two main assumptions went into this calculation. The first one is that there
exists a simple basic mechanism by which all cross-sections change proportionally. This
is characteristic of independent production as well as quasi-independent mechanisms like
the multiperipheral model. This leads also to Poisson-like distributions of the type
discussed in the previous section. The second assumption is that of the leading power
behaviour. Within a specific multiperipheral model, one can of course ‘calculate expli-
citly the various cross-sections. Figure 9 shows the results of such a calculation by
Wyld D9:[ who looked at WTX — nf mesons via pion exchanges. He calculated the re-
sulting Feynman diagrams using the physical masses of the y and T¢ and varying the

?tt coupling constant until a constant asymptotic O'T was reached. We note how
quickly @, reaches its constant value. The calculation fixes the f'l'! coupling
constant and the total cross—-section. Both.come out much too big. The discrepancy in
the orders of magnitude prevails also in more sophisticated versions of this model [:20]
Recently, Abarbanel et al. [:21] suggested an interpretation that circumvents this dif-
ficulty. They discussed pseudoscalar scattering that results in vector-meson production,
in the limit of unitary symmetry. They looked for the leading singularity in a Bethe-
Salpeter equation - the equivalent of summing all diagrams of the type of Fig. 8. The
only parameter left in their problem was Mv - the mass of the vector mesons, and they

derive the result

N
TN R (5)

where N is the dimensionality of the multiplet. By choosing N = 8 and Mv = 900 MeV
one gets O’T = 30mb. Although the resulting GT has a reasonable magnitude one has
to remember that the actual situation is very far from the SU(3) limit - as already
stressed in the previous section. One may doubt therefore whether this can be regarded

as a realistic derivation of the observed magnitude of the total cross-section.

The big advantage of the multiperipheral model, in any of its many variations,
is that it is the only simple generalization of the known techniques for two-particle
- production. Although detailed predictions may fail in experimental applications of the
model, it may still serve as a guide to our intuition when discussing the complex pheno-

mena of many-particle production. It is indeed this model [:12:[, DB] that led to the
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concept of scaling, now so widely used in discussions of many-particle production. We
will therefore discuss some of its predictions for the momentum space distributions of

the emitted particles.

Let us use the labels of Fig. 8 to define the momenta involved in’ the process.
We now introduce the quantities p = and the "transverse mass" oy, defined by

(2) l*) -,
(£)

of quantities like p(+) for two different momenta is invariant under longitudinal

The quantities p depend of course on the frame of reference, nevertheless the ratio

boosts [éee Eq. (8) belo&l. It is indeed such a quantity that appears in the calculation

of t; = ki. If one stays in the laboratory frame gq, = (M2;8) q, = (v ;O,O”})?E-Mg)
one finds for high ¥ values that

*(9)
shte b (M- T ,,m) P (7)

7 (ﬁ
exchange restricts the allowed 1t

The propagator of k values and peaks around t, ~ O.

1 1
This reflects itself in a limited range for p% as well as for the ratio of k(+)/ql+) -

Similar relations can be obtained for k§+)/k§+3, etc. A carefil analys1s leads to

the result [jél that the optimal configuration of this model is obtained when all p%i ~ 0
and all ratios k1+1/k are roughly equal. Similarly, one will obtain that all
iiz/p(+) will be roughly equal.

It is convenient to introduce now a new variable - rapidity [éél, [éé], [}41
defined by the following equations

E % %
f()gm’re"} ﬁ;%:“y %:J} (8)

in terms of which the prediction of constant ratios between consecutive p(+) values
means constant differences between consecutive rapidities (see next section for an
extensive study of rapidity). This is borne out by the explicit calculation of De Tar [éi]
based on a simplified Chew-Pignotti [351 model. The results, shown in Fig. 10 exhibit

the asymptotic distribution of particles enumerated by their location on the multiperi-
pheral chain (pT = 0 was assumed). Note that although the peaks are located at equal
distances, there is a clear spread of the single particle distributions. In the central
region the resulting picture is invariant under small changes of y, namely, under small
longitudinal boosts.

We can now use this knowledge in order to get a rough estimate of the cross-

sections. If we denote the ratio of consecutive k(+) values by a then, since
q$+) ~2VY and q£+) MM, in the laboratory frame, it follows that



an 2y 2
a = 71; 0'4"" 4. M, (9)

where n is the optimal multiplicity. This is an alternative proof of the logarithmic
increase of the multiplicity with the energy ¥V , since a depends only on the pro-
perties of the exchanged propagators. Using conventional values of V¥ , M2 and n

one is led to 4n a =~ 1. This is therefore the expected difference in rapidity between
neighbouring particles on the multiperipheral chain. In order to get an estimate of the
cross-section for the production of n'+ 2 particles [éi] let us assume that they are
distributed equally along the rapidity variable with the simple restriction Vi > y.

i+1°
Neglecting the transverse momentum dependence and remembering that dp/E = dy we obtain

AZV
% ‘3’/“'3/‘3* ‘3* % (I:.'. (10

The ¢y - factor includes the 1ncom1ng flux factor as well as the effect of energy
momentum conservation (see next section for discussion of phase space integrals). The

resulting total cross-section will then exhibit the wanted (Regge) power behaviour

(11)

- 34
1’§o;~v

which was the basis of the discussion at the beginning of this section.

Summarizing, we see that the main characteristic results of the multiperi-
pheral model are the low pT values, the logarithmic increase of the multiplicity and
the equal distances in the rapidity distribution. (Scaling or limiting fragmentation,
which can also be derived in this model, will be discussed below in Sections 6 and 7.)
Whatever the exact details of the multiperipheral model are, we would expect it to

yield an even distribution of the emitted particles in rapidity.

There are several other ways which lead to an expectation of a dpL/E
distribution. Thus Feynman [éél argues that because the Lorentz contracted field is
so sharp in the longitudinal direction in configuration space, its energy must be uni-
formly distributed in Py - Therefore, individual particles that carry energy E will
have a longitudinal momentum distribution of dpL/E. Furthermore he points out that
the uniform distribution in rapidity has the important character that if a set of par-
ticles obeys it, then also the set of their decay products will have this property.
The emerging picture is discussed by Wilson [241, who refers to it as a "Feynman gas"
of many ‘particles with short range correlations confined to a cylinder in phase space
(whose co-ordinates are rapidity and ;T)' A similar conclusion comes also from inter-—
preting the colliding particles as composite objects which therefore. should not have any
preferred centre of collision [éél. Experimentally, however, such a centre seems to

exist, at least in the energy ranges accessible to present day experiments.
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In Fig. 11, we show the ‘t- spectrum obtained [:2'ﬂ in 19 GeV pp colli-
sions. The various pT cuts show similar patterns of Gaussian shapes in rapidity.
When the integrated Pp distribution of the same data is replotted in a linear scale
in Fig. 12 it is clear that we are still very far away from a flat distribution. It
remains to be seen whether experiments at higher energies will indeed show a signifi-

cant plateau over wide ranges in rapidity.

LONGITUDINAL KINEMATICS AND DYNAMICAL MODELS

In a realistic model one would naturally associate with the different ki

of Fig. 8, different types of exchanges. The exchange of ki connects the momenta Py
The energy of this subsystem is proportional to p§_+)/p +) since in the

i+
4 this ratio becomes (Ei+pLi‘)/Mi+1 X (2Ei/Mi+1) in the high

energy limit. In this limit one can therefore associate with each such subsystem a

factor of (p§_+)/p§_:)l)°‘i(ti>
exchange. If a single type of exchange o dominates the chain, one may expect there-

and  p;,-

rest system of pi
where eli is the power corresponding to the relevant

fore that it will be reflected in the cross-section which will then behave as

-2
OCxV (12)

Thus pion exchange will lead to ¢l =~ O and baryon exchanges will reduce this power.
A recent analysis of 64 reactions by Hansen, Kittel and Morrison EZEZ[ shows that the
energy behaviour of the various cross-sections is indeed specified by the exchanged

quantum numbers rather than, say, the multiplicity of particles observed. Their ana-

lysis is summarized in Table I.

Reaction Exchange ol
(®,kK,p)+p ~ (M,K,N) +N + pions Meson S =0 0
K p - N + pions Meson S =1 -3

K'p - Z  +K+pions Baryon S = 0 -1

TABLE I - Energy behaviour of cross-sections

To derive their results the authors used a trick, namely, they looked at

O, defined by

A
m-2

A4
G
6;‘ x Phase Sprce

(13)
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rather than at the cross-section @ . n is the multiplicity of the channel discussed
and A stands for "asymptotic" since asymptotically the phase space term behaves like
v ™2, The behaviour of @ and G’A for a particular channel is shown in Fig. 13.

We see that the effect of the multiplicative factor in (13) is to raise the lower part
of @ and, miraculously enough, it leads to simple power behaviour from low energies

onward.

The phase space term referred to above is given by the Lorentz invariant

expression

25 = ﬁr SR SEEW =W R ()

where we used the momenta and energies in c.m. and W =,/5 is the total c.m. energy.
If one assumes for simplicity that all particles have the same mass /L then one can
prove the right-hand side equality. The function Fps(W/’L) is regular in the limit

J =0 or W- o and therefore the asymptotic behaviour of P.5. 1is like won-4

or VY nrz. Obviously @& does not behave like P.S. since it is decreasing with
energy. We know.already from the general properties listed in Section 2 that phase
space is far from being homogeneously filled. Figures 2 and 3 demonstrate clearly
the strong cut-off in the transverse momentum. If one introduces such a cut-off K

into the P.S. formula, it will lead to

<k 2n-4 5'2
ps. B w (L:) " F(W, k p) (15)

2 behaviour provided F. is a regular function in W. [@ompare

2n-4

which has a leading W~
this with the increasing W behaviour of Eq. (14)J To facilitate calculations one
might try instead of this more realistic P.S. formula an approximate expression in

which all particles have a fixed (and common) transverse momentum

T

)‘.‘f" 28 EpSFEM R G o

where mé = ’12 + p;. Once again we see the decreasing W-2 behaviour. The function
)n-2 and leads therefore to a structure [éi[ shown
in Fig. 14. We note that the shape is very similar to that of & in Fig. 13. One

Fn(x) behaves roughly like (4n x

may therefore correlate the shape of the cross-section with the dynamical bounds on the

available transverse momenta.

From the discussion in both this and the previous sections, it is clear that
most of the physical effects will have to be looked for in longitudinal momentum distri-
- butions. This is true in the analysis of a few outgoing particles as well as the col-
lective effects of many emitted particles [BQI. In the previous section, we introduced

a variable - rapidity - that, from the point of view of the multiperipheral model, plays
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a special simplifying role. Let us here discuss this variable at some length. Rapidity
is denoted in the literature by either 2z or y. We will use y when it is measured
in the laboratory frame, and 2z when it refers to c.m. momenta. Unless otherwise

specified, we will use c.m. variables, in terms of which we repeat the definition
'M.r'—'\]‘)n‘-&h‘ R=™Mm, ik 2 E=m cah2
22
pe B tadz E2p . L/ R (17)
L € ™, [

A longitudinal boost is equivalent to a linear translation z — z - z, which is reflected
in the fact that the Lorentz invariant differential element of phase space is dpL/E = dz.
The longitudinal velocity pL is independent of the mass of the particle and is therefore
directly given by the rapidity. The relation between several of these variables is demons-
trated in Fig. 15. The points A, B, C denote characteristic values of longitudinal mo-
menta of pions (A, B) and a proton (C) that have the same rapidity (and velocity) but
completely different longitudinal momenta because of their different transverse masses ¥ .
This is a partial reason for the concentration of pions around the c.m. (see Section 2).
Whereas the velocity (FI) can vary between +1, the rapidity (z) varies between
iln(W/mT). We show also on Pig. 15 a characteristic 1/E plot which is the expected
shape of a momentum distribution if the rapidity distribution is flat. As already men-

tioned before, one finds experimentally Gaussian shapes in rapidity.

The rapidity plots have the important property that they expand the region
of low pﬁ'm° [3@1. This can be clearly seen in Fig. 16 which is taken from De Tar [éﬁ].
Here we have a comparison between plots in rapidity (where Y = 2 corresponds to 2z = 0),
c.m. longitudinal momentum (denoted in Fig. 16 by p* ) and lab longitudinal momentum
(p” ). The vertical axis is the transverse momentum (pJ_). Comparing Figs 16a and 15b
we see that the rapidity plot magnifies the region of low pg.m. enormously. On the
other hand, we learn that most of the negative pﬁ'm° axis is actually a mapping of
negative momenta in piab (the line A characterizes this limit). This is a fact
that we will have to bear in mind since a lot of attention is given to these two regions.
The first is called the central (or pionization) region and the second is the frag-
mentation region. We learn therefore that in order to study the first one we should use

c.m.
pL plot.

rapidity plots and for the second a
The shaded areas in Fig. 16 correspond to pionic contributions from

pp -44 - T+ anything. We note the regular patterns in rapidity compared to the

distorted contours obtained in p;-m. and piab. One may say that because longitudi-

nal boosts lead to translational transformations in rapidity, plots in the latter va-

riable conserve the symmetry that is evident in the A rest frame. Another way to put

*) The name "longitudinal mass" would be more appropriate since it specifies the relation
between P, and E. We continue to denote it by oy, because of its common use in

the literature.



this statement is that if there exists one rest frame in which a symmetric distribution
is achieved then the rapidity plot will show it. We will use this property in Section 8

when we will look for the frame of reference in which the pionization distribution is

symmetric.
Another: interesting feature which is manifested in Fig. 16 is that for
piab >> p, >>m one finds y = En(z/tanelab). This latter variable was introduced

long ago by Lindern [3{1 because of its usefulness in the analysis of cosmic rays data.
Line E in Fig. 16 shows that a measurement of the cross-section at fixed laboratory

angle and large momenta is equivalent to looking at the large. Pp structure for fixed
rapidity. Before leaving this subject of rapidity distributions, we have also to mention
the fact that the distance between two points on the rapidity scale determines the inva-
riant mass of the corresponding two momenta. A simple manipulation of Eq. (17) leads to
the result that for two particles with equal transverse masses, one finds (p1+p2)2 =

_ 2 2 _ _ - -
= 2n° + 2my cosh(z1 z2) 2Pp - Ppy-

There seems to be some clear physical distinction between the longitudinal
and transverse momenta distributions. The similar transverse distributions of all se-
condaries can be -thought of as a Foﬁrier transform of a Gaussian shaped region of col-
lision in configuration space. Its structure reflects then the structure of the colliding
particles [32]. On the other hand, one finds in the longitudinal distributions detailed
evidence for the reactions that took place between the two colliding particles. The idea
of using longitudinal phase space analyses was proposed by Van Hove [35]. It leads to
important information about the correlations between the particles produced in low multi-
plicity events, and allows one to estimate the dqminant éxchanges in the production pro-
cess. We refer to Ref. [3@] for a summary of the main results. Various models were pro-
posed in the literature to explain the general characteristics of the distributions in
either one of these two directions. Until now, we have concentrated mainly on the results
of the multiperipheral model for longitudinal distributions. We have stressed this model
because it can serve best as an introduction to the recent results that we will discuss
in the following sections. Let us, however, use this place to give a short summary of

other models, so as to be acquainted with their ideas and terminology.

The thermodynamical model [341 predicts the form of the transverse momentum
distribution. It pictures the particle spectrum as consisting of a black-body radiation
from a continuous longitudinal distribution of decay centres (fireballs). In each such
centre the spectrum follows Planck's law c/(eE/kTi1) (+ for fermions and - for bosons).
A temperature To is determined from the structure of the mass spectrum (number of pos-

m—5/2em/kT°.

Fitting present knowledge of hadronic states, the authors conclude that TO = 160 MeV.

sible hadronic states per mass interval) which is predicted to behave like

This is then considered to be the maximal possible temperature. The distributions in
momentum space are then fitted by using some distribution in the longitudinal momentum
on which the fireball structure is superimposed with a T which varies slowly around
0.8 TO. Thg longitudinal distribution is chosen so as to fit the different trends |,
evident from the data (Fig. 5). It can be made consistent with limiting fragmentation

and pionization pictures which will be discussed in the following sections.
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So what is the longitudinal structure after all ? An early attempt by
Van Hove [351 pictured the particle emission as the formation of a cloud of independent
particles. By using unitarity, one finds that the overlap of this distribution with
itself leads to the diffraction shape. Since the elastic scattering is sharply peaked
in t one concludes that the distributions of the particles in momentum space must have
components that have much higher 123 than Pp values, namely leading particles [Bé].
An interesting question by itself is whether one can really use a concept of independent
emission of pions. This is very suggestive in a model in which the pions are formed in
coherent states - the analogue of classical (electromagnetic) radiation. It was first
suggested by Lewis, Oppenheimer and Wouthuysen [Bil and is still often discussed in the
literature. The quantum numbers of the pions form, however, severe constraints which

will be partially discussed in Section 11.

Several models of the longitudinal distributions originated in the studies
of cosmic rays data. A famous one is the two-fireball model which claims that the hadronic
collision results in the formation of two distinct hadronic centres [Bé]. Each fireball
decays symmetrically and the total energy is absorbed by the longitudinal momentum of
the fireball. At low energies it is then impossible to distinguish between two fireballs
and one fireball, but as the total available energy W increases, one should start to
see a dip at pL = 0 which should then develop into a well-pronounced separation between
the two decay centres. Cosmic rays data lead, however, also to an orthogonal suggest-
ion [b] - the formation of a pionization cloud in addition to the production of leading
isobars. This may lead to an eventual clear separation between two leading clouds and
a pionization centre in P, - We may hope that the new generation of high energy machines
will shed some light on these questions and select the right description. Until this

becomes available, let us return to the analysis of conventional momentum distributions,

DISTRIBUTIONS IN MOMENTUM SPACE

We would like to start this section by demonstrating that the variable rapi-

"dity not only reflects a nice theoretical trick, intended to exhibit invariant quantities,

but has also some direct physical importance. This can be seen in Fig. 11 which shows a si-
milar shape in rapidity for all the different pT cuts. This is a non-trivial result since
if plotted vs.
the

pL the various pT cuts look completely different. We see in Fig. 17
pL distribution of 11- mesons produced in 28.5 GeV pp collisions [3@]. The
plots show the cross-sections for various numbers of prongs and for various cuts in Pp
together with fits by simple exponential functions in P We note three important

features :

(1) the strong peaking around p, = O precludes a simple phase space (1/B)
behaviour ;

(2) +the slope of the functions increases as the number of prongs increases ;

(3) the slope decreases as p, increases. This fact means also that the average

P is smallest at Py = 0 and increases slightly as Pr increases.
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The first point was mentioned already several times and reflects itself in
the Gaussian shapes of Fig. 11. The third point is the one responsible for the fact that
the various pT curves in Fig. 11 did show the same shape. The reason for this is that

= mT sinhz and mT includes. in it the transverse momentum, hence the same value of
rapidity stands for a higher P, value in higher P configurations. This leads to a
broadening of the pL distributions seen in Fig. 17. We may conclude that, apart from

the clear sharp decrease in Pp values, we may consider the Py, behaviour (at least for
c.m.

)

can be drawn also from Fig. 18 which shows the 1nclu51ve invariant cross-sections [éee

low as determined by the transverse mass of the pions. The same consequence

Eq. (18) below and the following discussion| for 1£ and T in a 16 GeV T D

. . . . . . . . c.m.
experiment [Bj. A comparison is made here between distributions in a normalized p

(denoted by pf in the Figure) scale and a normalized rapidity scale (€ ). The w*
data show that the different pT selections retain their shape in rapidity and change
their shape in pL. The 1t— show a similar tendency which is, however, modified by

the leading particle effects in this mode.

We define the Lorentz invariant distribution in momentum space by

dr - do
ﬁ(f)— E.’n/a,.ﬂ’p, i " Zep 2z (18)

where i designates a particle of type 1 (e.g. TT -) and O is a cross-section

out of which f& is extracted. Both Figs. 11 and 18 showed distributions where O

was the total cross-section ((f ) In this case one discusses an inclusive distribution
in Feynman's terminology [éél. Since in the following sections we will discuss mostly
inclusive distributions of the type a + b = ¢ + anything we will use for them a shorthand
notation of the form (ab, c). . @ can also present a certain partial cross-section
(e.g., pp— T’ + 3 prongs) or even a single channel o, (e.g., DD~ ppl"_%h’to)
Let us discuss first 9‘0. It can be described by

] h .
6z = | 9. (PR & . i;ﬂ SCZR) S(ZE-w) (o),

where p1...p are the momenta of the emitted particles, W the total c.m. energy and
q the c.m. momentum of the target. The function 8, correspond; to the square of the
wave-function in momentum space and includes also the appropriate flux factor. An
(exclusive) experiment that will give us all possible information on this function is

in general out of question since the number of (momentum) variables ‘grows so quickly that
it makes such a prospect unfeasible. We look therefore first at a distribution of the
kind

ﬁc(,) = "ifjc (p ..,P..,'g‘,w) fEL g_’p g (ZP ) 5(&- w) (20)

. %v J:l
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where we assumed that particle 1 was of type 1. ni is the number of particles of type
i in g.° The distribution ?ii(p) reflects both the structure of g, as well as the
restrictions imposed by momentum conservation. The latter ones will also affect the dis-
tribution for any partial cross-section as well as the inclusive fi(p). Our intuitive
feeling is that the higher the energy in question the less important the phase space res-—

trictions become. Let us prove that this is the case.

We limit ourselves first to the line pT = 0. Let us now define

N AL - d ot |
a, (W) =§ 3(3,..,,:,“4,1,»«) ) (f": B')J(J,Z,E}-b) E‘.b E.b o

where o is the set of quantum numbers required by a condition A (like "4 prongs").

We then look at

. mow " d@ ‘J:
(o= X n|4Gp 47 JS(ZEw) B R
£.(s,o gh.fj(ﬁ. (T TR

Since we look for the effect of energy momentum conservation let us assume for a moment
that the various g are constant. In other words we test the assumption that the de-
pendence on p1 is just given by longitudinal phase space. In that case, Eq. (22) leads
to

f:lp,0) = f(X) (23)

where }K is the missing mass of all other particles emitted in addition to particle 1 :

| . :
K= (wiavwe, +m?)" = w(i-2)

(24)

Equation (24) shows that for high values of W such that B, << W, f i(pL,pT = 0) will
be roughly a constant reflecting the assumption of a constant g. This corresponds to the
intuitive understanding that for high values of available energies the effects of the
other particles do not interfere with the distribution of the particle in question. In
the data shown in Fig. 17, we discuss values of W that are of the order of 7 GeV and E
of the order of 1 or 2 GeV. If we want a big modification we need a steep function

f(}{). Before turning to the quantitative analysis let us just note the general cha-

racteristic that a peak at

M.

pp = 0 means a tendency to produce the highest possible
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Let us apply this analysis to the data of Fig. 17. The (pp, 7 ) has an
obvious right-left symmetry in Py - We will use it by taking into account the sum of
the two sides and thus consider only once the range my, < E g/w/z. We take the first
group of data with 0 < Pp < 0.2 from Fig. 17 and use an average mg = 0.03 GeV2.
Multiplying the cross—-sections by E and plotting the result vs. ﬁ( we get Fig. 19.
If g were indeed constant then the same functional behaviour should also govern the
energy (W) behaviour of f for fixed values of E. Therefore, we added in Fig. 19
a scale of qlab which is the equivalent laboratory momentum needed to produce a mass
J(. We compare now these results with the energy behaviour of the cross-sections for the
production of a fixed number of prongs. These are shown in Fig. 20 which includes the
data of a pp experiment at five different energies [;QI. We see that the four prongs
data are slightly decreasing and the six prongs data are roughly constant in the 20-30
GeV range. This is certainly a different behaviour from the one shown in Fig. 19.

The difference between the two figures can be blamed on the fact that g
depends both on W and p1. A trivial dependence on W should be given by the initial
flux factor 1/qlab. As seen from Fig. 19, this factor by itself does‘not lead to an
appreciable change in the results and much stronger variations of g as a function of
both W and p1~ are needed. Nevertheless we realize that the trend of the curves of
Fig. 19 to become more and more peaked as the number of prongs increases can be corre-
lated with the same type of change in the behaviour of the cross-sections in Fig. 20.
This is a partial explanation of the second feature noted at the beginning of this
section. The unavoidable conclusion is that the dynamical effects and the kinematical

restrictions are intricately interwoven in the structure of the momentum distributions

fir

SCALING AND LIMITING FRAGMENTATION

Let us turn now to a discussion of the inclusive distributions. The next
best thing to knowing their functional form is the knowledge of the variables in which
the functions obtain their simplest forms. It was recently suggested by Feynman [éél
that the inclusive invariant distributions E(dBO'/dBP) are functions of pT and
X = (2p§°m'/w). This hypothesis of scaling in x can be traced back to the ABFST
model [32,1@] that leads to a similar result. In the next sections we will discuss
its derivation. Since actually no derivation exists that requires scaling of the dis-
tribution over the whole range of x, 1let us treat it here as an hypothesis and discuss

its phenomenological verifications and implications.

A recent ISR experiment [;il furnished the first partial experimental proof
of this concept in the new ranges of energies that now became available. Figure 21
shows the inclusive distributions of (pp, T '), (pp, p) and (pp, K') at several .

energies (quoted in the figure are the corresponding VY values). The experimental
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errors are of the order of 20%, and, within these errors, the (pp, 1I‘,+) data are con-
sistent with scaling in x over this whole wide range of energies, which amounts to

about a change of one order of magnitude in W (from 5 to about 50 GeV). They all

show the expected peak in the direction of x = 0. The (pp, p) data have a different
shape which is consistent with the data of mathine energies (see Fig. 5). Note in par-
ticular that there is no dramatic increase in the K.'-/‘K+ ratio (at least in the mea-
sured regions) which still remains very low. The transverse momentum curve corresponds

also to a phenomenological fit in this Pp Trange at lower energies.

These encouraging results lead us to an investigation of some of the pheno-
menological consequences of scaling in x. The consequences of this hypothesis with
respect to the energy variation of the average multiplicity and transverse momentum are
mentioned by Feynman [22] and discussed by Bali et al. [:42] As can be seen from Eq. (22)
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