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INTRODUCTION

These lectures are devoted to a study of some aspects of
inelastic lepton scattering and more precisely of inclusive reactions
where only the final lepton is detected. Polarization effects are considered
when the hadronic target has a spin %.

The inelastic scattering of leptons can be induced by charged
lepton beams and it proceeds essentially via electromagnetic interactions
or by neutrino and antineutrino beams and it then proceeds via weak inter-
actions. For pedagogical purposes, we have separated both phenomena. The

lessons treat only the electroproduction reactions and we have added to

each lesson one appendix where the results for neutrino and antineutrino

reactions are given in a parallel way.

The first lesson is devoted to kinematics with the definition of
the hadronic tensor and of the structure functions. The differential cross
sections and the asymmetries are computed in the one-photon exchange approx-
imation for e.m. processes and in the local Fermi interactions for weak
processes.

The second lesson begins with a study of the constraints due to
positivity. Then we consider the limit in the forward laboratory direction
at fixed incident energy. The third section gives some results about the
current algebra sum rules with a derivation of the asymptotic sum rule for
polarization in section 4. The last part gives an application of this

. .. . 2
last sum rule by considering the high energy limit at fixed q .
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The third lesson is restricted more precisely to the deep
inelastic scattering and the scaling for the structure functions is intro-
duced with some of its consequences. In the second part of the lesson, we
give the actual available experimental information about deep inelastic
electron-proton and electron-deuterium scattering.

The parton model is considered in Lesson IV as a simple
explanation and representation of the scaling. The quark parton model is
then introduced as a particular case.

The comparison between theory and experiment is made in Lesson V
in the framework of the quark parton model for the nucleon. So far, the
agreement is satisfactory but more data, especially in neutrino and anti-

neutrino scattering are needed to make it significant.



1.
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LESSON I

KINEMATICS

UNPOLARIZED CROSS SECTIONS

1°) We study the inelastic lepton scattering
£'+ = = €~+ n

where p 1is a target of energy momentum p, mass M, spin J and r

an unspecified multiparticle final state of effective mass W

(k. 6) (k's)

Fig. 1

The kinematics is indicated on Fig. 1 and, as usual, we introduce transfer

of energy momentum between leptons q = k - k' and we define the scalar

variables

3. - (pek) 9i(k-K)? i-b - (Pra) Mv = -$.q
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related by
: 2 2
wo - M_q + 2 My (I.1)
It is useful to introduce also the laboratory variables

S, M] R»LR,E) kR's [ RLE']

=i

=

- > .
with the scattering angle B given by R-&'- RR' (%09
The computation of the scalars s, q2, W2 and ¥ in terms of laboratory

variables is straightforward
2 3 ] t
S.M+mi+2IME q*= 2(EE- RR'Ge® -m2)
WY M%)l 2M (E-EY) » . E-E'

where m 1is the lepton m;gs.

At a fixed incident energy E (or s) a measurement of the final
lepton parameters E' and 6 determines the invariants q2 and W2.
When only the final lepton is detected the reaction will be called inclus-
ive and the differential cross section has the form

2 -/i 3
a4 - - 'Cj
dq dw® Is —(M+m¥ [ s-(M-m)?]

where the Lorentz invariant quantity {2 is given by

F N m2 3C i 2
G. 2 (% (T 5)8 @b [Tsen)
gnﬁﬂ'

where Np is a normalization factor for the target, Np = % when 2J is even

and Np = M when 2J is odd . The operator SP means a phase space

integration and a summation over polarization for all the particles
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belonging to T1

53:»(!\5

S o LT dek N
}}G'P .J ¢

2°) Now comes the main assumption. To lowest order with respect to electro-
magnetic interactions only one photon is exchanged between the leptons and

the hadrons as shown on Fig. 2 z

Fig. 2
It follows that the transition matrix element is factorized into the
product of two matrix elements of the electromagnetic current, one for
leptons known from quantum electrodynamics and one for hadrons we wish to

study with the inelastic lepton scattering

T pafel) = e’ 7 h(Re) 5Fu(n,e>]< i :!:m(o) V6>

9= " (I1.2)
. ez . 2
where e 1is the electric charge normalized so that ol= 3;.‘3’;5; >

u and u the lepton free Dirac spinors.
Therefore the invariant 25 is factorized as the product of a

k]
leptonic tensor t v by a hadronic tensor T

© . BT

(73%)
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£, m? z;z; la(®e) Tuee) (e ¥ ues]™
5 (1.3)

z
T, ,?}';‘,: S, (35, (bea-b )< PUT 45 LT1 T ool py¥

> = r
+
2 pef (1.4
fongel
The computation of the leptonic tensor is straightforward
u» TOoRR [LINES) Ky
= 4 '4-&‘ +492 1
E - E:t_t? R R Rlﬂ 3 i (1.5)
3°) The hadronic tensor T is the quantity we want to measure from

u»

experiment. Its structure is restricted by conservation laws. From
Lorentz covariance it is a second rank tensor and it can be decomposed on

the basis

Pre P Y Pe9q= Qepr  9ebs Euvgs PQ°

he 1 iant 2a® is excluded b arit o i
The last covaria St“'fe‘ b q s vy p y conservation
and we get relations due to the conservation of the electromagnetic current

at the hadronic vertex

Qi"'r . ¢c =q°T

Finally we have only two independent covariants, the coefficients of

(*)

which we call inelastic form factors or structure functions depending

\% are dimensionless. In the literature

(*) The structure functions Vl’ 9

the symbol W is generally used for structure functions having the dimension

of the inverse of a mass. The relations are
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. 2 2
on two scalar variables we choose as q and W

: . 2 WbV
Tl‘m =3 (Pi‘-‘l’—‘;f:”‘q'*)(?fbgq”}-‘ﬁ(q‘w)*é(‘i‘“’— %)V;(‘i," (1.6)

M
The hadronic tensor T?” is hermitian by construction. Therefore the
. . 2 2,
structure functions V1 and V2 are real functions of ¢ and W in

the physical region q" > 0 w2y M2

4°) In order to compute the differential cross section we saturate the

leptonic and the hadronic tensors. We then define two invariants I and

1
12 respectively associated to the structure functions V1 and V2
— 1
-l-,,-. 'PL?” twv: @ﬂ?—'i‘)_ :: qz
2 2
™ M (1.7)

The differential cross section for inelastic lepton scattering takes the

general form due to the one-photon exchange approximation

d?g - ‘ 21:0( ‘25 —-ﬁ—"-‘ (q‘z’ “,z) I -v_z (qzl w:}}
d@rdl\)’ [6—014."“13(5_(“-”)1} q4 Z t 2
(1.8)

In the laboratory frame the invariants I1 and 12 have the following

expression

I, = :‘-i ( EE'+ RR!' G0 +m?)

T g - k& 2 1.9

I, . % LEE kk'G0 am? ) (1.9)
Except in the exact forward direction, the lepton mass can be neglected
in high energy scattering -mE-«'i s Em &« 4 and we get simplified

\

expressions

1 “E' (L2 T 1.2 8

-4 a l‘-‘-E CP g_ —a E'E,smz

(1.10)
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with q2 = 4 EE'Sim? %

The differential cross section (I.8) takes the Rosenbluth form

2 =7 I
dZG‘ = I & E { Go;fe T ('0[2’ W!)-]-Sm 3 V-,. (q*,wﬁ'}
dg? dW? M"‘q"‘ E ) ) (1.11)
or equivalently
de _ xo? Gos ‘gﬁ\f ./a’*W’\.g.‘l"na\i{quz.}
JEAGe  uME* .38 L )
) 2z (I.12)

5°) In the particular case where r’ is a one-particle final state ident-
ical to the target, the scattering is called elastic. The variable W

is now fixed to the value M and the structure functions have a trivial

W dependence given by a Dirac delta distribution, the interesting part being

contained in a function of ¢

- <o
'VZ} {a* W) = 2M* > (wz—Mz)_Va Q) 4=4,2

. 2 . .
The fixed q elastic cross section now takes the form

4 4ny? E d 29y
do _ 4nX™ = 3\(};%'&_ [ql>+3m~ f‘ﬂ\; (1.13)

dqgr ¢ E
As a consequence of the equality W =M, from equation (I.1), we deduce the

relation q?.z M and in the laboratory frame the scattering angle

is a function of the lepton energies E and E' given by

e’ . MCE-EY
2 2EE"

@ . .
The elastic structure functions V (qz\ are computed using the hadronic
7/

tensor 'Fp” of equation (I.4) which, in the elastic case reduces to

T => 2 Mzg(u’"M’)Tf»
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with
T (% 3 <o 1T Toles <013, ey
= ) = D "1, (e
B2 7 SM T 2T pof Pl @IE> <R, @l (1.14)
where p' is the energy momentum of the final hadron p' = p + q.

Let us now study the three cases J =0, J=% and J = 1.
In the spin zero case, the matrix element of the electromagnetic
current is restricted by Lorentz covariance and the conservation of the

electromagnetic current to the form

ol Dl b\ = forEY) {
<p't 21 pY) = (preY, F»‘}‘) (1.15)

From the hermiticity of the electromagnetic current, the elastic form

factor F(q2) is real. At q2 = 0, it is normalized to the electric charge

Q of the spin zero particle (in units e).

F-(ﬁ)'z CQ

The elastic structure functions are then computed from (I.14) and the

result is
p 3

- 14 —
V., (90 = F (g)

]

(I.16)

4

—-r'cf
ro
In the spin % case, the matrix element of the electromagnetic
current is restricted by Lorentz covariance, the conservation of the

electromagnetic current and the invariance under space reflexion to the

form

<Pl T l-f‘}.—.iﬁ(p‘)§6 T, (q+ L (8

;,——
¢ F s L 505197 Ban] uie)

(1.17)

From the hermiticity of the electromagnetic current, the Dirac form factors

Fl(qz) and Fz(qz) are real. At q2 = 0, they are normalized to the electric
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charge Q (in units e) and to the anomalous moment K (in units e/2M) of

the spin % particle

Trl (‘0: G E(O)g <

A straightforward calculation of the structure functions gives

(1]
-y A
LGP ’q"‘\*/ﬂ,;\z—F (a%)
V(g s & LT el ]’

It is usual to introduce linear combinations of F1 and F2 , the so-called

Sachs form factors

B { K
GE (C"-); {4\ (q’-_’}_ 1 ! LQ") 2 (ﬂz) = Y (_Q")-t- te [t‘

(W

normalized at q2 =0 to the electric charge Q and to the magnetic

moment H
G' (o\‘ GM (O)z QL

In terms of GE and GM equations (I.18) become

(1.19)

In the general case, from the Lorentz covariance, the space and
time reflexion invariances, the number of linearly independent electro-
magnetic form factors for a spin J particle is 2J + 1 and these form

. 2 . .
factors are normalized at q° = O to the static moments of the spin J
ot
particle. The elastic structure functions V " (qt) are sums of squares

of the physical form factors. For instance, the spin 1 particle is

described by three form factors Fo(qz), Fl(qz) and F2(q2) respectively
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. 2 . . .
normalized at q = O to the electric charge (in units e) to the magnetic
dipole moment (in units e/2M) and to the electric quadrupole moment(in

. 2 . .
units e/M”). The elastic structure functions have the expression

—_ & _
V- T L s 2 Fay

(qt) @+4M2 5“2 CCI )

(1.20)

2. POLARIZED CROSS SECTIONS

1°) We are now interested in the inelastic lepton scattering on a polar-
ized target and we assume the incident lepton beam to be polarized. It is
obviously equivalent —up to a statistical factor %¥— to have an unpolar-
ized lepton beam and to measure the polarization of the final lepton.

In the one-photon exchange approximation, the invariant
is always the product of a leptonic tensor by a hadronic tensor. The

leptonic tensor defined by
- ® — » *
™% w3 Laee) T uws)] (TR u (%5) ] (1.21)
G

is computed using the projection operator

u(RB)U (k%)= m-i\Y-k‘ d.-l-i"g %6
2m 2

where © is a spacelike unit pseudo-vector orthogonal to k

G4 4 G-R:0

v v
The spin independent part of m ¢ is obviously ¢t ¢ and the spin

dependent part s #2 i computed to be

=

Wy .m H»o((e
) & q‘*GP (1.22)

do|
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2°) The hadronic tensor is now defined by

M= Ny S, (2305, (pra-b )< Tt > <1 T otpa”

(1.23)
where :\ is the target polarization. The spin independent part of M?”
is just TP” and we denote by 539” the spin dependent part M‘na =
T + S
We shall discuss only the case of a spin % target and we intro-

duce a polarization vector N which is a spacelike unit pseudo-vector

orthogonal to p

szi N,-‘P-.:O

The spin dependent part of the hadronic tensor must be linear in the vector

N and the structure of S

P‘l’

Lorentz covariance, the invariance under space reflexion and the conserv-

is obtained using, as previously, the

ation of the electromagnetic current. We then define three independent
*
covariants and therefore three structure functions( ) depending on the

two scalar variables q2 and W

§ -1 &

b gm0 q"u“x @) 1"'—?vw-\_’nt*@w i]'zq»/ iy qxqv)'" X @n)

2t

1. . q
EMUNOR-LOUCR VAR CHD
(1.24)

X and Y are dimensionless. The

(*) Again the structure functions Xl’ 9

comparison with the structure functions defined by De Rafael and Doncel
is

= 2 - - 2
Gi_ZM‘ Cxl x-?-) GZ-ZI““ Xz
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where the vector n 1is defined by

n . SM%U ’(D"'q@’t‘(zr

1
ET M

The hadronic tensor M po is hermitian by construction. There-
fore the structure functions Xl’ X2 and Y are real functions of ¢
and W in the physical region q.‘go 5 W?},Mz . If the electromagnetic
interactions are invariant under time reversal, we easily see that X1
and X are real and Y purely imaginary so that it vanishes. The

2

structure function Y measures a violation of time-reversal invariance.

@I)

3°) Saturating now the leptonic tensor m with the hadronic tensor
M o , we get the invariants Il’ 12 and three new invariants we call
as Kl’ K2 and L
oy I 5B mo e N (G
f, - s o Euvanq N = - o |9 (c r{) (S Q)(N”.q)] (1.25)
g = MV ¢ g - 2. 1.2
KZ =5 M2 NPy * v L(»J-q?-)@-"\j) —@'Q)Ceq MS,’)] (I1.26)
g } n - 4 ' L E P
L.t e 0By = z..gs)_p.(m-h)] EMS RE PN (1.27)

and the differential cross section is written as

éz_g’- = dzgw%4+ KaXe+R.Xo+ LY (1.28)
dq’dw dq"d“‘ ! J;V; + T, \rz

4°) The invariant L 1is independent of the lepton polarization and in the
laboratory frame where the polarization pseudo-vector N has only space

components, it takes the form :

E+E’ i?> ;;3‘1;:
- - ——r . 1-29
L 3 (1.29)
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When the lepton beam is unpolarized, we define an asymmetry ZSN corres-

-
ponding to a polarization vector N orthogonal to the scattering plane,

- -
e.g. parallel or antiparallel to k x k'

E+E!
N 2 vy o+ _!,.:%ﬂrz (1.30)

The asymmetry ka is a measure of the violation of time reversal

invariance in electromagnetic interactions.

5°) The invariants K1 and K2 contain a correlation between the lepton

polarization and the target polarization.

It is convenient to introduce the polarization vector of the

2. g

—_>
lepton in its rest frame s The relation between S and s

—
is just a pure Lorentz transformation along the lepton momentum k

T - = > —_—D =D
mG =>Lm§° + RE(\'?'E) R S-R]
- ->
where 9+ is orthogonal to k.
In the zero lepton mass limit, only a longitudinal polarization

for the lepton survives and we have

- T2
'le mg“ = S-R Rf"

(1.31)
M=o Rk

In the laboratory frame, neglecting the lepton mass, we write the invariants
K and K. from equations (I.25) and (1.26) as

1 2
h, . @R @ W-R+R)
[ AM

(1.32)

I, - C;H Yﬁ R)( (KR! -(3 (X K ).] (1.33)

-
The polarization vector N 1is now in the scattering plane and we have two

-
degrees of freedom. We denote by Zkh the asymmetry when N 1is colinear
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-

-2 -
to k and by [}1‘ the asymmetry when N is orthogonal to k. From

(I.32) and (I.33) we obtain

- —1
el E+EGR x, Qe E X
[51 = -T2 M L ° 2M ‘
I 1.34
Cooq [ -V- 3 2 0 -vv- ( )
-i ¥ -+ v —i 2

= _ £'Ca0 2@_ .2El
O - 23u6 =800 x, - 3wz R K
1% C2g Va+ 872V,

(1.35)

The polarization structure functions X1 and X2 are obtained from the
asymmetries Lku and [31_ by linear combination. For instance, the

asymmetry corresponding to a target polarization parallel or antiparallel

—l’
to q, Z)q , gives directly the structure function X1

. 29 S+Er D X
A . _3"2, W Fear (1.36)
1 29V, =27V, N
&32. .“‘Sthi 2

6°) We finally study the polarization effects in elastic lepton scattering

on a spin % target. The two elastic form factors F and F have been

1 2
introduced in equation (1.17) without any reference to the time-reversal
operation. As a consequence of the one-photon exchange approximation the

asymmetry L)N vanishes even if time-reversal invariance is violated.

We then have only two non-vanishing elastic structure functions
2 2 2C &
X:}(q,W)aZM Slw'-m2) Xé (a%) 4=d.2

and a straightforward calculation gives their expressions in terms of the

elastic form factors F1 and F2

? - ™
X, (a¥) = LE (an)+ 1T, @)* (1.37)

& - - _
Xty = ) LT, )+ta(ay)
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or in terms of the Sachs form factors GE and GM
x84 G o (
d ) [ (1.38)
X2 0y - (e Y G @ (G (- Ge (2] I

The elastic form factors are known from the unpolarized differential cross
section. As a consequence of the one-photon exchange approximation, the
polarization effects can be completely predicted from the knowledge of the
angular distribution. We then have a very interesting test of the one-
photon exchange approximation.

For instance, in the backward direction, using helicity arguments

S
we have the following prediction for the parallel antiparallel asymmetry Zﬁu
&
g(hﬂ é} u = -4
Q= (1.39)

This result can be checked using equations (I.18), (I.34) and (I.37).

REFERENCES

G. Charpak and M. Gourdin, Lectures at the Cargése Summer School 1962
N. Christ and T.D. Lee, Phys. Rev. 143, 1310 (1966)
N. Dombey, Rev. Mod. Phys. 41, 236 (1969)
M.G. Doncel and E. de Rafael, Nuovo Cimento 4A, 363 (1971)
M. Gourdin, Nuovo Cimento 21, 1094 (1961)
Diffusion des Electrons de Haute Energie, Masson (1966)
Preprint Paris-LPTHE 1 (1972) to be published in Nucl. Phys. B
M. Gourdin and A. Martin, CERN TH.261 (1962)
T.D. Lee and C.N. Yang, Phys. Rev. Letters 4, 307 (1960)
Phys. Rev. 126, 2239 (1962)



- 141 -

APPENDIX I

The neutrino and antineutrino induced reactions
- —_— *
»,+p DLl D+ b=+ T

are studied in the Fermi local theory where the transition matrix element

is factorized into the product of two matrix elements of the weak current

weak(

J 0)

x) T . —_ (D
T %’ LO,Ke) Y @] < T (] P22

where G 1is the conventional Fermi coupling constant. The <+ sign

+)

corresponds to the electric charge of the exchanged current so that T

(<)

describes neutrino reactions and T antineutrino omnes.

The double differential cross section can be written as the

product of the leptonic tensor m k> by the hadronic tensor MF’
46 A G* b M )
g7 AW T o(s-M2) 4% po

where

(&)

ML m2 X L (R ¥ 28 um] [, (K& atsyu( o]
%l

(& _ *
M b = N—P sf' Lgn)s g‘, (M-— ?'. )<r| \ \)lfizo)! ‘PD‘)(P! 3‘2) [)O) ‘ ?;)\>¥

The computation of the leptonic tensor is straightforward

m(i)}(v= s { hk h19+ Rl"h”— h'R' 9!“\' + :!E S‘HU?G Ry R’s]
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The hadronic tensor is written, using Lorentz covariance, for a spin A

target and it depends on 20 structure functions
M(“ 'Pr-?v L V@ w*)+ X @ w‘)-J 3 Y EV; (g W)+ Nﬁﬂ X'S(‘\zf‘”z{]
-~ N
ZXH poop 'qu '\l;(a\z,wz}_‘_ 3&5 LV; axn W+ "‘:,"ﬂ X (ql,u‘)J

» Pemde BV (gt &3 X, %, w‘) oo ‘?~1’»ch ‘“”*NB ACY “_]
ame

&
*3%1 evvdf‘ ®d N Xﬂ‘ Ll +.Z—.’i;1'\- (nf"?» - p!"h» ) Xa qu/wz}

*2%“_ (NuB,,~4p Ny ) Ko () W) + —4- L (e B ) Y (43w

p. { i ? 1) N. - Y]
S (me Gy Qe e DR i "3t )
M

o0 Nebm ?“”Y (W) &« NM” Ye (]% W)
ZP\

The hadronic tensor is hermitian and the 20 structure functions are real
. 2 2 . . 2 Wl b2
functions of g and W in the physical range 4" %0 , >™M
It is interesting to classify these structure functions accord-
ing to the properties of the associated covariants under space reflexion

and time reflexion. The results are given in Table 1

1
!
!
! Parity conserving Parity violating

Time-reversal Vi Y, V4 Vs Vi
: invariant Xy X xa Xz X'S X6 ¥q Xg X,g

Time-reversal \{‘6

N
violating y \ /:3 X'o YS
| 2
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In order to compute the differential cross section, we saturate

. . . . h

the leptonic and the hadronic tensors. We then define 20 invariants I4
(€3] (&) . . .

Km and Ln respectively associated to the structure functions V,
o @) L .

Xm and Yn . In the limit where the lepton mass is neglected, we

remain with only 10 invariants which, in the laboratory frame, have the

following expression

&) () @) =g
=t (.2) T 1 g ¥ g el
:-r‘ = AEE'GQS A\ZE’ —.3 ::th -b-/l- glﬁ s
X(i) L‘EE\ 2 3 -\ (E) -}, ) r (&) 2 B Y ‘)l - E' )E)
Lo r AEEGRL (R, pet 2[R )ERY-(RR)ER)|
Yy o9 & x) N'? Y ) ) == >
N- 4 _~ VR v
Ry < L3 T, Iy - =1 Kg = ~2[NR)E'+ (W2RNE |
Lo, 2R ER) Lo ;2 N.(RxRD)
o 4

The differential cross section for neutrino and antineutrino

induced reactions on a polarized spin % target takes the form

@) @) — =
S AO wp [4 N. A
dq'dW*  dqtdW>

where the unpolarized cross section has the well-known expression

( ) ) . \
dtf"dW " im M‘E

4

The three asymmetries AN’ 5 Q“ and A.L being defined as

previously, we get

) S AL
AN. - —‘l'h(}i- M4 4
2 _ +
) 20 oy EtE
Vo +tnzglo 55 % ]
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(%)

A

- @) @) 3E'VTpah y@& g 38 @ _ o ®
 eeed x4 T 2ETaRE X O, 8l (67 X))

3mQ M

=1
L72
2Q 4 2 [, EFE T

C""’.‘i-\ri +SMELB 2 —M -v—s
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LESSON TII

POSITIVITY AND CURRENT ALGEBRA SUM RULE

POSITIVITY CONDITIONS AND HELICITY CROSS SECTIONS

As noticed before, the tensor MV” is hermitian and semi-

positive definite. We then get non trivial restrictions on the structure

functions in the form of inequalities.

1°) For any complex four vector 0}; we must have

»
v My, %0 (11.1)

and this condition insures the positivity of the total cross sections for
the absorption of the electromagnetic current of polarization X by a
1

spin ¥ target of polarization A . The relation between the hadronic

tensor and these cross sections is simply

® » *
= e, e, @ M, @)

M i}ﬁ*

2, wl)
Bd A ( (11.2)

"
where e-d (q) 1is a polarization vector for the electromagnetic current

of energy momentum q and helicity o

2°) Because of the conservation of the electromagnetic current
78
= ©
1€ @

and we can have only 3 different polarizations, 2 transverse Ol=z+l, -l

and 1 longitudinal Q=L . In the laboratory frame where
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P?)LO:0,0,M] N”=>!N-, ) 3, ] q»{b (=8 J” N]
the polarization vectors have the following components

@1 =

DR

[4,t,0,0) € = 2T4,-,00] €Lg>:‘_. "':0,0,)J,‘!lﬁoq’ll
- Ti ﬁ‘z -

. . . . -2 .. .
The target polarization is also measured in the q direction and we have
Agié for N-az.".'
Because of the invariance under space reflexion, we have the

relation

2) o 2] w2
gd A (q% w?) G_y N (q )

and there exist only three independent cross sections

G =g = L {-V. - B:X (1I1.3)
W~ 44 wpEg L oom 1

T

g w A Y » X (11.4)
- = 3 =
- ) 4 4
A é. 1 +i M veq 2 L 2 M .
V. G 4 - T [»:ﬂlv' Ay ] (11.5)
L +1¢l L .2r _M ”'lﬂ'l q‘ a ’z . o

From these expressions, we deduce positivity conditions

'+g2 - py
2 TRV, 3N,y X

(11.6)

By inverting equations (II.3), (II.4) and (II.5) we can now express the

structure functions Vl’ V2 and X1 in terms of total cross sections.

Defining
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Eg( +G :25 G "‘g =2T

4 o -4 o
2 2 v i o =1
the conservation of parity implies

C. -G, -G T o--T, . T,

-1 i T -1 +

and we get

A z I1.7
EREETE 2 W T ( )

—V.4= qu [GT*GL} '\[ _?M\!»’.pqz(;

)(1 ™ M3[>+q2 2_‘_ (11.8)
T

3°) In the polarization space, the hadronic tensor is represented by a
6 X 6 matrix. The inequalities previously derived

G L (3 v0) %0

ol

express the positivity of the diagonal elements but we have, in addition,
other restrictions due to the semi-positive definiteness of the hermitian
matrix.

It can be observed that this 6 x 6 matrix is reducible according
to the total helicity into

(a) 2 1 ¥ 1 matrices for total helicity + 3/2

(b) 2 2 x 2 matrices for total helicity + 1/2

The positivity condition associated to part (a) is trivial

1)

£l 24 Q’uw) 5 O

For part (b), we have to express the semi-positive character of a 2x 2

hermitian matrix, e.g. to write that its trace and its determinant are

7
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non negative. These two constraints are
O
G+, PR

already included in (II.6) and a new relation

D3] o b e X0

. FORWARD DIRECTION

1°) For q2 = 0, the virtual photon becomes real and it can have only
transverse polarizations. The cross sections ng N (q‘,\"’ ) become

proportional to the photoabsorption cross sections by a polarized target

and we have

Be L2
Gﬂ. A(o’wlh é‘} G» (w3 Qéd NCLE é"z S,

Q‘:‘ (0:W¥) =0
L

(I1.10)

Because of the conservation of parity

5

& . G ()

and we have only two independent photoabsorption cross sections that we
KL vl

can choose for instance as ESé, and GS 4@ - The unpolarized photo-
2 s

¥
absorption cross section will be called QS (\!)

€ fo Su 1Y
élqs (JO)g QSﬁa"b §5-¢1 =>‘Q55£ + QS _/2
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\Y and X is

2°) The limit at q2 = 0 of the structure functions Vl, 2 1

then deduced from equations (II.7) and (II1.8)

1]
B A e < 4 M e -
¥
fm V(w2 2 M S (W) (11.12)
ngo B

- So L
le Xa ((f‘,w’) -4 M \_Gy -6_7
C‘"‘:w - Ter * =

The other two structure functions X and Y describing a longitudinal-

2

. . 2 ; . .
transverse correlation, have a behaviour at q = O which is restricted by

(1I1.13)

the positivity inequality (I1.9). As a consequence of the vanishing of the

longitudinal cross section we get

‘an 253 - O -Qtvn :Z: =0
q‘;}o q'z,"' 6)2,>O \I-C’—z (I1.14)

3°) Let us now consider the kinematics of the forward direction in the

laboratory system at fixed lepton energies. For Q::o we have
- E-E')*
q%=2(EE-RR-m*) & m? (EE)

or in terms of the scalar invariants & and w?

2 . (WiM3)?

A:z0 (8-M2)(s-W?)

2 2
so that (1 is generally of order m~ and it vanishes only in the
Q=0
2 2 .
case of elastic scattering where W = M . Nevertheless, in the forward
. 2
direction the structure functions take their values at q = 0 and from

equations (II.11)-(II.14) we obtain the following limits for the unpolar-

ized cross section and the asymmetries
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: 26 _ o A (14 Er* GV(w)

4 -2 s
17»0 ‘1 aq“o\W‘ 2 W-M (1I.15)
L) LY
2e? o = .L
Q\M A . _ == % - , )
i E*+E™ e T I1.16
- 'l_
4= Sx*%y
Dim ﬂN. =0 Dim A, =0 (I1.17)
2
q“‘aw q’=>0

3. CURRENT ALGEBRA SUM RULE

1°) After summation over the final states " we can write the hadronic
tensor as the Fourier transform of the matrix element of the commutator of

two components of the electromagnetic current

(1I1.18)

{ —l‘ . — T em m
M, (a,p- N ) e Y el L T 0, T 6] b > daze
2n » ¢

Beside some technical assumptions a sum rule for structure functions is
related to the value of the equal time commutator of two particular

components of the current.

2°) A nice current algebra sum rule has been derived by Adler for the
difference of the structure function V1 involved in neutrino and anti-
neutrino induced reactions. We want to extract the part of this sum rule
interesting for electroproduction.

We first use the equal time commutator of two time components of

the isotopic spin vector current

N o 1 71
L3, (=, @]s®=: 2 J, 2%, @> (11.19)
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(SR -2
Denoting by VT and él the structure function V1 associated to the charged

. . . . . 2
component of the isotopic spin current, we obtain,at fixed q, the Adler

sum rule
20
T Q2 -3
r, Al ¥y
}.-\1 \qz‘”)__ vd' (’qz'y) d(M )-. 2 ..L
Q* (11.20)
2M

+ -
We introduce two 'charged'photons ‘U and ‘X associated to the iso-

. . + - T .
topic spin operators 1 and I as the normal photon is associated
to the electric charge operator Q. Using the equality (II.7) we express
V1 in terms of total cross sections. Restricting now our point to a
proton target, we separate the elastic contribution from (1.19) and we

write the Adler sum rule (II.20) as

ac

» 5% —S'p
Fp @) v 2 T e s f d» [6’-b }_..4_

-n‘ J q z+qz T4+l T+

(I1.21)
where the FV 's are the isovector nucleon form factors and 2, the first
inelastic threshold.

We now use an isotopic spin rotation in order to reintroduce the

isovector part BV of the physical photon. In the process
1§T
+ proton = hadrons

the total isotopic spin I can be 1/2 or 3/2. Using total cross sections

I
of definite total isotopic spin Es we get

S gP .
v

S =

4
3

2
3

and the sum rule (II.21) is written as

2
7-(‘\") + g q J

~>

F (‘\‘) "

6 ] A
AN‘ 2y m 1"+L T'I'L (11.22)



- 152 -

The sum rule (II.22) cannot be directly compared with experiment. We must
&
. A S E;% . .
use phenomenological descriptions of and consistent with our

knowledge of electroproduction.

3°) At q2 = 0 the sum rule (II.22) reduces to the identity 1 = 1. Its

derivative at q2 = 0 1is the Cabibbo-Radicati sum rule

o0
4 2
(o =G0 )& A yoi.a® 2
e ¥ S A5 R
i L (11.23)

2
where the root mean square radius < T4> is defined by

2 NG
L0, y= -6 a1l
. > dq" q"-.-o

Models for photoproduction including the most important multipole have been
used to test the Cabibbo-Radicati sum rule and the agreement with experi-

ment is good.

SUM RULE FOR POLARIZATION

1°) Let us consider the Compton scattering amplitude on a polarized spin

% target

A

. —q=x - —m om
po = ¢ )(AASZ— c e(b)<‘*7:>]‘._3;(x),31‘ C°')3H>a>x>

(1I1.24)

where 0 (t) 1is the usual step function.

Schwinger terms, irrelevant for our considerations have been
disregarded.

From equation (II.18) the absorptive part of _A!.w is pro-

portional to the hadronic tensor M for inclusive lepton scattering

Ry



- 153 -

o
pee A= T M,
po M
(11.25)
The basis used in Lesson I to expand M(_‘v in covariants can also be
used for ‘qt“' . In particular for the part of ﬂgm skew symmetric in

the pm indices Z_I—Uv') we can write

HEF”} =2-\1M ‘»»pq N A (‘f "’\“' - tn (’P.v qx) CPK )n’jAz(‘]z;wz)

and from (II.25) we have

i1

——
2°) We now work in the unphysical frame q.» Lo )qoj where

O‘_lg_ql:— Y = — lano

The space part of fi_ is written in this frame
Le2]

g, | iye
l\&j Zm )8 N a.’_ +M1L lts‘Pf‘Nég g

(11.26)

We assume that, in the limit Qo = LOO , ‘B> fixed, the amplitude -Auv
i :

can be expanded in powers of 1/qO

— fm etm
B > = & \ e <va ([T, T,e)panst —

_ L S dae <P L“ ))(a.),Je:(a)}“c)\>§(+) Foess (11.2D)

Q‘L
lo
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Equation (II.27) is known as the Bjorken-Johnson-Low expansion and it is
obtained after successive integrations by parts over q,-

We are interested in the quantity HE‘*] and in order to
compute the equal time commutator of two space components of the electro-

magnetic current, we use the quark model algebra

- _om —tm . aQ RY
(3 7@, 3 @)S-ie d T @%@
l._g ) 1 "éh U R
(11.28)
AY
where J M (0) 1is the space component k of the axial vector current of
U (3) index 5 . The symmetric coefficient dQ%K is computed in the

fundamental representation of SU(3) for quarks

Q
dabs: % [-?gé,ﬁ*'gwa'] (11.29)
k]

On the other hand, the axial vector coupling constant (}n is defined by

M K r~
<o\ :Yt‘ @ p2Y=—~9, N (I1.30)
Combining these results, we get
£‘m . X > 2B+®
Gom> im0 %e P‘["d} = ‘S‘Jk N 3 ‘39 (11.31)
By comparison with the expansion (II1.26) we deduce
0 2 9 ZB+Q
{Lim ﬂ_«g _ﬂi = - = 34» (11.32)
goro0 M >
o™t
Drm i? Qz = O (1I1.33)
q,=n|00 2M

3°) In order to transform the result (II.32) into a sum rule, we assume

the validity for the amplitude A1 of a dispersion relation in » at

fixed q2 without subtraction
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20
))‘ X\ (qzaf’l)

ﬂ" 22yt 8
2M (11.34)

ay’

Al (qz, D)z %

kA
We then consider the quantity ﬂ_" -A\ in the Qe=>120 limit where
2M

.02 - » ¢ 22 0
q - qio => + 20 EY < Ao 2¢
(’30
2 v -
? -
fim iv_ﬂ,\ - Pim J o\_i:’ 3._'_ xﬁ_(g‘"))))
q”:) ('?O ZM - q?-m‘_’a 11
2rd (11.35)
. ; 2 2 2
Using the variable W™ =M~ - q~ + 2My» and the current algebra result
(11.32), we finally obtain the Bjorken asymptotic sum rule
-~
] ( vl 28+Q
twr 2 12 W y
: \ xi(‘\'w)d(,ﬁz)= % O.V\ﬁ (11.36)
URERED Ime

4°) Similar considerations on the structure function Xz(qz, W2) will give

the result

—

Lim ( X, (f.w’>d(£3= 0

b} (11.37)
L\:ax Mz

. HIGH ENERGY

1°) We study the high-energy limit at fixed q2 and W2 of the different-
ial cross section and of the asymmetries. For the laboratory variables

E, E' and © we have

)

with E-E‘ b)) @g 2_@.
S5

Eck'a

[1]

5
2M
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By inspection of equations (I.30), (I.34) and (I.35) we get the following

limits

D\m a? 2
._g”ﬁ’ = < d -le (q%w?) (11.38)
Do  dqidW M2 g4

JQ\\M AN - _Yg_f Y (g7, w?)
V(8w

S=%
N q2  Xq (" w)-Xz(a%u)
S=n~ 5 v, [q% WE)

2
VA {9z Xp (a"wD
g ® V; (ab W)

(11.39)

2°) The fixed q2 cross section is defined integrating over W2
Nz
2 J6
2
s . (" au oy
dq* . K

2
where the upper limit Vﬂ* is given by

qQz
K - —

Assuming now that the order between limit and integration can be inverted

~
fim d4€ ( awr dwm _47E
S 2= do‘l Q=0 dq‘du.‘

M2
we get from (II.38) and (II.39) the result

e
QD [ dBe _ dBa \_ _And?{Tx (qur)-X, qw]d (1
K dqt daz J 0323 j - - M2/
MT (11.40)

D=

where P(A) means a target polarization parallel (antiparallel) to the

incident lepton longitudinal polarization.

For large q2 the right-hand side of equation (II.40) is
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computed using the Bjorken sum rule

9lm P\V\t \Y(_i_g‘?_d—g‘n\ - - gno(z QZB-a-Q
Poon Bww AP d9r/ 3925 YA
(I1.41)
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APPENDIX 1II

POSITIVITY
Parity is not conserved in weak interactions and we can define
€Y
8 total cross sections Gd a (q?% wW?)

&2

G %

4

3 -

41 -"2 ™M I——M; 2
w

6 (2>

+ fr—
-V-(ﬁ) ,,;M,-V-C-) » X(:b Ja Xct)
A R R

3 t =
LV YD, s xE e X
+ .‘3‘« M“.D’Aﬁ‘» 2 2 M M M
>
< ' Rz
- *3- M{Pq? 2 M 3 M M S

+)

G® . . W“; TV X T i
<

-y =3

2 M\'S ;))z-t-qz

&3 &y
ST {n.»}slvii% Ve 5_3}_3*[@‘;3“"_=_’_§x;*’_1xf’]}
M\[)}‘& z * M 9 q?
2 - 2 s ,
607, Lt (e B A x4 ]
L -2 M{2¥q: 1 N m LT 94
> N I 3 )y g2 & x
R » 1 ) ) % )
G - {L-..Vw;,:‘fa T2V .
M"iqz 9 M
2 &y (k) C‘Z (C 3 v €y oM (2 &
e oo Ve [t x0T 30 x L 2T
m Lq 4 STom mK’r O %

with the obvious positivity constraint

)

S, (@wyo
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As a consequence of these inequalities for the transverse and longitudinal

part we have, in terms of structure functions

bv.‘_qz’\" . 2\)))4.(\:, ”,*qz)((t’ oM X(:h N 4 _v.().. Jr+q1 X(.t> N
— i —_— = % T o 3 v 2 2 2 o S 4
9 M 9? q M
b-.‘_q,. <k < t)
for any real number v between -1 and +1. The case B = 0 corresponds
to the conditions for unpolarized structure functions.
. aM ¢
Conversely, the structure function V1, V2, V3, Xh"ﬁﬁﬁzxa’ A{

and X1 can be expressed in terms of transverse and longitudinal total

cross sections

% Mg? @ —& €3] M yv® Mig: 0 b
VO AL (RO XK [

b

Y A weq * aEqy
&3] &3
V, . mBe g XL e®
< w ST &% 0T
(E)) -
Vv, 6] X BT (2 ]
3 = 1 A4 J L = 1:))' L A4 + -~
where
[¢ 1 (x) (x5 &) () o (-tj
S, +S 4 =26 ", .G ,.azt
o +3 o -2 ol o .‘,.1” * _‘% = ol

> [
5 . G®

]
A9
&
Y
~ B

+
Yy
~
L4

)

&
%
C

The inequalities previously derived

&

o A

k) X
WD 20
express the positivity of the diagonal elements but we have, in addition,

other restrictions due to the semi-positive definiteness of the hermitian

matrix.

It can be observed that this 8 x 8 matrix is reducible
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according to the total helicity into

(a) 2 1 x 1 matrices for total helicity + 3/2

(b) 2 3 x 3 matrices for total helicity + 1/2.

The positivity conditions associated to part (a) are trivial

) (x;

2
o (W2 6_, 4 (9% w» > ©

+{

For part (b), we have to express the semi-positive character of a 3Xx 3
hermitian matrix, e.g. to write that its determinant of order 1 and 2 are
non negative. Neglecting now the amplitudes carrying a scalar polarization
for the weak current, we find the 3 x 3 matrices to reduce to 2Xx 2

matrices and as a consequence of positivity we first recover the well-known

constraints
G 143} g(*}
‘2’ >
w4 (92, w*) >0 L o+d CRA RS
(& (&3]
% N (W) %O (;L 4 (WY %0
-t +3 3

and we obtain two new inequalities associated to transverse-longitudinal

correlations

g 2 ) 2,2 (&) (92 - cx) = ) ()
WE A2 xS M TS Pty b v T GGy
Mi(g‘q%) M 2 q; L a A qz aH 5 ey -’. ‘_q.l

FORWARD DIRECTION

The strangeness-conserving part of the weak current is the iso-
topic spin current. Using CVC and PCAC we can obtain the limit of the

neutrino and antineutrino cross sections in the forward direction where
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q" = 0 when the lepton mass is neglected
for an inelastic final state

The result due to Adler is,

_P,m dv (%)

2 -_—2 s (¢ RN
S G E Yt Mt o (W) g
{"»0 dqrdw> M E | X »> °
where F

3
is the T

(0
meson weak decay coupling constant and G;nr(hfk
. . . ) ~*
is the integrated cross section for the reaction R+ P
polated for zero mass incident

. = r
.R:!.'

extra-
meson.

Because of the conservation of parity for strong interaction, it

can be shown that the neutrino and antineutrino cross section are spin

b [0 X _x*
11370 M 4

a]=°

independent in the forward direction for an inelastic final state

For elastic scattering, we have a very interesting result for the limit of
the asymmetry Z}"
nucleon target

in the forward direction in the two reactions on a

§£+p=>.£++n, », + N 2 L+p

In both cases the asymmetry is very large

D &ePas i fj .

eo . d+.3_.2 ~ . 98
A

Let us notice that the parallel asymmetry for elastic scattering

b= 8
Dim, Q»eb')

in the backward direction has the limit expected from helicity arguments

YN = t-p
_ —A Lo N
=T "

o = +4
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3. CURRENT ALGEBRA SUM RULE

We give the classification of the sum rules in the laboratory

-
frame where q 1is along the third direction

S DY C3) o () (B b (F) ()
1 ¥ ¥
[3,,3. 31 03,°,3,1: 17,3 ]
'
Parity conserving -2 - ) J x)
-\1 Vz_ ! Xl !
:
Parity violating » P <) ) ! -\
!
Table 2

The two sum rules of the first column are the Adler sum rule and

a sum rule for polarization both based on identical assumptions

-~c

{ - b » 2 -
jz} LY, (qnw-V, (9w | o\(:%‘) -4|Gse.9
M

=% v3

+3:8.9, ]

T~

< A

kA

>x»

4 ( ‘f[”X X ];?.."z)(“— ]»}A(Wz)_A[Q29 9131- 3:1:29‘3\‘.7
5_)”,:'4"’? LRl §A(gR0) =2 [Mo% Ja o

where the 8y 's are vector coupling constants and the 's axial vector

Ea
coupling constants. As usual ec is the Cabibbo angle.

The other four sum rules are based on the validity of the Bjorken-

Johnson-Low expansion. It is then convenient to introduce the scalar

variable % = qZ/ZM» and to define new structure functions
(X2 —_— T _nF »,$
—Vz (9w =2V (9% %) 5 \rs @w)=_ (5 "E. il
@ —~HF ) »,% — V5
%’ X‘S QW= 2 ’.E:_ (445) %’J\— Xy (W) ':'?_ (q’:h—?_._ (9 §)

and the lower index means the weak current helicity.

When the space-space commutators are assumed to be as for free
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quarks, we get the following asymptotic sum rules

(a) The Bjorken sum rule for V

2
4 _ T3 ve
- » . — ) - 2 1
ﬂf:”m J | S@H-t (q‘,%\,] 4% - 2\_@;6‘,_3\, +Sin 6, qw ]
(b) A polarization sum rule for X5
g * > » - i* v
'm P ge)-Y (g - Js) 9 9 |
qigm [ T(Q)g) T(‘L§)]0‘§ ...2- LGD eaﬂ 1‘5!’! caﬂj
(c) The Gross-Llewelyn-Smith sum rule for V3
1
f 3 ¥ Y - - 2By 21! rQ-Y
\ 2 2
qu;? ‘ lt"_--F*f—-ﬁ-hF* ]d%_-,il@o Gcgv 4-8:»‘933\, ]
= o

(d) An extension to neutrino and antineutrino reactions of the

Bjorken polarization sum rule for X1 in electroproduction

4. HIGH ENERGY

The fixed q2, w2 high energy limit of the cross section and

asymmetries is given by

1~
J?m. dGM‘,. - G 4 Y (4%, W?)
8=  dg?dw’ 4w M*

+ @) (*)
) XA (q’,W")-Xg (@3 W)

‘Olm A
h — ()

S < ‘ 4 (Aw®

K414

10
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*)
Py A * | 92 AR
N = VM 2 .
800 M ’V': ’(q'z.wz)
{xy - N C )
bn D, -{?E Ko @W
S=2% Mt ‘V-i':) (q2’ wl>

The high-energy limit of the fixed q2 differential cross

. . . . . 2 .
section is assumed to be given by an integration over W~ of the high-energy

limit of the double differential cross section. We then get

)
& 1) + 'S 2
d {N- 2 ( r - ( ) ( s \ N'
Jim G . _G-_ {Vd. Q0+ N%i » XA (qz'wz)_xg ngwz)] a(b—{a)
RER) qu 4n LM
Mz
where N3 = 41, -1 for a target polarization parallel or antiparallel to
=

the incident neutrino momentum k.

. 2 . .
The fixed q° cross section can be written as

(€] -
A_Qit)(wa) . d&_"_‘“? ‘-/_l_ + N; g (t)]
dq? dq*

By using now the Adler sum rule for V1 and the polarization sum rule for

Y X _¥X. we obtain the following limits
M 4T R
3 va

- » » - T
ln [ dSuwy  dBem] -26706i6, 9, + 81189, |
S0 dq> Aq iLs
and for the asymmetry S we get
T° y3
dim [ %; 3»] G0 Ja - Sm & 9,
d=>00 Co? B, 3:3 + &mzﬂc 3;3

The essential feature of these results is that the high-energy limits

become independent of qz.
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LESSON III

SCALING AND EXPERIMENTAL DATA

1. SCALING

1°) By studying the properties of the matrix element

Cp 1 L3 0 , 3 @1le>

in the frame of reference where the hadron momentum goes to infinity,

Bjorken suggests that the structure functions Vl(q s W2) and Vz(qz, W2)
tend to simple limits for large
hm -
9 Wis> 20 2V (W) = L (©
A% fixed
§= 2My fur

2
q

(IT1.1)
th —V- 2 2
q2,Wtn o0 2 (a3, W*)

2 )
§o 3 fueed

= (5

These properties imply, for the total cross sections

QS (an wr)
and <3L<qn w?*) , a very simple behaviour for large q2
Q ’l“s)__ F
v 2 omG per= T (8
£, 1‘1 Pured (111.2)

and we shall assume the same property for any of the cross sections

(501 , (9% w3

2°9) The relation between the structure functions

Vl’ V2’ X and the total
cross sections 45

@A can be found in equations (II.7) and (II.8)

Defining
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(*)

we get

o 33 V(w0 6L ® LMG g5wh= 2 ¥ (§)

LiM 2 X (q"‘,w",):Q?“ (£
™

(III.4)

where LIM is the Bjorken limit defined in equation (IIT.1). The positivity

inequalities (II.6) take the very simple form

har 4

T &) vogy ) F'r &) % £, 5 (I1I1.5)

3°9) If a scaling & la Bjorken holds for the other structure functions X

2
and Y, it is restricted by the positivity constraints to be
v 2 Wt if v? 2 a2 ‘
LIM 2 X w21 (%) LIM2 Yaruy)=2 1, (%)
M{qT nig
(11I1.6)
and the restriction (II.9) due to positivity takes a particularly simple
form in the scaling region
2 ?2 1 T s —_
L =
B G P o (§) £ 3 !_ #1-“)"-8., &’] E.<§> (111.7)

The precise meaning of this statement 1is the following : if the unpolarized
structure functions V1 and V2 scale, as suggested by Bjorken, then the

. . 2 . .
positivity gives severe constraints on the high q behaviour at fixed

§ of the polarized structure functions Xl’ X2 and Y. We assume that

(*) The relation between equations (III.1) and (III.3) is simply

Fo =28 LH G+ (5] T, Gr=2 F (5
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the scaling is as strong as allowed by positivity. Models like the light-
cone algebra can predict, under definite assumptions the type of scaling
for the polarized structure functions but in any model the positivity
constraints must be fulfilled. For instance, if the electromagnetic
current has 10 longitudihal polarization in the scaling limit, FL =0 and
as a consequence of the positivity unequality (III.7) the scaling functions

Pl(§)and gq(ﬁ)will vanish and instead of equations (III.6) one must expect

. . 2 . .
a faster decreasing with q at fixed § as for instance

) |
LM qzz 2 X (6w -2T ) ngﬁ Y (aywy =2 Q%)

=\
4°) We introduce a second scaling variable ?:. E/e and the high-energy
limit in the scaling region is defined for s, q, W2 large with f and
cs fixed.

The unpolarized cross section is written as

d'tw = 4“«2 ‘—-&_‘ :_;.. [(4_,32) -FT (g)-r-?g -FL (i)}

' (111.8)

A and l’_\* we obtain high-

and for the three asymmetries AN > 4y

energy limits independent of s

N oy - 2{F (443> B (61

N = = (111.9)
(A+32) B (8 e t (5>

A = .20% (- T, ) (111.10)
(a+ 20T ()« 2 FL(E)
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A - - (’l‘ 23) Tu (g)

I G+ 8HT (5)+2¢TF (5 (111.11)

From the positivity condition (III.7), we can deduce bounds for the

asymmetries C\v and A.l. depending only on the scaling functions FT

and FL measured in experiments on an unpolarized target

4

/ A: . Af \2_ ¢ 20D J g BTG
N ; (A+ 525 F (5 + 25 FL(5) (I1I.12)

If the longitudinal scaling function F is small as compared to the

L

transverse one F the asymmetries Aﬁ' and 15)_ will also be small

T’

as compared to Z%l . This result is a consequence of positivity only.

EXPERIMENTAL RESULTS

1°) A systematic study of the electron deep inelastic scattering on

hydrogen and deuterium is made at SLAC and at DESY. We show on Figs. 3
428
dE' AL

incident energy of 7 GeV and a scattering angle of 6° in the Lab.

and 4 two examples of the differential cross section for an
system.
. 2 2
The region of the q , W plane where measurements have been
performed is represented on Fig. 5. Over a portion of this region, it is
possible to determine separately the two structure functions V1 and V2.
The region marked 'separation region' includes all points where data at

three or more points exists. An example of such a separation is given on

Fig. 6.
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b
» -y .
2°) The function - V.,‘ (9% W?) has been plotted on Fig. 7 as a function
LM
of W= % = -q; . The result is compatible with a unique curve

"1 (§) as suggested by the Bjorken scaling law (III.1). Fig. 8 shows
=~ eb
the independence of -:-2 V; (4% W')  in q2 for a fixed value W= 4
and brings a strong support to scaling. (Remember that p /M v, = ywz).
3°) Other scaling variables have been proposed in order to extend the
region where the experimental data scale. For instance, Bloom and

Gilman have suggested to use the variable ®' related to W by

2 w3
w‘zan-%‘.z = A+

Of course, for large qz, W and W' coincide.
. Vv 'r‘* 2 X 1 .
Fig. 9 represents a plot of ~ V, (@,W)versus W' ; the dispersion

in q2 is somewhat less important than on Fig. 7. Fig. 10 shows a plot of

«reb
:_:‘v':‘(q‘,w';versus q2 for W = 1.66. The scaling is not as beautiful as
in the case W = 4 of Fig. 8. The solid line is a fit using a polynomial
in 1 - :-5, and we see the improvement obtained going from W to w' .

4°) The ratio of the longitudinal to the transverse contributions
b
b
R®. Su
QP
+
in electron-proton scattering is always smaller than 0.5. If R is

assumed to be constant over the measured range, its value is R = .18 + .10

2
but the measured values are also compatible with R = 0.031 A and

Ml
with R a 3;2 .

;I}Z

5°) We give in the following table a résumé of the experimental scaling

- €]
. . . v 2
in the variable @ for the proton structure function M ‘vr,l 95, w*).
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W < 2.6 GeV Resonance region
Lewea no scaling
WS 2.6 GeV scaling
b3 eb
W GeV ZV, aconstsr.3
4 <cwgAR > 2 Mmoo
Zy 4 Gel®
922 Ge scaling
Difficulty in
42 <Ww studying scaling
few points
2807y a2 | Gef'? R not measured
. ek
As an experimental observation, the range of scaling of ;\\r‘ in w!

is greater than in W .
A breaking of the scaling for q2 < 1 GeV2 is shown on Fig. 11

U 2 . )
where 2 'V" is plotted versus q for various values of W

6°) The electron-neutron scattering information is extracted from the
measured electron deuterium cross sections essentially by difference.
3 » oy od .

The structure function Q‘Vi for deuterium scales within
uncertainties essentially as well as for hydrogen. Fig. 12 shows a
comparison of §‘V; for hydrogen and deuterium as a function of uﬂ

The value of R for neutron has not been measured but taken to

» Vv
be the same as for proton and the structure function ﬁ-V} for neutron is
obtained by simple difference and obviously it also scales.

The ratio of the neutron to the proton structure function V1 is
_represented on Fig. 13. It exhibits a strong tendency to decrease when

w' tends to unity but the uncertainties remain very large.
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APPENDIX TIT

1. SCALING

1°) We assume for the total cross sections QS )
o

the sense

(€ 3)
4 =
LIM 2 »MO (W)=
Defining
F F
F::-(oi + o -4 =2 o

we get

< »,»
LMV, =2F

- D » »,»
LM ;_ V, = F_ - F,

£)
(qz, W?) a scaling in

L

%) )
X5=ATT

(e »5 _w,
Xﬁ ’:—?- - ?_‘_

»

LiM

e =Y

If a scaling & la Bjorken holds for the other polarization structure

functions, it is restricted by the positivity constraints to be

2 D »4¥
LM 2 X "o R,

e

ﬂ,ﬂ
LiM >? umvx-e
Mﬁ»& e *

UMFWAlz?m
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and the new restrictions due to positivity take particularly simple form

in the scaling region

(?u ’?12 )2 + CPN:L"(PN‘& )Zé j‘ici’??)(f. +?:- )
. 2 : — 2
(’PM +Tiz) + <?N'i"‘ ?m ) €1 U' P (-7 L)

2°) Assuming that there exists in the high-energy limit a region where the

local Fermi interaction is still applicable and where the scaling takes

place, we write the unpolarized cross sections as

EN - Go g [Sw s* A") + '&7_9(2)-&7'3:‘_(5)}

ds)xg Q?L
425.5 Gz c 7 2 f-;‘, ’—';‘ > —Lo
=G 5 e TGt (G T @]
A¢dS <n

For the three symmetries A N ,[53‘ and ZCXL we obtain limits independert

of the incident energy E

N S;,z F.:J* }_‘_ rer
5 > >
+ \ 4
AN - —9\5’ & §) deea- ( S’Jlmz
f y' ng

Aw = 2(— O 5))? i‘“(”*f)?&

4 sz—urF-v r@jf:
/N f = QW (4—fj:l); t(iff) ?;

' ?2 X Fe2p FLD
S A R 1

| g)z 'F:) + P22
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vi

227 P .22

= - = — —
S)z F»-i- T'.‘:’ + -2_? i‘:

—

From the positivity condition, we can deduce bounds for the
asymmetries DN‘ and tli depending only on the scaling functions F

measured in experiments on an unpolarized target

(82,671 <2 [ercom 72 o)
» fﬁ.§;? +~§:»+ Qy.?lf

2 Azt . ﬁf(ﬁg;?;(yr_ £
{ANQ’ A‘L]')')" §-8 — . +
2

I1f the longitudinal scaling functions FL are small as compared to the

transverse ones F+ and F_ , the asymmetries [lsr and Zlu_ will also
be small as compared to LX“ . This result is a consequence of positivity

only.

3°9) The total cross sections are obtained integrating the differential ones
in the region o< § <1 05?41

We make the strong assumption that the result of this integration
is not too different from the one obtained by using the scaling forms in
the complete integration domain. We then deduce, following Bjorken, a
linear rising with the incident energy of the total cross sections for
neutrino and antineutrino reactions

});g 2 RSN
o (s) = C’s A 7

To7 27
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» »
where the constants A and A are first moment distributions given

by

~—

b

4 -
ATl E AT (94t

[

with as a result of the integration over

B (5). LT (5 T (e T (Y
Hgﬁ%)w A F; (§)+ F: (§)+ F:(E)

2. EXPERIMENTAL RESULTS

An experiment performed at CERN in a propane bubble chamber gives some

indications for the scaling & la Bjorken and for a linear rising with

energy of the total cross section. The results are

(a) A > (propane per nucleon) = 0.52 + 0.13

) A%/ A" = 1.8+0.3

(c) No strangeness changing events observed

Another experiment is now performed in the Gargamelle chamber with freon.
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LESSON IV

PARTON MODEL

PARTON MODEL

1°) The hadron is assumed to be a composite system of elementary
constituants called partons. The structure functions are Lorentz invariant:
quantities so that they can be computed in any frame of reference.

A simple description of the hadron occurs in the P =00 system
where the hadron momentum P becomes very large as compared to the hadron
mass M. The partons appear to be quasi free particles and we can use
the impulse approximation for the interaction of the electro-
magnetic current with the hadron. The partons have an instantaneous inter-
action with the current which is point-like and only the parton electric
charge can be seen by the current. After interaction the partons gain a

transverse momentum Jql and they remain quasi free on mass shell.

. >
2°) In the P =00 frame, each parton X moves along P with a trans-

-
verse momentum very small as compared with its longitudinal momentum ta
-
which is a fraction of P
-
—_—
= ®, T cg X <L
?J o | of N\ (IV.]_)
The conservation of momentum implies
Z "-Il" = A_
o (1v.2)

To leading order in P the parton energy is also a fraction qu of the
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hadron energy so that equation (IV.1) can be used for the energy momentum

four vector

’721 a X, S)

(1v.3)

After interaction with the electromagnetic current, the energy momentum

of the parton becomes PX + q. The parton remaining on mass shell

Py = (Pt q)’

qz-e—fzqvp,,(. =0

With the relation (IV.3), we obtain

q? g
s TP (1V.4)
M

so that the scaling variable E is associated, in the parton model, to

the distribution of longitudinal momentum in the P =520 system.

3°) The main condition for the impulse approximation to be valid is that
the time of interaction of the current with a parton must be small as
compared with the typical lifetime of metastable states in the hadron. 1In
other words, the effective mass W of the final hadronic system must be
large as compared with a typical resonance energy WR s Vfﬁb\vfg so

that the lepton scattering must be deeply inelastic.

STRUCTURE FUNCTIONS V1 AND V2

1°) Let us first consider a configuration of the hadron with N partons.

The parton longitudinal momentum distribution is described by a N dimensional
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. . N . . . .
correlation function £ (xl,xz,..., xN). The normalization condition is

written taking account of the conservation of momentum constraint (IV.2)

. - N _ S
jgj daydx, . dx fo(m,2,,02 )% <%. ®-1)=4

(1Iv.5)

The density of probability for the parton & to have the longitudinal
4
momentum xE  in the N parton configuration is simply obtained inte-

grating fN over all variables but X

(1IV.6)

‘{:‘:.(m) =“ .J-cjmidm‘r.dm“ gizrmm&r )wwﬁ(m-w& )g(%' 0%-))

and from (IV.5) we deduce the obvious normalization condition
4

. |
. doe = A
Fg (=) A% = (1V.7)

(2

Another interesting property concerns the first moment of the distribution

£Y (x) defined by
&
B!
— W
X = oc.s. (®) dx
=® w

v

(1v.8)

Using the definition (IV.6) of QS (x) and the normalization condition

(Iv.5), it is straightforward to prove the equality

2 'i_ - }_l (1v.9)
" o

2°) With these concepts and definitions, the computation of the unpolarized
structure functions is straightforward. Using the impulse approximation

we simply add incoherently the parton contributions
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4

- y of
Vé(q’,w"h % ?N_ % "—,}E 'Q.,z (=) Té (a3 v:=) (1Iv.10)

where PN is the probability of finding, in the hadron, a configuration

with N partons normalized so that

Z:PN'-'/‘L (Iv.11)

4

2
The parton o contribution V’é (a?, V;oe) 1is computed for a point-like

. . S . 2
interaction and therefore it is proportional to the squared charge Qd of

the parton ¥

oL
3°) The function V1 (q5»;®) is independent of the parton spin and using,

for inétance, the result (I.16) we get
o 2
\/ 2 . Mm 2 -
L (qhvix)= 3 a2t S(x E)Qe‘ (1v.12)

Combining equations (IV.10) and (IV.12);we obtain the expression of the

structure function V1 in the deep inelastic region

DV, (- £S5 £0)Q,

M oa (W 5L e G T o« (1IV.13)
The combination %aWV; is a function of the variable § only as predicted
by the Bjorken scaling. Using the scaling limit (II1.3 ) we get

2[F.0:F®]-S2 3 (1(HQ, (1. 16

N

o
4°) The calculation of V2 (qaag;m)<depends on the parton spin. For a spin
o
zero parton V2 =0 and this result is trivially understood using helicity

Y
arguments. For a spin % parton V2 is computed from (I.17) to be
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of 2.
Vz (9% »>%)= racg(x- 3] @d

(1Iv.15)

and the spin % parton contribution to the structure function V2 is

written as
— N 2
2 e b ! J?
Vz(q,W),), ?N- 2: u(g)@o( (1V.16)
N o(3)
In the deep inelastic region Vz(qz, Wz) becomes function of the variable
g only as predicted by the Bjorken scaling. In what follows, we shall
1

consider parton models with only spin O and spin % partons. Using the

scaling limit (III.3 ) we get

ZFT(§)=§?N é\{:(%) @d (1v.17)

Comparing now (IV.14) and (IV.17) we see that the spin O partons contribute
only to the longitudinal scaling function FL(§ ) and the spin % partons

contribute only to the transverse scaling function FT.(Q)

POLARIZATION EFFECTS FOR A SPIN % HADRON

1°) As previously, we study the case of a spin % hadronic target. Obviously
the spinless partons cannot contribute to the structure functions for
polarization. Therefore, using the positivity constraints (III.F ) we
easily see that with spin % partons the scaling functions PN (g) and

P (g ) vanish. We then have to consider only the structure function

Xl(qz, Wz) in the deep inelastic region.

-
2°) Measuring the spins along the hadron momentum P we introduce a spin

distribution S:(s) which is the probability for the parton X in the
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N parton configuration to have a spin parallel & = +1 or antiparallel
G = -1 to the hadron spin. The conservation of probabilities implies
N w
S, () + S (= A (1v.18)

Moreover, if we assume the conservation of spin

)
% 5«=*— (Iv.19)

it can be shown, using the same techniques as in section 2 that the mean

value of S; in the N parton configuration
om— - N
G“,% 83, (§) (1V.20)

satisfies a relation analogous to (IV.21)

é‘ gd = ﬁ (1Iv.21)

3°) Adding incoherently the parton contributions as before, we write the

2

structure function Xl(q , Wz) as

(1v.22)

i
N N v
X, (% w?). 3 P Z.'f d= € ()} S () X, (@\»;%.8)
- Y x o c

From equation (I.35) the parton ® contribution is computed to be

" M 2
25, ez M S5y 8
X‘ (q*»;e,6)=5 5 (= §3 [ (IV.23)

Combining now equations (IV.22) and (IV.23), we obtain the expression of

the structure function X1 in the deep inelastic region

g z
M’f X, (W) = 3, ?«- S ca (5) 6& Qa( (1v.24)

v ¥(3)
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The combination 1': X,i is a function of the variable g only as predict-

ed by the scaling limit (III. 4 ) and we get

22,052, 3§ (5§ &,

IV.25
N o3 ( )
From equations (IV.18) and (IV.20) . it is easy to prove that each
individual mean value Gd is bounded in modulus by unity. The compar-

ison of equations (IV.17) and (IV.25) gives immediately the positivity

constraint (III.7 )

[P € T (8)

. SUM RULES

1°) The existence of the normalization integral (IV.7)
2
N
f -F () d=e
ol
©

N
implies a necessary condition at x = O for the distribution -fot (%}

Qim x w(
%Y=z O
N -fd ) (1V.26)

We then derive two interesting consequences for the scaling functions

(a) If the number of terms in the sum % is finite, the

" I o .
quantities g Y'T (§,) - 3 HL (§€y and § _L“ (§) vanish at g = 0.
(b) If one of these quantities has a finite limit at E = 0, we
must have, in the parton model, configurations with an arbitrary large
number of partons.

~

2°) We now integrate over g the equality (IV.14) using the normalization
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condition (IV.7)

J,jz[mwﬁ(mai - 572 3 @,

(1Iv.27)

The integral J measures the mean squared charge of the partons in the

hadron. However, if the condition

Dm G TF (5)+F ()] w0
§.>O

(1v.28)

is not satisfied, the integral J diverges and the right-hand side of

equation (IV.27) is an infinite sum of positive contributions.

3°) The experimental situation is quite inconclusive. We have shown on

- - eb
Fig. 7 and Fig. 12 the function =y V; (@'%)in the deep inelastic region.
Its limiting behaviour at large W= y@ is not known and it can be
finite or zero. More data are needed before concluding about the number

of partons in the nucleon.

N
4°) We consider the first moment of the distribution f Y (g) and from
the equality (IV.14) and the definition (IV.8) we introduce a second type of

integrals
4

_ _ X — A
Y. (2§ [R@FGYat - DR qQ,

o

(1Iv.29)

The integral I is expected to be convergent now and if the parton electric

charge Qd is bounded in modulus by a value QM

'@d\ < @M for all & 's
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from the equality (IV.9) we derive a finite upper bound for I

- R (1v.30)
1l ¢ QM

THE QUARK PARTON MODEL

1°) We are now interested in a specific model where the interacting
partons are quarks (j = 1,2,3) and antiquarks (3 = -1, -2, -3) labelled
as shown on Fig. 14 where the two fundamental representations of SU(3)

have been drawn.

3
AN
2 [} 4
iy 2 Sl
\ 4 N
N7 N/
X
/)\ ARY
/ N /, \\
-4 L..__\\.-__I..-__) ..2
\ /
Ny
\ s
V3
Fig. 14

Neutral particles called gluons might be present in the hadron for dynamical
purpose and they have the only role of carrying a fraction of the hadron

momentum, being neutral in all the other respects.

2°) Denoting by Né- the number of quarks er antiquarks of type é present
in the N parton configuration, it is convenient to work with the follow-
ing set of distribution functions D 5 (§ ) defined by
TN LY
Dy 2L N £
L) (1v.31)
From the normalization condition (IV.7) the § integral of the distribution

Di (g) is the mean value of the number of type j quarks or antiquarks

in the hadron
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4
Dé‘ So D; (4§ . % Pw N; = <N (1v.32)

As noticed in the previous lesson, the integrals Di are divergent if
the limit (IV.28) for the scaling functions is not satisfied. From the

definition (V.1) the distributions Dé g are non negative in the

physical region o < g <4

D,(H 0 (1v.33)

In particular the vanishing of an integral Di implies the nonexistence
of quark or antiquark of type j in the hadron. We shall call the

positivity of the Dj 's (IV.33).

3°) The baryonic charge B, the electric charge Q and the hypercharge
Y are additive quantum numbers. We know their values for quarks and
antiquarks and the conservation of B, Q and Y implies three constraints

on the mean number of quarks and antiquarks

K. BeQ G =N 5. BAY-Q KN B-Y (1v.34)

4°) In the parton quark model, the longitudinal scaling function FL C§)
vanishes because of the absence of spin O interacting partons. We
compute the transverse scaling function Fo ) inserting the values
of the quark and antiquark electric charge into equation (IV.17). The

result is

2QE. () o %1 Dé(g) @; (1V.35)
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or by expliciting the Qi 's

2F (5. 45 [Di ($y+D (§)}+§ [’DZ (§)+D, (5«1, (§)+—D_5(§>J (1v.36)
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APPENDIX IV

1. SCALING FUNCTIONS

1°) The scaling functions are computed in the Cabibbo theory with an angle

. (8, z’P X 43 (5 (478036, I, + Se V. ]

N ot(ds

F (5. 27, z f (mua,uca&‘ac +smeV“R

—F: (%) - 2? %" $a (§ [C”?ec Id"'s'"zec—v:zj
2 (o)

(5. 8P, S 13 (5) [Cee T e3ma Y

L N W {0)

where Ed = +1 for partons, ég = -1 for antipartons. The weak

charges are defined by the mean values of I spin and V spin operator

products
-2 T-1* “Y’z =yt
1, = <1 171 ot> FER G B TS
-2 - - I R,
I . ¢TIt VeV e

2°) The Adler sum rule is a direct consequence of the I spin and V spin

commutation relations
- - -3 Cart T a3
L1517 )-21 [V V.2V

and in the scaling function language, it is simply written as
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fd{[ F )2 B 2R | F GO0 R0 w2 R0

- 4] 63, T+ S e V7]

2. QUARK PARTON MODEL

The weak charges are given in the following table

\ T T T T S U S R S
<> i o i 1 i o i 1 i o i o0
= i : : : : :

I 0t 0 0 0 1 0

v 0 0 1 1 0 0
o

2 1 0 0 0 0 1
«

It is convenient to separate the contributions coming from the strangeness-
conserving and the strangeness-changing transitions

T2, 6oe, Gy (E)+ 536, HY ()

and the result is

@ (§) .2D, (8 HY (8) = 2 D)
G () =2D, (& H? (5 = 2 D&
G® (5).2D, (5 HY (§)= 2 D, G)
G> & 2D, (&, R (H= 2 D

1 ¥+ W
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For electroproduction, neutrino and antineutrino processes, one
can measure nine structure functions. The number of different types of
quarks and antiquarks being six we have only six distribution functions
[L*(;g) to our disposal so that the quark parton model predicts three

relations one can, for instance, write as

HY (). G2 H(6). G2 (§)

28 (%), 2 [G+<§)+G_c§)] e [GR= G (6)r H (5)+H @]

These relations are strict tests of the most general quark parton model.
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LESSON V

SCALING FUNCTIONS FOR A NUCLEON TARGET

. NUCLEON SCALING FUNCTIONS FOR UNPOLARIZED SCATTERING

1°) When the target is a nucleon we use charge symmetries to relate the

proton and neutron distributions as follows

e L n ' P n L
D (5):D, (5 D,®wD, 6 D,,®=D,&

We shall use the six proton distribution functions D?(§ ) to describe the

proton and neutron scaling functions

¢'> o k] AT 3 J P b -
2B 4 [ D@D/ (3)]+ 5 [D®+D.6)-D, ©)+ Do 5]

—en - v, P b o~ . T\ e 7 (V.2)
AR 6 4D/ D 6] 2 [D 6D, €+ D6~V C) ]

As a consequence of charge symmetry and of the positivity of the Dj 's

we have the inequality
-—en

(O

< ep /¢
Fr (‘») (v.3)

D

or in terms of structure functions

- cn/ 2 w2
< —————-‘r;b“" ) < 4
V, RN

N>

(V.4)

in the deep inelastic region. Experimentally this ratio seems to decrease
when f approaches unity. Its limit at g = 1 obtained by extrapol-
ation of the data is compatible with zero or a small number. The lower
bound 1/4 is certainly not excluded by the present data. 1If, however, it

turns out that for one particular value of § between O and 1 the
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ratio Vin/V?P is definitively less than 1/4 the quark parton model would

have to be given up.

2°) We now integrate the scaling functions (V.7) over § assuming the

integrals to be convergent. Using (V.2) we get

, b t - b
J. £ LT P LAY AL e
en b b 3 b b b
J = %<N;_*N-Z->+ \%(N‘j_*N:t‘f'N;*'N:3> (v.5)

On the other hand, the mean numbers of quarks and antiquarks are related

by (IV.34)

b b b
KN ya2 e 0N PR RT LN by s

The positivity of the mean numbers of antiquarks implies the inequalities

J¢?>’i Jen>/?:7;

(v.7)
Obviously, the constraint (V.3) holds for the integrals~ J
i :Terl
- < ~ 4
4 3 ep N (v.8)

The domain of allowed values of JP and J®" is shown on Fig. 15.
. ep en L.
The experimental values of J and J are very sensitive

to the lower limit § o used to compute the integral

J°P 0.78 + 0.04 for § = 0.05

JP = 1+0.15 for §  =o0.02 (V.9)

J" = .6 - .8 depending on §In
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There is no violation of the bounds (V.12) and the great
sensitivity of the integrals to i o might be an indication that the
integrals diverge or, at least, converge slowly.

An interesting quantity, which must be convergent, is the
difference JP - J°". From (V.5) and (V.6) we have

-QP— ;Ion 2 b- N'b
J - T3 <N =K. (V.10)

100 R

Experimentally this difference is possibly less than 1/3 and it does not

exhibit an evident sensitivity to §

3°9) We study the first moment of the quark and antiquark distribution

functions defined by

i

/
dg - } 3 D6<§)d§ (V.11)

[
These integrals are expected to be convergent so that we are in a more
comfortable position to make useful statements.
The first moment relation (IV.9) is written in the quark
parton language as

Sid, v X e, =4

9 3 ‘9(“0“5 (v.12)

It is then convenient to introduce a parameter £ measuring,in some sense,

the amount of gluons in the hadron

s - l - ?‘9\4‘-4‘—& (V.13)
guoh$

From the positivity of all the first moments of distributions, we deduce

the allowed range of variation of &
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O<e <4 (V.14)

It particular, & =0 corresponds, in the quark parton model, to a
hadron made only of quarks and antiquarks and & # 0 implies the exist-
ence of gluons in this model.

The integrals I defined in (IV.29) have the following express-

ion from (V.2)

I = g('o'sd..ngcx--&)
en . (v.15)
7. ga}d.f»ga—a)

Using charge symmetry, we deduce the following inequality from the positiv-

ity of the dj 's

(1-8y < 17 I ¢ 5 (1-¢)

wi&
®)di

(v.16)

The equality of the upper limit holds when no strange quarks and antiquarks
(j = + 3) are present in the nucleon.
Equations (V.14) and (V.16) imply the existence of an

absolute bound

- ep en —
0<1I «+1 <« 3
G (v.17)
.. ep en .
and limits on € when the sum I + I is known from experiment
ep en
< < 4 - 2 ¢I%I

Again the constraint (V.3) holds for the integrals I
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—
®
H

€ 4

‘I

(v.19)

N
1=
rs
v

The domain of allowed values.of 1°P  and 1" is shown on Fig. 16.

The experimental situation is the following

1°P & 0.172 + 0.009 with § = 0.05
(v.20)
1"« 2/3 1°P
so that good estimates of the complete integrals can be
1P . 0.18 + 0.018
1°" . 0.12 + 0.012 (V.21)

1% + 1°" 5 0.30 + 0.03

The absolute upper bound (V.20) is easily satisfied and the upper limit

obtained for & 1in the one standard deviation limit is

£ ¢ 0.52

. POLARIZATION EFFECTS

1°) We define new distribution functions Dag (&) by

N N
l -5 P N S ,
:)%G(ﬁ)_§ _Niéféﬂ)sa(%) (V.22)
and the scaling function Pu (%) 1is given from (IV.25) by

2
2P, 0= 3 Q5 D)

(v.23)

2°) Let us integrate the scaling function P“ (§) over 13
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EY

- Ya
Z . J£;2 TZ (§)d §

(v.24)

Using equations (V.22), (V.23) and the normalization condition (IV.7), we

can write Z in the convenient form

Z. 325 D, <3816, Q145>

(v.25)

where the D}‘ can be interpreted as the mean values, in the hadron,of

the number of quarks and antiquarks of type j having a spin parallel (g = +1)
or antiparallel (o = -1) to the hadron spin. Therefore the integral Z
6,Q°
is the average value, in the hadron, of the operator s &
By definition of the symmetric coefficients of the quark

model algebra, Z can be decomposed into

X
dA

B §
. ﬁ%n é%ﬁ (V.26)

to}s-
Wi

1

3
¥

where %“ defined by

(v.27)

A ¥ 1 ¥
Ya = %ZS D & <3616, F 138>

is the average value of the U(6) algebra operator Gs Fa’ . Here Eé
is +1 for quarks and -1 for antiquarks.

It follows that 3:. is the coupling constant of the axial
vector current of U(3) index ¥ .

Equation (V.26) is identical to the Bjorken sum rule for

polarization already derived in Lesson II from the quark model algebra.

B
3°) The coupling constant 36 is the axial vector baryonic coupling
constant and it cannot be directly measured. The octuplet coupling

& .
constant gh depends in general on two reduced matrix elements
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{38)

3:3“400‘@“"?552@

(v.28)

(88)
where QG is the symmetric isometry of weight Q.

In the case of the baryon octuplet JP = %+ to which the
nucleon belongs, the combination fa + fs is the axial vector part for
neutron P decay when the vector part is normalized to unity. Various
combinations of fa and fS describe the hyperon fb decay axial vector

amplitudes and from an overall fit we get

'?a"‘?s a 4.2 -Pse: 0.C (-?a""cs)

4°) The integrals Z for a nucleon target are given from equations (v.26)

and (V.28) by

e ® 4
AR TSR
=3Jds —3°%s
Considering the difference AL z°" we get a prediction independent of
B
a

Zh_ 2% "3(&'«1@5):‘-0"‘1 (v.30)

The constant gi’ being associated to the baryonic axial vector current
is given from equation (V.27) by
)
3& I I 3 Da;- (v.31)
3 46
1f we assume the conservation of spin without correlation between the

gluon spin and the nucleon spin, we obtain, from (IV.21) the value 1/3
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for gi . It follows the two predictions

P en
Zeg 0. 4% Z 2 0.06 (v.32)

so that Zep and 2% differ by essentially one order of magnitude.

ISOTOPIC SPIN SYMMETRY

1°) In order to study the consequences of symmetries it is convenient to
consider a forward scattering amplitude with different U(3) indices for

the current and for the hadrons
Om, &m
2702
¥, > M,

In the quark-antiquark representation the system lln is associated to
one of the nine U(3) generators (L, m = 1,2,3)

The scaling function generalizing (V.2) is given by

T

21 ,g;P A Olptdy fim,
—F"!:.N a.“kd(g): ZDh(}(g)(le%&F‘ PN
k.3

(v.33)

a0l
where now D ( §) is a matrix distribution of quarks and antiquarks

R

in the hadron multiplet.
™m
The F are the infinitesimal generators of the U(3) Lie
algebra and in the two three-dimensional representations of quarks and

antiquarks they have the explicit matrix form

dm
F

| ) S Lmj for quarks

F Im = —| m> <'8‘ for antiquarks

Substituting now in equation (V.33) we exhibit the quark and antiquark
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contributions to i".r

4
m

91“ »Va.ipim.n”t 2% Ay oy
l
F (©)2 Sy Dy, (8 "o D)y (0

(V.34)

The positive definite character of the hermitian matrix F implies an

T
. . . . ¥z ¥y
analogous property for the quark distribution matrix D _° (§) and
R )
. . . . LA
the antiquark distribution matrix D 2 ( S).
-4 -1

2°) We consider, for simplicity, only the case of the symmetry group
SU(2)® U(1) of isotopic spin and hypercharge. The strange quarksand
antiquarks (j = + 3) are decoupled from the doublets of non-strange quarks
and non-strange antiquarks (j =+ 1, + 2).

Using the well-known product of representations in su(2)

D(L)1® D(i) = DOS DEe)

we apply the Wigner-Eckart theorem and we introduce two reduced matrix

elements for the quark distribution

D). § D)+ w1 F iy D (8)
m,m, AL Y

(v.35)
and two reduced matrix elements for the antiquark distribution
&y, ~ et by =~
D (g, .8 S, DE)e <41 T2,y D (3§
:)Jz.?, : & Lh 8 / a2 Dy ) (V.36)

The four distributions Q (§$), Dv (§), :55 (§) and j—j\( (§) are

real functions of g in the physical range 0 < §\< 1.

S~

3°9) It is very easy now to apply these results to the nucleon isotopic

spin doublet. From (V.3%5) and (V.36) we get
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D::'“ ($)a% S m D (§)+§ S, D, (%)

Y MMy o, M, o,

Ddld‘ (E)-S g D OF S%*ag;/.& Bv (€,

n-z'-l

These matrices are reducible and the positivity inequalities are simply

written as

D8y y © De(fryo0
Dy )+ D, &)y, 0 D, )+ Dy (30
D, (#2050 D, 5)-D, )50

In terms of the proton distribution functions D ( §) previously used

the constraints due to isotopic spin symmetry are

2,3 )3 D (§)>O

(v.37)

2D 65 D)0

(v.38)

Of course for the strange quark and antiquark part we remain with

D (8) 50 D, 630

The consideration of isotopic spin symmetry adds very little to that of
charge symmetry for electroproduction and the constraints on the structure
functions, the integrals J and I already obtained remain the same.

As an example of a specific consequence of isotopic spin
symmetry, let us consider the <N_‘ ) s < N:_:) plane. From charge
symmetry and positivity the allowed domain was a quarter of plane <N,‘_‘b> %0

) 30 . It is now somewhat smaller as shown on Fig. 17.
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APPENDIX V

SCALING FUNCTIONS FOR UNPOLARIZED TARGET

1°) As seen in Appendix IV, the scaling functions G+ for A =0

transitions and H_ for AS =+ 1 transitions depend only on one type of
quark or antiquark. Taking account of the charge symmetry between proton

and neutron, we get

n 3

> ») 1 3 oy
MR NG AL D@ HLaD

b

+
G G2 D (6 L H 2D

YN

E ® ok 5 +
G:= G, 2, ® H. . H+°= TEDNG
G._g_Pe G:ma 2 D:Cg) H;lD = 2’0:(2) Hj: 2 Q@)

In particular, we can derive interesting relations between electroproduction

on proton and neutron and the neutrino and antineutrino production

_eb __en - »p TP 1 - ey vh

Fef S LG G T s 5 [He e BT

18
b —en - ,wb »b Sb S
T: - H = ;i- 1.6; - (; - 6; T <; ]
A2 + - v -

Of course, equivalent relations can be obtained using the previous equalities
between proton and neutron scaling functions for neutrino and antineutrino
induced reactions. For instance the first relation gives an upper limit for

A% = 0 scaling functions and a lower limit for AS =+ 1 scaling

functions in terms of the electroproduction scaling functions

661 < & [Fe e B ¢ [ i W
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The three quantities become equal when strange quarks and antiquarks are

absent from the nucleon.

—

»,»
2°) We now integrate the scaling function F over E assuming, as
previously, the integrals to be convergent
- i =
»,V _F.'?,)J
J, (9= . (14t
= (=]

The positivity of the mean numbers of antiquarks implies lower bounds for

these integrals

— — ¥ . _.on _on .
J, »0© J 28, J, S0 J 466
— b Hh

— 5 - »n
J, yo J 7y 4 Jd yo J » <2

On the other hand, linear combinations of J 's can be convergent even if

the J 's are not. This can be the case for the Adler sum rule

- »b
N - T G20, +2Sm8

I T ege, + S

%l* €]

~

for the Gross-Llewelyn-Smith sum rule

)nb —wb

...3— —J = G(‘ﬁ:ec""is‘“aé
3-311 -J--»n I»h. 30"! 6 G20, + 2/{)m 9
-Vt

and for the proton-neutron differences one can relate to electroproduction

integrals
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3_* n= 3.{‘3.«_:_?“_&

T™ L oGe a4+ 3@ T-T)]
3. Gee [4-3TT=T)
b 5’n= 6[3“—-3"]*1

0B
+

O

3
b

D

<
4

2
pY

gl !

—

e A

Unfortunately, the experimental information is not available to allow a

test of these relations.

3°) Let us study the first moments of the quark and antiquark distributions
dj' In Appendix II1 we have shown that the total cross sections for
neutrino and antineutrino induced reactions are expected to increase

linearly with the incident energy

9 2 », o
c T Gs f
Tor 2N

With the decomposition into strangeness conserving and strangeness violating

parts

AV L ez, B+ Swa

we obtain
B
’ES;b

1
v N
€]
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S
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+ -t
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1 v
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o
N m
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~
GI® Gl Ul (0

+ 2 Ci:
P »
Cii + ‘{e
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gl
3

wie cping e (piIde

Some consequences of positivity and charge symmetry are the following
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B B < 204-8) BN < 201-¢)

fEﬁ\i‘ ”ﬂ* A’b* B;né ? (4_6)

Wl

CeC™ < 4 (-2 e e ¢4 (1-€)

b b ©
%@—é) £ C”-r@m-r e +C h_( 4 (4-¢€)

Absolute bounds are simply derived by putting € = 0 in the upper limits
of the previous inequalities. Limits on & are obtained from an experiment-

al knowledge of the constants B and C as for instance

vh

£ g4 - B
2

Using our information on & deduced from electroproduction data, we obtain

a lower limit on the total strangeness changing transitions

ePr ™ e T > 0032

The experimental data on the propane bubble chamber experiment have been
quoted in Appendix III. Taking account of the particular structure of the

propane in protons and neutrons, we obtain the experimental figure

B>+ BN = 4,45%*0.29

This result satifies the absolute upper bound of 2 and it implies for
an upper limit which is & < 0.57, e.g. of the same magnitude as that

deduced from electroproduction.
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4°) We now combine the neutrino and electroproduction integrals in order
to obtain the maximum of information from experiment. As an immediate
consequence of general relations between structure functions quoted in the

first paragraph, we get the simple inequality

,bvb_'_ an s ‘—g <Iep* I¢n>

From electroproduction data this inequality implies

Evbr E)vn < 4.4_3

so that this upper limit is consistent with the present neutrino data.

. »p 2mn
A more detailed study of the integrals B + B and

1P + 1°" allows us to establish a double inequality leading to an

improved lower limit for &

4 % Clepf‘ 1.:.“)-1-2. ('59>f‘59h)5£ S /.'.." _Qécl.ep'_zen)

With the experimental data inserted in the one-standard deviation limit we

obtain a range for
0.25 < & < 0.52

so that gluons must be present in the nucleon to make the quark parton
model consistent with experiment. Let us notice that because of the

large errors in neutrino data, the value € =0 1is excluded only in the
two-standard deviation limit so that improved data are fully necessary to

make definite statements.

59) Predictions can now be made for antineutrino rections and proceeding

as previously we deduce, for instance,
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L (BB < phe g Y (THI™) - (BHE)

and inserting the experimental data

—

Sb wh
1o 2T5 <o
3 15»?+ B

Let us notice that the lower limit 1/3 is a strict condition, a consequence
of positivity and charge symmetry, whereas the upper limit involves experi-

» P »hn

mental data. Fig. 18 shows the present situation in the B + B R

> »n
B b + B plane. The large triangle corresponds to absolute bounds ;

the oblique line is the restriction due to electroproduction with the one-
standard deviation errors ; the vertical lines are the neutrino propane
data and the dashed triangle is the resulting region compatible with

experiments, charge symmetry and positivity.

6°) Finally, isotopic spin symmetry gives supplementary restrictions that are

consequences of the inequalities
P » b ®
2D, (0 D,6) SONOPRONG
An immediate trivial consequence is
>h | wp
2 G: <§) > G: <§)
or equivalently, using charge symmetry
»n b
2 G: (% 5 G: (H

In practice, the new constraints due to isotopic spin symmetry are not very

useful because they occur in domains far from the present experimental
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data and their predictive power is extremely weak. Nevertheless, they must
be fulfilled and as a second example for the total cross section, we get

n »P > > n
ZB’ )B 2B'”b)B
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Fig. 18 - The neutrino antineutrino total cross sections
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CONCLUSION

We hope we have, in these lectures, given some ideas about inclus-
ive lepton scattering, scaling in the deep inelastic region and a tentative
interpretation of the data with the quark parton model. Many other related
topics have been disregarded because of the lack of time and we only briefly
comment on them.

Obviously, other theoretical ways of interpreting the data have
been proposed : the light-cone algebra approach, the Regge-type model, the
vector dominance model... The light-cone approach turns out to be very close
to the parton model and for deep inelastic scattering of leptons it gives
equivalent results. In its general form the parton model gives the scaling
in the deep inelastic region and this fundamental featuré is also insured
assuming the leading singularities of the current commutators near the light-
cone to be the same as those given by a free field theory. The hadronic
tensor is the Fourier transform of a matrix element of the commutator of
two current components in the Bjorken limit we pick out in the integration
essentially the region near the light cone and scaling can be achieved in
this way. Moreover, the quark parton model makes precise assumptions about
the nature of the constituents in the hadron and therefore allows the
possibility to derive sum rules, to relate electroproduction to neutrino
and antineutrino induced reactions and to make predictions. 1In the light-
cone approach equivalent results are obtained assuming a particular algebra
for the current operators namely the quark model algebra with chiral sym-

metry so that the parallelism between the two models is really complete.
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The hadronic tensor can be considered as the absorptive part of
a forward Compton scattering amplitude. In a simple Regge model this
amplitude is described at fixed q2 and large ¥ by a finite sum of poles
(R) whose residues are functions of q2. For instance the total photo-

absorption cruss section C;T' and Q;L can be written in this region as

' R VR[')"' !
») (9= >
qT,L ( ‘12; ) ~ %’ PT"' 1) L M )

If the Regge limit (q2 fixed, large % ) and the Bjorken limit (q2 and
both large) are governed by the same leading terms, the existence of

scaling implies the following high q2 behaviour of the residue functions

R M2 Yg() R
(& T L (Q‘) = ;3. ) L

The scaling functions FT and FL have then a Regge expansion for small g

T o .wsel i
. §)=; 2 \_3,.‘“ ng_

In particular with a dominant Pomeron exchange <342 (0) = 1, we get the
constancy in 2 of the total cross sections in the Regge limit and a pole
at g = 0 for the scaling functions. Therefore the structure function
/M V1 in the deep inelastic region will remain finite at § =0 and
the limit is the same for a proton and a neutron, the Pomeron being iso-
scalar. In the parton language we know that this implies the existence in
the hadron of configurations with an arbitrary large numbers of partons.
To conclude with the Regge model let us emphasize two points : first, the

connexion between the Regge limit and the Bjorken limit is model dependent

and it can break down ; secondly, the presence of Regge cuts can modify the
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low § behaviour of the scaling functions.

A naive application of the vector meson dominance model with only
? , W, ¢5 meson contributions seems to disagree with experiments. In
particular the variation with q2 at fixed % of the cross section Cir(qiv)
is less rapid than expected with a vector meson propagator so that more
elaborate models must be introduced. In fact the vector meson dominance
model cannot be used in the complete qz, » plane but only in a region
where the virtual photon is expected to behave like a hadron ; this

implies a restriction of the type

M > SoP+ 3M?

and the experimental data are not very far in the allowed domain.

Recently on the spirit of duality, two-component theories of the
virtual photon have been proposed. The diffractive component is determined
by the vector meson dominance model and the non-diffractive component is
determined by resonance contributions expressed in terms of the parton model.
Obviously, such a model is consistent with experiment and the transition
region will be a crucial test when experimental data become available.

The last point we wish to stress is the interest of semi-inclusive
and exclusive reactions induced by leptons. The experimeatal material is
rapidly increasing and we can take advantage of the existence of a continu-
ous mass spectrum for the projectile. Let us consider as an example an
electroproduction experiment where, in the final state, a hadron has been

detected in coincidence with the lepton
etp = et Py + anything

We expect to have a target fragmentation region very similar to that observed

in inclusive reactions induced by real hadrons. But the projectile
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fragmentation region and the pionization region will crucially depend on

2, . . . . 2

q~ in extension and in shape. Also the determination of the q dependence
of the multiplicity is an interesting question closely related to scaling.
Up to now we have theoretical speculations but in a near future the problems

must be solved at least phenomenologically.



