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1. Introduction

In these lectures I shall try to summarize some theoretical
aspects of e'e” interactions 1) and try to confront them with
recent experimental data from Orsay, Novosibirsk and in particular
from Frascati 2). This field of high energy physics has been very
interesting in the past, and we can expect further interesting
results in the coming years, if we look at table 1, which shows

a list of the main electron colliding beam facilities at various

laboratories, either completed or under construction.

Table 1

Laboratory Ring Particles Emax in MeV q2 in GeV2 Status

Orsay A.C.0. e'e” 550 1.21 working
Novosibirsk VEPP II e'e” 700 1.96 "
Frascati Adone ete” 1500 9.00 "

CEA Bypass e e 3000 36.0 "

SLAC Spear ete” 3000 36.0 "

DESY Doris efe™, e"e” 3000 36.0 in construction
Orsay D.C.I. e'e” 1800 10.2 "

In table 1 the fifth column gives q2, the square of the total
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energy in the c.m. system. We see that for the three larger rings
at CEA, SLAC and DESY the q2 will be comparable to the same
quantity achieved at proton accelerators like the Cern PS.
Therefore we expect from these rings already results in the
asymptotic domain, whereas the other rings, in particular Adone
and D.C.I., will work more in the region, where the production

of meson and baryon resonances is expected to be dominant.

It is well known that colliding e e and ete” beams can be used
to test quantum electrodynamics at high energies. Since this will
be discussed by Conversi in a separate lecture, I shall not
consider it here. Another interesting field is the production of
strong interacting particles, either by annihilation of electrons

and positrons

ete” — hadrons (1.1)

+ + =+
or by e e (e+e-) scattering, as for example

e"et — e"e’+ hadrons (1.2)

Although the processes (1.2) are one order higher in the fine
structure constant a than (1.1), there are expectations that
the yy processes (1.2) as in Fig. 1 will be observed for higher
beam energies E >, 2 GeV, since one factor « in the integrated
cross section is partly compensated by a factor log E/me, where

w, is the electron mass. (1.2) will be of interest in the near
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future in connection with the rings at SLAC and DESY. On the
other hand the analysis of processes (1.2) is more complicated
than the annihilation process (1.1). Therefore in these lectures
ve shall concentrate on the annihilation into hadrons and refer

for (1.2) to the existing literature 3).

The reactions (1.1) proceed predominantly through one-photon
exchange (see Fig. 3). In this case the strong interacting
particles h1, h2, esey Which appear in the final state,

e'e” = h b, by . ..
must be in a state with parity P = -1, charge conjugation quantum
number C = -1, total angular momentum J = 1 and total isotopic
spin I = 1 or 0. If I = 1, (0) we speak of production by iso-
vector (isoscalar) virtual photons. The final amplitude
(b, by y oo [ g0 | 0> transforms in the c.m. system of
particles h1, h2, eee. a8 a polar vector, since, because of the
current conservation condition § < hods,As, - |Jpce)l0> =0
the time component of the current matrix element vanishes
{AoheAs o 1 Joted 0> =0 and only <L b4y, | (o) 10> is left.
0f course the one-photon selection rules P=C = =1, J = 1,
I = 0,1 are valid only to order a2 in the intensity and are
violated from interference with the two-photon channels at the
order a3. For production of n pions we must add to these rules
the selection rule I = 1 for n even and I = 0 for n odd. A unique

feature of one-photon annihilation is the form of the angular
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distribution a + b c0329 , if only one particle is detected
(i.e. in one-particle inclusive production and two-body
annihilation) 1). In the one-photon approximation also the
limitation of the cross section by unitarity is rather simple.
Since ete” > h1, h2, ... Proceedes in the direct channel only

through total angular mowentum J = 1, it must obey

o £ & XY (27+4) (1.3)

where # = 4/5 is the reduced wave length of the incoming et.
For J = 1 and upon taking into account the appropriate spin

states of the electrons (1.3) gives

3r 2
o F R (1.4)

The annihilation process takes a particularly simple form in the
c.m. system of et and e”. Because of the Y5 = in, variance of the
electromagnetic interaction, we have in the limit m, = 0 only the
coupling of a right-handed electron with a left~handed positron
(ex e ) and vice versa (e e,;‘ ). (See Fig. 2) Since the
total angular mowentum is J = 1, the only state contributing is

"/VZ (l eL—) Qk+ >+ /e{) e/-+>) (1.5)
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In the past the experimental studies of reactions (1.1) were
mostly directed towards the special channels x'x , KK, and =’ n°
using the Orsay or Novosibirsk rings 2). It is well known that
these channels are coupled strongly to the P = C = -1 boson
resonances 9 , w and Y , as can be seen from their decay
(¢~>2r, w - 3%, ¢> KK, 3%). On theoretical grounds it had
been expected for a long time that these resonances would couple
also to the initial photon 1). This has been verified experimentally
in the past years)and we now have a rather detailed knowledge of
the electromagnetic coupling of these resonances 2). This search
for direct resonances in the one-photon channel, which decay into
two or more particles, will go on also at higher energies. In this
sense the reaction e+e- —> hadrons is a very unique filter for

boson resonances coupled to photons with P=C = -1, J = 1 and

I = 0,10

Since the e'e” annihilation physics below 2E = 1. GeV, where

these three resonances §)A%*f occur, has been reviewed extensively
on other occasions 1)2), I shall concentrate more on the annihila-
tion process in the Frascati energy range 1.0 GeV L 2E ¢ 3.0 GeV.
The plan of the lectures is as follows. In the next section we
introduce the total cross section o for ete” annihilation, discuss
some simple models, which predict the asymptotic behaviour of o,
and relate ¢ to the vacuum polarization, which has been measured
recently in e+e-->-u+p-. In section IIT we explain the kinematics

and basic definitions of one-particle distributions and discuss
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their relation to the corresponding process in inelastic electiron
scattering. The cross section for one-particle detection will be
calculated under the assumption of scaling. Section IV gives an
introduction to two-particle production for arbitrary spins and
parities of the two particles. The general structure of the two-
particle current matrix element is worked out in the c.m. system.
This is used to calculate some examples, which later are of im-
portance for the discussion of recent experimental data for many
pion production coming from Adone 4). In Section V we give some
conclusions and outline the general importance of the study of

many-pion channels also at higher energies.
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2. Total Annihilation Cross Section

We consider the electron-positron annihilation into an arbitrary
final hadron state H (with total momentum p, ). In the one-
photon exchange approximation the transition matrix element is
written as the product of two matrix elements of the electro-
magnetic current as indicated by the right half of Fig. 3. We

define q = k+ + k_ . Then the transition matrix element is:

KHIT] Aejrv; Aoyr> = —~(§15 Uy, Che) ) Up (h2) <HIgulo> (2.1)
where %, (4-) is the Dirac spinor of the electron with

mowentum k_ and helicity =~ and ’Uﬁ@@) is the Dirac spinor
of the positron with momentum k+ and helicity 13 . Then the

total cross section is:

0 = Z Z," (-2r()lJL av(w(p#-/é,‘—/é,) /<,L//7—//£+)r; rﬂ)/¢ (2.2)
H

e

Here §{> is the flux factor of the incoming particles

_4_ — m 2 1)) %
(nf (¢4’ e) (2) (135" 4mé) (2.3)
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m, is the electron mass, which can be neglected in Eq. (2.3) for

q2 > 4 mez « 2 means integration over the relative momenta
H

of the state H , summation over all possible states H with
total momentum PH and integration over PH . As usual we intro-
duce two tensors, one coming from the lepton vertex, which is for

unpolarized electron and positron beams:

—é‘/.«.p = 2;:;" rZr:. 77,';_(’5+) ],«. Uy (h-) er;_(/é-) MJ vr:, (’44.)

. (2.4)
= /é+/~ lé-u + 'é—/»v /éJ-P - Q/Z g/*“'

The other tensor, describing the hadron vertex is:

ﬂ;y””(q) = 2 8Cpu-q) @ < bl guo)iod> <H goo) fos*
"
= JOU* w O(Puo ) J(”(Pu—‘f)”z @n® <ol gy @) 1 H><H | ol [0S

= 0(1) 2 @ <ol d@) | H>SHIguco) 10>
K Pu=19

(2.5)

With the definition (2.5) we can write the total annihilation

cross section as:

o = T A 2.6
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The index h 1is to indicate that only hadronic states are in-

cluded in the sum over final states in (2.6) or intermediate
A

states in (2.5). The tensor TC; depends only on the four

vector 7 as already indicated. Because of the conservation of

the electromagnetic current we have:
@) =0 (2.7)

A
Therefore 7(;V (ﬂ) depends only on one scalar function

7)'/'(«12) , defined in the following form
T () = (99 = % 9v) Tq2) (2.8)
Saturating the leptonic and hadronic tensor we have from:
T 0% = J09t) = (4R ant) = gt (2.9)
the result:

0= lom® «%/qn T (2.10)

This way we have expressed the total cross section by one scalar
4
function Tr (?2) which depends on one variable q2 = 4 k+02

only, where 2 k+° is the total energy in the c.m. system ﬁ = 0,

The wost interesting question is about the asymptotic behaviour
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of 6(q2) for large q2. There have been discussed many proposals
for this limiting behaviour. We shall consider some of them. If
the q2 dependence for large q2 coincides with that of a point-

like boson it is (see Eq. 4.29 with F_ = 1):

’3"?2 (2.11)

and with a pointlike fermion, then (see Eq. (4.42) with £,=1,

£, = 0)
39% (2.12)

(2.12) is also the asymptotic value of u+p— production cross
section (neglecting radiative corrections). Formula (2.11) and
(2.12) are the basis of a the "jet model" of Cabibbo, Parisi and
Testa?)They assume that the interaction of the virtual photon is
mediated by structureless particles (partons). These partons turn
themselves into the observed physical particles that retain the
total momentum of their primitive unclothed ancestors (see Fig.4a).
0f course, this presupposes that the number of physical particles
originating from any parton is sufficiently swall that each final
particle carries a significant fraction of the initial parton
momentum. Concerning the absolute value of the asymptotic cross
section the model predicts that the cross section is equal to
(2.11) or (2.12) times the sum of squares of the parton charges,

(2.11) if the partons are bosons (7%, K, f..) and (2.12) if they



- 413 -

are fermions (?,Zw--- ). For example, for quarks the asymptotic
value is 2/3 times the asymptotic cross section for p-pair
production (2.12). In the parton picture the basic assumption
is,that for large qzthe strong interaction, which governs particle
interaction in productions by real photons or virtual photons
with small q% is very much reduced,so that the primary inter-
action with the photon is pointlike. Then there is still the
question of the q2 dependence of the hadron-hadron interaction,
which produces the many hadron final state. Suppose the primary
hadron that interacts with the photon is a proton. Then the
cross section o for ete” > H can be factorized in one term

corresponding to the production of the initial proton-antiproton

pair and another one for pp > H (see Fig. 4b) é)
O~/= 4-,”(1 _j: =1
39% G4 pp > H (2.13)
J=1
Here 6'?§_> H is the total cross section for Pﬁ > H

with ,oﬁ in the total angular momentum state J = 1. If 6J=1 is

described as in a diffractive model for PF interactions with
dtot being constant in energy and having the momentum transfer

dependence eAt the partial cross section for arbitrary J is:

2
. o J = 2 Opot e__. 7/%€4
Pp > H 7% A (2.14)
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The combination of (2.14) with (2.13) gives the result that ¢
behaves like 1/q2 for large q2, but with reduced magnitude com-

pared to the pointlike cross section. On the other hand we wust

admit that eAt is presumably a too crude approximation to

calculate the J = 1 partial cross section. For this we need the
total angular distribution for FP collisions. Therefore the

result (2.14) cannot be trusted. Furthermore the primary hadron should
rather be a quark than a proton since the latter, we know, is not
structureless.

Other proposals for the q2 dependence of the total e+e- cross

section are the quark-model esgimates of Bjorkez)or the one of
8
Gribov, Ioffe and Pomeranchuk based on the current algebra of

free field or recent light-cone derivations)which,concerning the
physical assumptions

1/ 2

q~ dependence of 0.

, are similar to the parton model and all

result in the

On the other hand in the vector-dominance model (VDM), in which
the sum over intermediate states H is approximated by a finite
number of vector meson resonances the conclusion for the total

cross sections are different. The predictions range from ¢ ~'l6

q
for straightforward VDM (finite width corrections may modify
. 1 1 1 . X
this), over %Z;E;z ) ?41;7b to q2 depending on the kind

of field-theoretic realization of vector dominance. Since this
9

has been extensively reviewed in the literature)we shall not

discuss it here any further.

e

The hadronic tensor /| , as defined in (2.5) appears also

/U.
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in pure leptonic reaction as for example e'e - ete” or
e+e- - p+p- through its contribution to the vacuum polarization.

In fact the Fourier transform of the complete Feynman propagator
F
—% Dﬁ” (x) = <o) T(A/WCX') A’p(°))’0> (2.15)

where A“(x) is the electromagnetic field, can be written as the
sum of the free field propagator and of a gauge invariant

correction

4 ' 1 z 3 z 7/—,,,,7.
% Di(?) = - (g/"p éz - (3"“— %»_Zp)e afdm m"(;f‘—)qz-ie)
(2.16)

In (2.16) the spectral function T¢m®)  is just the function
defined in (2.5) and (2.8), if 3»CK) is the complete electro-
magnetic current including the lepton contributions. Using (2.10)
we can express the hadronic contribution to the vacuum polariza-
tion as an integral over the ete” total cross section. Let us
denote the vacuum polarization contribution in (2.16) by TTqué)

Then we get for the hadronic part:

<7TF(6:2)) =

A 5 dm 1 (7( m ")
hodronic 4t 20(
0

m*— q*-ig (2.17)
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T
We notice, that in order to obtain a finite value for 7T,,¢ wic
-2
d(mz) has to decrease for m2—>ao as é'ﬁv’n’:) or faster

(roughly speaking).

A possible way to detect the hadronic contribution to the vacuum

polarization is to measure the process

ete™ 5 pTu (2.18)

(2.19)

where the point-like cross section .JQED can be inferred from our
calculations of two-body cross sections for spin 1/2 in chapter 3

(see (3.59) with £, = 1, £, = 0).

%—&ED _ T <p Lmt 2
et | 2% Ve (1+ cni®) = GF smb (2.20)

Since TTF is proportional to a the contribution of TTF in (2.19)
will be negligibly small in general. Only if V? is equal to a
resonance wass like that of ¢, w or <f the term 7" -ﬂ'r(?’-)

may become large enough to be detectable. The experiment has been

done recently for q2 in the vicinity of m‘? . The result of the
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of 10)
measurement as a function beam energy E is seen in Fig. 5. The

experimental curve can be fitted by

2
0" = Ogeyp / 1+ 32 el / (2.21)

X g —mg rimpl

which is the result of an evaluation of (2.19) for a resonance
and B is the branching ratio for < > ete™ to Lfa-all channels
and I' is the total width of the <P . The resulting branching
ratio is

B= (2.6 %1.0) 1074 (2.22)
From this we conclude that the experiment gives evidence for

hadronic vacuum polarization.

3. One-Particle Distributions

In this section we consider the case where only one particle is
detected in the final state, as for example one pion, kaon or

proton11%he spin of this particle is S, m is its mass and 13 its
energy-momentum four vector. We assume that the polarization of

this particle is not detected. The final state will be written

as Iﬁq f),X:> , where A is the helicity of the detected particle
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and X stands for all other particles in the final state. Then

the tensor, describing the hadronic vertex is:

Lo ta) = 2 8%(py+p-q) @ <ap; Xl guc@) 10> O piX @05
X\

2 2 2 < (5'1)
jd,Mx \J‘o(,"F)( G(PXo) g(f’x""”x> J ’(P‘+P-Qw‘<)\pi XIJ/‘(Q)ID><o]gv(o)/,\Hol.)>

I

@ (3-po) Z @0’ < o du(o) | X p; x> <>\piXIJ,w(0)l°>

1

X;>‘p'PX=Q‘P
The tensor T;” depends on the two four vectors 1> and q.
Furthermore
aqM _ ] _
7 T;"" - ci -!/:.p =0 (3.2)

because of current conservation. Then the most general form for

7/:‘, is:

T = (=g + BEW o+ (b= 2 9 )(h - B 0) % (55)

The two structure functions W1 and w2, which have been introduced
in close analogy to electron scattering, depend only on two
scalars for which we choose q2 and the total mass squared of the

undetected particles, called § :

2

S = 'PXZ: (P—7)L = ?Z-\‘- m*— 2*,0? = 7+mz—zl) G .4)
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For pq we shall also use the common symbol v . If we saturate
the leptonic and hadronic tensors we obtain two invariants I1

and 12:

T, = — Jut™ = 1% 2m’ = ¢

=1

1 M 4 ) 4 - mz:,
2 m2 P/“P"-é mz[zé’/’ Cp 7/4} (3.5)

Then the differential cross section for inclusive production of

a particle of momentum and spin S becomes:
P

4
dy:{pﬁ{ﬂh/, +1;h/z}ﬁ‘}_>

‘2 o (306)

The invariant differential element

I ) BCps)d'o = %2

<po
can be evaluated in the c.m. system'a = 0, then
dp ™ B
= T Ipl Ap, dcsasd
2p, Flope (3.7)

The invariant Iz,can also be evaluated in this system:

2 92
T = jL.ll S 26
1 A m?

(3.8)
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Then the cross section (3.6) is:

a0~ R S
dpoded f’/?lf{z’gz = Wo M/z (3.9)
3.9

The functions W1 and W2 are free of kinematical singularities

and depend on the invariant variables q2 and s. Instead of the

c.m. energy P° and c.m. momentum l?l of the observed particle

one can use the invariant variable s, the invariant mass squared

of the unobserved particles. The connection is:

%4 ___zj_w_;_i (7z+ mz-—S’) (3.10)
IFJ = (Pf- m’)q/’1 =z:/§'z {7’*+ s*+ mh— 29%w? _29% ~ Zswr %
= z:,c?z (555, )
B 147’ { (s "<V"—z"")z)(s'w+m)2)f/1
- e { (- ) (= )]
The cross section is:
s S /g.i Sm® Wy + M} (3.11)

ds deoat 7" v
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It follows from (2.10), that the variable s varies between the

limits:

mto< s & (m-vgr) MR
( 1 7 (3.12)

The limiting curves, given by (3.12), are shown in Fig. 6, together
with the corresponding limits for inelastic electron scattering on pions.

Our final result (3.9) or (3.11) shows that the cross section for
inclusive one-particle production depends on two structure
functions W, and w2. The cross section is a linear function of
sin2<9 , characteristic of one-photon exchange. By weasuring the
distribution in sin26 both structure functions can be

determined.

The diagonal elements of the tensor ‘7:V are definite positive

functions of q2 and s in the physical region. From this we obtain

the following inequalities for the structure functions

W, (95 s) »o

W (355) + B W (g3s) > 0 (3.13)

where for ?2' we can introduce the invariant expression (3.10)

- (¢ "17) [

or -

?)7.

(3.14)
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The differential cross section can then be written instead of

(3.11)

d'Zo- 2,-9' . z
ds denf = ;%{(4‘@5‘6)(%%4- 14/4) + (4+co:9) }\/1}

(3.15)

Then the coefficients of (1 - c0529 ) and (1 + c0329 ) are de-

finite positive functions of q2 and s.

As the next step we show how W1 and W2 can be related to decay
widths of time-like photons with specified polarization, trans-
verse or longitudinal. This decomposition of w1 and W2 is
analogous to the decomposition of the structure functions for
inelastic electron scattering into total cross sections for the
absorption of transverse or longitudinal space-like photons. The
connection between T,, and the sum I7 over the widths 7; for

the decay vy > p + X is

AT = 7o - Bl
P2 Al = A gL &

where G’; is the polarization vector of the time-like photon
with polarization P . The sum over transverse and longitudinal

polarizations P is given by the following projection operator
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Z eret 4+ €Le = TS — g
P=+41
(3.17)
With this we find for 2 d T’t + dT; from (3.16) and (3.3)
S Y- W ) (3.18)
d'/b" d’fo V;% (-m&z M * 5M

In the rest system of the virtual photon Z = 0 the longitudinal

polarization vector Q{k has the following form:

é’; = ((T) - ‘)/,1;7) (3.19)
so that
Py Pebo /30 o o =423
crest - /3
o pore =o (3.20)

From this we obtain for 47 ,:

¢

0o

ar x Ip/ 2
5T (W B .40
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Then (3.18) and (3.21) yield for ‘u«.'b/aé/o,

AT, o« pl
ril —w;ifM (3.22)

and the differential cross section (3.9) or (3.15) takes the form:

ds _ T .z _ 4T
e rrliT [(1+as) 22 ¢ (1= o) /,}

(3.23)
and after we perform the angular integration:
dﬁ' e { a2
» 2 4% dl
d/Po 3711/51 2 0(700 *+ R}i; (3.24)

We see that the combinations (3.13) of the structure functions
which are positive definite are just the transverse and longitudi-

nal widths as it should be. The reverse relations are:

W - VB 4T
0(//5'/ ap,

M = Ei _’f"_z -t- (3.25)
@ B\ A
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In the following we shall discuss possible connections with the
structure function of inelastic electron scattering, in particular
in the kinewmatic region, where q2 and 8 are large with

= 2 Z
v =z 1+ T (3.26)

9)
kept fixed. Instead of (3.1) and (3.3) the inelastic electron

scattering
e-’o > e X (3.27)

where P stands for proton, is described by the tensor z;” (ﬁ?)

where

Tt = 2 8(pempmq) @ Kp 14 DOK] J RS
X,

~

I:V has the same decomposition into invariant structure func-
L% ~ ~ ~

tions Wy (955)= W (45») ana W, (955) = W (35»)

as written down for T;“ in (3.3). The two processes ep > e X

and ete” F'X are connected by the substitution law:

]/w (Pﬂ) = = T/;z) (" F)?) (3.29)

which leads to the following crossing relations for the invariant
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functions:

Wy (950) = — W, (¢5-»)
LW (150) = o)W (35-2) (3.50)

~

where S in w1 and W2 now is s = (r+ q)2, but ~ is always 24 = F‘T

Instead of the variables q2 and s we use q2 and w and write for

spacelike q2

n

W, (352)

i
b\"lz \TH R
~
L
v
N—

£ W (30)

1]

(3.31)

2 m-=8
where @ = - = 71 + > 1

7%
2

and
2 2
s=(p+ 9)°=u" +q

+ 2. In the Bjorken limit (- q2—> o

por s >e0 , w fixed), we have

Jom IA\Z(72}/;) = :)—::](w) = o f:,(wlS)

Vgt (3.52)
,6/1;4 7"1_)1 %(?ju) = E(w) = /éu‘« “E(N’S)

2 S>>0
1

In the same way we define functions F1( Wy, 8), F2( w, 8) and

2 w anlled
their limits for S-o0 , 9 > with fixed,‘/F1(w) and Fz(w) for
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timelike q2. The functions Fi(m) are the "analytic continuations"
of the corresponding functions Fi(w) from w » 1 (spacelike q2)

to 0 g w < 1 (timelike q2). In this context one has to keep in
mind, that E}(w,s) or Fi(w) are not analytic if one goes from
q2< 0 to q2 > Oor fromw » 1 to 0 { w <1, since for q2>» 0 one
has cuts in q2 and in the definition of W1 and w2 there are two
factors (see (3.3) and (3.1) ), namely <A, p; X [JM(O)'O>>

and <)\ p, X| 3v(°)[0>* y 8o that the second factor is to be
taken below the cut if the first factor is taken above the cut.
Only if these cuts in q2 are unimportant, as it is obviously the
case in parton models, we can perform the analytic confiﬁuatipn
without knowledge about the details of the q2 cuts.

The data on electron-proton scattering from SLAC and DESY show
that EZ and ﬁ%.dé scale, that means that F1 and F2 are in-
dependent of s and seem to approach neither zero nor infinity for
q2 or s large. Although if one assumes that Bjorkens original
scaling hypothesis for ep scattering is supported by experiment,
it is not obvious, that the corresponding structure function in
the annihilation process should scale also. As was explained
above)reference to the substitution law is not sufficient for
this purpose. Actually there are models which show scaling in the
spacelike region but have nonscaling structure functions for the

annihilation process.32)

Nevertheless let us assume that scaling for q2>» o is true also,

then we get for the cross section for ¢5s > , w fixed:
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2 2
el el AR AL

(3.33)

In the case of scaling the one-particle inclusive cross section
decreases as 1/q2 for large q2. In the rest system of the photon

the variable w is

9* W/ (3.34)

By measuring the cross section for a series of beam energies W/é
and varying proton energies ?o so that w is fixed the scaling
property of q2 d%i/d£079<102 could be tested. Since this cross
section decreases much less with q2 as for example3?f production

this test should be feasable.

We mention that we have

wF,/, + F, = 0 (3.35)

if the longitudinal part th/dfv of the cross section should
be negligihle compared to the transversal part as it seews to be
the case in the spacelike region. Then F2 must be negative accord-
ing to (3.33). The integrated inclusive cross section has the

simple form:
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de % _ Zuo?
e R
(3.36

4, Two=-Particle Production.

A. General Form of Cross Section

In this chapter we shall consider as final hadron state H a
two-particle state /34, Xa, S, , 2> , where S;, A are spin and
helicity of particle i respectively. Later we shall work out
special examples, like n+n-, nom, nA1, p? and others and develop
a special model based on 5’ dominance which will be compared with

2)

available data.

We define the current matrix element of the two-hadron state by

the symbol

:]/’u = (.27!;)3 < Pa.) Sa_} >\q,/- f)b) Sb;>‘b /J/“"(o)/0> (4'1)

with labels of particles as in Fig. 7. The cross section for
production of the state a,b by one-photon exchange is expressed
by (4.1) and the tensor 't/w of the electron vertex given by

(2.4). Then the differential cross section, with 0 being the
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solid angle of particle a , comes out to be:

A L
d(l E’Z}? 5%3_ t ‘Z"Z/

(4.2)

with 'ZL/,,p = 4.,7,,/6_# + %—/«-’épp - Zsz/w

1) is equal to the momentum in the virtual photon rest system

(g o), where q = Pat P and W = (q2)‘/: so that
= (W= ("’“”'”“))(h/ (=) (4.3)

>
In this system (a = 0) and with /£+ along the z-direction the

tensor t wp Teduces to ( in the my=¢ limit):

S - &y &
o W ,,,- _J 0
";w z L/w * Z/‘”‘ (4.4)
I /'f/uarw=o
so that

dD’_O(Z 2
Lz Z I

sfu'ns m=+1

(4.5)
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where M= = 1 are the spherical components of JM' That do/m

does not depend on J o and J3 in obvious, since in the sum
_’
M _ — 7.
Ze 7/24« - g“’ ‘]; (76 J (4.6)

where (7/2' is the electron current, because of current conserva-
> >

tion 7°3¢o = ‘(-Je s the cowponent (720 vanishes (of course

also Jo = 0) in the photon rest system, whereas J3 drops out

because o; vanishes in the limit m.= O.

The next step is to give the most general form of Jm in terms of
helicity matrix element of total angular momentum (which is equal
to one of course) and angel dependent factors. This is achieved,
as usual, by expaning the helicity state IP*)SM )\q,l- f’b) Sb/)‘b>
= |/ X 44)- da, Xp > in the c.m. system of

particle a and into spherical states.

/799‘}5/')\4,)\5> = Z /\/7 :D,:; (95} 9/__%) /ZMJ)\QI)‘&>(4.7)

I M

p)
with A= a2y | Ny = ((€7+0) /i) % . If we substitute

(4.7) into (4.1) we obtain

TE
‘7:»1 = @)’ <pOP ANl Jm/0> 3% Y D (4 o-#) (4.8)

x @) < TM rady | gm(0)] 0>
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The state Jh(o)/0>> transforms as a state with total angular

momentum J = 1 and z-component J = m. Therefore

KM ady | gmt0) 10> = &y D <1 2D (12> (4. 5)

We define:

— )a,)
@ & Aym ] gm@ 0> ]2 = 7T (4.10)

m

so that

1 7-1>\a)«
= - b
’-'Zm mmk (C"ﬁ/ 91 ¢) m (4.11)

7——' >‘“>‘b

The reduced watrix element m , which we shall call the

helicity form factor depends only on q? = Wz. It will have kine-

matical singularities and/or zeros which will be determined later.
With (4.11) and

:Dr:x (751 91—99) = eﬁ:()‘—nﬂ?‘ d':)\ (8)

the cross section (4.5) becomes:

E-3FZ I (DO T e

.M,ab m=+1
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B. Properties and Number of Independent Form Factors

A
Next we shall look at the properties of T’m “;’ following from

the assumption of rotational invariance and space and time re-

1
flection inva.riance.B irst we observe that the current operator
Jm(o) ) (m =0, * 4) transforms under ordinary rotations as an

irreducible vector operator. Then we can apply the Wigner-Eckart-

Theorem which states that (4.10) can be written as:

Ao
T8 = @) < m Xa o | o) [0 (4.13)

Since f(o ;0 m) = 1 and the reduced matrix element is independent

m does not

of the projection quantum number m )

depend on m. In the following we shall omit this index.

From space reflection (07) invariance, for which we have
-1
pjm (0) = —Ju(0) and O] TMAaD> =
7"' S - S 3 .
,74,% -) 4% ) 7/M/ _)\a/_ >‘b> we deduce the relation:

~Xa

T My (4.14)

= ”14"15 T'

where Ny = 7 ) % is the normality of particle a and 7,
its parity. From time reversal (T) invariance, for which
Tgm(o)T"= %m (m=24) and T/7,M,>«a,>b>

=7 1M 0>
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we deduce that

Xa,)\b 2 * _ T Xa')‘b 1+ |‘
<T7 (q-:e)} = ’ (‘7 8) (4.15)

The relation (4.15) states that the helicity form factors are
real in the region qzé 0, i.e. for electron scattering, where q2

is spacelike.

If particle a and b are charge-conjugate to each other we apply

the charge conjugation operator C. Since ¥ |7, M, Xa, Xy > =
7"‘ >\a,+ A
¢-) °

we get

LM, Ao, Ao and ¥ gr ¢0) C L ——j-/o)

TRy T Aot

(4.16)
On the basis of (4.13) and the relations (4.14), (4,16) for charge
conjugate particles and the restriction that [Aal € Sa,) Mol &S,
and Al =|Aa -l € 1 we can count the number of in-
dependent complex form factors for the three cases Na My = 1 )
MMy = - 1 and a, b charge conjugate (called identical
particles). The result for bosons is shown in Table 2 and for

fermions in Table 3.
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spin na My A=o A=+ 1 total
Sa < Sp + Sa +1 23 +1 3Sa +2
Sa = S + Sa +1 25, 3%, +1
S < Sy - Sa. 23, +1 335, +H1
Sa = Sp - Sa 13, ?Sa

identical + S +1 S Zs +1

Table 3: Number of independent form factors for fermions

spin A=o A=+ 1 total
$a< S, + s, + 1/2 25, +1 3s,+ 3/2
Sa=S, + Sat+ 1/2 25, 3S,+ 1/2
Sa < S, - S+ 1/2 25, +1 35, + 3/2
=S - Sat 1/2 25, 3Sa+ 1/2

identical - S + 1/2 S + 1/2 25 +1

As some examples let us consider the system n'Rh, where K,

is a meson resonance with normality n . Then § = 0 and 7, = =1.

Therefore we have two independent form factors if n = -1;

examples for ?_1 are: A1 and the A3 resonance. If n = +1, like

the g y Wy <forA2

7

resonance,we have only one form factor.
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If the particle a is a 0t resonance instead of 0~ the role of

n = +1 resonances and n = -1 resonances is interchanged. Table 3
shows that we need two form factors for the system 'rf; , three
for AF and four for the system AA , where A is for example

the well known 3/2+ resonance with mass 1.232 GeV.

C. Differential and Total Cross Section for Two-Particle

Production

The formula for the differential cross section (4.12) can now be
simplified further. Since A = o, = 1 only we can write for (4.12)

the following expression:

47 - b 3 sl [T
-

r it mze)(/r>~>«+4/£ . /]"‘4,’\&“4/‘)} (4.17)

Here we used the explicit formulas for the d -functions:
d14i4’>\=%(4_tﬂ,cov9>) 6(;4’0 =:;-;—Z s»\@} A=+,
(4.17) is our final formula for the differential cross section.
é is the angle between the direction ic: and the momentum F“‘
(4.17) is completely general. If we compare it with (3.23), the

cross section of inclusive production, we see that the term

proportional to sin29 is the longitudinal cross section and the
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term proportional to ( 1 + c0326 ) is the cross section for

transverse photon polarization:

b - 3(sn8 o +1 (1 + co®8) o
aQ 371'( ¢ 2 ’5>

_ gt T Marha 2
o o [T

(4.18)

0, ='3f°<11§ [T et |2 ’]")\a,)\c,—‘i-j

The integrated cross section is
o = % %

/Tn M,)sa.-l»'t/z . /l—v &,&-412}

As was to be expected, by measuring the angular distribution of
the emitted particles one determines only two functions out of
the maximal 3 St 2,(3 Sa * 3/2) complex form factors. In particu-
lar there appears no interference term between longitudinal and

transverse photon polarization in dﬁéﬂl
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To explain the separation (4.18) directly we. can use the de-

finition of longitudinal polarization (3.19) and multiply it
with (4.11). Then we obtain:

(2’ < po ¢ Na, > | Z{o>lo> g = - T (4.20)

A similar relation is found between the projection with the

. . ”—'My&-i4
transverse polarization vectors and

It is also instructive to write the hadronic tensor in terms of

two invariant function M1 and M2 which depend only on q = W2.

5 . ( P _
Spins

>M4 (73 %)(/ 77)/‘7

where

P =P~ Po, 9= patp, - Then

&WS(M + -Z’— Ms»&zé)
(4.22)

In terms of the single particle distributions W1 and W2 intro-
duced in (3.3) we have the following relation

"
W

J(s- mr) M,
J(s»

‘(4.23)
mf) W&
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where 8 = (f?- q)2 is the missing mass. It is clear that for
two particle production the inclusive structure functions W1 and

W2 have a delta distribution in the wissing mwass

§(s-m?) = 54;/5(?0 ",%/) (4.24)

If the particle is unstable the 8 -distribution (4.24) is replaced

by a Breit-Wigner function.

The coefficients are just the function M1 and M2. They can be

expressed by the form factors. The relations are:
7 -
M1 - 24: Z{,"wxa,)\,,u, + ]TM,&4[1}
Na

£ %i {% |PM'M’L N M4} (4.25)

D. Relations between Helicity Form Factors and Invariant

Form Factors

The helicity form factor .quxb contain kinematical singularities
and zeros. In the literature one can find general methods to
extract these singularitiesl4%ince we are interested only in

some special examples we shall not make use of these general
decompositions of the current matrix elements into standard

covariants and invariant form factors free of kinematical
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singularities. Instead we use the standard definitions of in-

variant form factors for the special cases we are interested in.

The simplest example is the n ' n  production by e'e” annihilation.
The current matrix element depends only on one form factor Fn
which is a function of q2 only and free of kinematical singulari-

ties. It is related to the current matrix element by:
3

+ - = - .26
()" < Cpa), T (o) | Gu0)10> = (o= Py T (92) (4.26)
Comparison of (4.26) in the system q = o and (4.11) leads to

00
T = 2pf (4.27)

We see that the helicity form factor has the characteristic

4
threshold singularity factor ‘P = % (71— 4m;)A' for a p -wave.

With (4.27) we obtain for the cross section from (4.17)

éf - 2n x? 3 2
d.coa0 WE (ﬁ) [Fel "8 (4.28)

and for the integrated cross section:

N

TTX
6 =

3 W*

(28) I%1* (4.29)
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As to be expected the cross section is purely longitudinal and

has the sin29 dependence.
Next we discuss the final state 7°w. Of course, the same formulas

apply for u°<f and =° 370. The covariant current matrix element,

which obeys explicitly current conservation, is:

@’ < (pa), @ (O, o) ] Jpulodle> = < me Epay 9P e'\b(f,b)f* (4.30)

Here me is the invariant form factor, free of kinematic

singularities, and G%(Pb) is the polarization vector of the

w meson. From (4.30) we have calculated the Po,)‘,, .
o0 01)‘6
r* =e¢ LT = AW R, () (4.31)

0,0 .
""" = o follows already from (4.14), since MM, = = 1.
hy
T’a' b has kinematical singularities from the factor Wf-)) which
produces square-root singularities at the threshold of production

q2 = ((mgp + my )2 and at the pseudothreshold q2_=. Wl

2
The final state nw is produced only by transversely polarized
virtual photons. Therefore the angular distribution is of the form

(1 + 00326 ). The complete formulae for the cross sections are:
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dﬂ 2 2 2
il (ﬁ_)’[%] 101+ cos™) o
4.32

and

o= T (pf [, [

This result for the nw system can be generalized very easily to
a system = ’Rs , Where 'Rs is a boson resonance with spin s and
positive normality g = ’?C—)s= 7 . As an example let us con-
sider the system qu. The A2 meson has spin 2. Instead of (4.30)

the current matrix element is in this case:

@77)3 < w(pa), Ay (v, Bs) | Ju(o) 10>

: £ W (4.33)
=< gy S 9 e* (7%5“ Pa. s

G)b(Pb)Y"X‘ is the polarization vector of the A2 resonance.
It can be calculated from the polarization vector for spin 1 with

the help of the following relation:

)‘b )‘b X
('Pb e >\Z;/ 6(442. >\b )\) € (Pb € CP;,)X,_ (4.34)
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Since in the photon rest system:

FWt = Nog g h - B

Ay

x
we get the following result for T’o’ b for the uA2 system with
the help of (4.34) (4.35) and the corresponding formula for the

Tw system:

vrt@)o = & —r|0,>\b - ._)\b ( W)l F

VI omy ALY (4.36)

so that the cross section is:

de_ _ 7_U_X_b£i I:FWAQ&(IL%(""'“”@)

dewd 2 Wmg (4.37)

It follows clearly from the recurrence relation (4.34) and from
(4.35) that the power of the threshold factor increases with the
spin of the resonance K like (pW)s/ in the matrix element Tw’)\b
and therefore as (F-W)ls in the cross section. This with q2

increasing factor must be damped by the form factor T:'rr‘Ka’ (‘1"),

In order to be in accord with unitarity, which means that
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4
dﬁ-/d'Q < /‘j" for q2 > o0 the form factor :ET'R{ has to
decrease with q2 the more the higher the spin s is. For nA2 the
form factor ?*Aax has to decrease at least as 1 for

3
w
4
W= (qz)h%>oa) in order not to violate the unitarity limit for o.

As last example for final two-meson states we shall consider the
system uA1. According to Table 2 the transition current to this
final state with 7M,”, =1 is determined by two independent form
factors. We denote these two invariant form factors by ;;4:1

z

and Ay

. They appear in the decomposition of the covariant

current matrix element in the following form:

@ < T (pa), Ay O ps) | JuCo) 0>

= Ty [ € m = g 9 ¢ Tuy [ peq- ¥y pe] G5o)

Clearly (4.38) obeys current conservation. Furthermore the ansatz
(4.38) is not unique,as it was the case for nw and nAZ. The

helicity form factors for this ansatz are:

00 _ g2 1 2 2 2 2 z 2
I = :‘(jw;'(ﬁl‘A4j(?z+ mA'——Mn)-l-:E‘_A'Z(‘]—mA'——wLnD

M R s B i(eeem) G

%b =+ 1
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We notice that the longitudinal wmatrix element T vanishes
A, ¥
for q2 = 0, as it should be. The coefficient of é;bb , namely
1 2 2
:F"AQ’ 9 + :F"'A:X 'P‘,,‘[ zis the transverse form factor. For
the decay A1-> ny only ‘F;AJ' contributes. The cross section

for KA1 production is according to (4.17):

fey 5 Q71 e

(4.40)

with quo and e given by (4.39). By measuring the coefficients
of sin26 and (1 + 00829 ) one can determine the absolute values

of two linear combinations of the invariant form factors 1;:41

and ?%A Yy - To determine their relative phase one has to

measure the polarization of the A1. This will be discussed later.

It is obvious that the equations (4.38), (4.39) and (4.40) with

appropriate change of notation are also valid for the final states

B, mB, €3, Ew , EF 0(‘5,) ‘;“’; Jp.

The wost interesting case for fermion-antifermion production are
rﬁ' and mm final states. The current matrix elewent in covariant

form is well known and is given by two invariant form factors

f} and fi :
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(3% < N(pa), Npy) | jf‘("”o> =

L on ) | Fo fpu + Blom 1% 99 0Cp) (4.41)

. 9?
The helicity form factors corresponding to (4.41) are ('7 = /4,,,2)

TTAIIi = —Zm(}t,-{-ﬂ’fz) E—2M£

Ti: o Vage ($+fe) = Vagzr fn (4.42)

The longitudinal form factor is the traditional electric form
factor fc and the transverse form factor is the magnetic form

factor {, . The cross section is obtained with ( 3.1) to be:

de

Ao ml ) 2 ey IR (eenB) g IBI] s

E. Vector Dominance Model for Form Factors and Comparison

with Exgeriment

In this paragraph we consider simple models for the invariant
form factors in the timelike region q2> 0 for some special

interesting cases as for example the pion form factor, the nw,
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1|:A2 and nA1 transition form factors. Let us start with the pion
form factor F_. We know Fn(qz) is the boundary value of an
analytic function F(z).

b T (141e) 9y 4mr

:Fr(q") = £>+0

(1)

q < ‘Hm]%

F(z) is an analytic function of z in the cut =z plane, the cut
starting from 4 m,:' to + o0 on the real positive axis. If in
the unitarity relation for Im Fu(qz) only the nn intermediate
state is taken into account, (see Fig. 8 ) the phase of Fu(qz) is
given by the phase shift 34 of the elastic nn scattering
amplitude in the P -wave state. If furthermore F(=z) has no
zeros in the complex z -plane, Fn(q2) can be expressed solely
by the J=1 phase shift. The representation with the analytic

properties stated above is then:

1) = @XP{ f X(f—&.).,s)] (4.44)

Clearly Fn(o) = 1, Unfortunately &\4 (x) is not well known, so
we must compute it'i"‘a model dependent way. A model, which in-
corporates the § resonance, i.e. & (Mg") = Wp but with

zero width, is the following approximation for the phase shift:
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0 for  hmp g X < mg

§ ) =

T for m!z<x"<x

This model,if substituted into (4.44) leads to the zero width ¢

dominance approximation

:er (4% = e

mg— 72_ e (4.45)

Although this model is useful for spacelike q2 it is inadequate
for timelike q2 because of the finite width of the § .

There exist several models for 5, (?‘) in the 1iterature)which
take into account the finite width of the § and have correct
threshold properties concerning the p -wave phase shift 81 -
Some of these models can be summarized by starting with a

generalized effective range formwula for 51 (W")

A;t_‘W@ oty 8y (w2) = A* A (W) + @+ BWE

(4.46)
where
Ae) = 2 ) 4 146) vV
T Vx 2 my
and A = 4 (x— lm,%)% is the c.m. momentum of the =. The

constants a and b are related to the § meson parameters mgz.
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and T'g . Evenif & () 1is specified by (4.46), there is still

the ambiguity of the asymptotic behaviour of Fu' In the simplest

_ 3
version, developed by Gounaris and Sakurai, Fn 1 and %c,—- C‘L‘?&
behave the same for q2£ W2—>°° . (For other versions see (ref. 16)

Frazer and Fulco, Vaughn and Wali, Roos and Pigﬁt), Then Fn is:

T _ mgz'(/f-l—dgrlg/mf)

Tt = ‘ 3 .
mgz - a,z + '_’kz_;x[,ﬁl(,&(qz),_/ﬂg) +<”5’z_7z)£gz£gl]_m37; %%(4 47)
A A
with /ﬁ = /&Cmg’—) and /a,g = ,{,(mé“ . The numerical value of

dg is 0.48. (The Frazer-Fulco version is practically identical

6

to (4.47) as long as qul <« 9.6 10 msz , the latter value is the

zero of Fn in the spacelike region). A fit to recent data for

ete” > ntn” from the ACO storage ring in the § resonance

17)

region yields the following parameters

me = (780.2 % 59) MeV , o= (752.8 + 151) MeV

2 2
Gy = $SUT o = 2.0 £ 0.22

O‘;mﬂ'k (ete s wte~) = (096 + 009) /LL , do = 0.6 + 037

(4.48)

The fit of the data in terms of ll"nl2 obtained from the cross
section by (4.29) is shown in Fig. 9. Actually a more complicated

formula than (4.47) must be used to wake a fit since through
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higher order electromagnetic effects the w resonance is mixed in.
If this w¢ interference is taken into account one obtains the

parameters given above (the branching ratio B, is(0.2t0.05)2

> 21
and the interference angle is (87.5 ¥ 15.4)3 close to 90° as to

1
be expected). 7

At Novosibirsk and with the Adone ring at Frascati n+n- cross
sections have been measured recently between 1.0 and 2.0 GeV

total energy. It is interesting to compare these results with the
Gounaris-Sakurai formula. In Fig.10 we plotted the theoretical
curve for ,Fu|2 with do = 0.66 and compared it with these data.

It seems that systematically the experimental values are larger
than the predicted values. But we have to keep in mind,that)except
for the VEEP (Novosibirsk) resultq,no separation of KK~ and n'n”
events has been carried out in the experiments. So, the above
results in the case of the Frascati experiments refer to the sum

of the KK and nn channel rather than the nn channel alone. Further-
more the results of the two Frascati groups do not agree terribly
well with each other. On theoretical ground we expect deviations
from the Gounaris-Sakurai expression for large W through admixtures
of inelastic states in the unitarity relation like Kf, Tw, 4n,uﬁ,,
FF and hn (see for example Renard 18) , Brunila, Roos and

19)

pisut ). Unfortunately an evaluation of such inelastic

20)
contributions to Fu for larger W2 has not been done yet. Further-
+the
more we should notice thatYabsolute event rates for the points

reported are rather small. The VEEP-points (Novosibirsk) come
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from 12 events, the un group has 39 u+n_ events and the Adone

BCF-group measured 41 events.

Finally we mention that if the Orsay data are fitted without
finite width corrections, that means with dg= 0, the pion form

factor has the form

Fo- mg" g gure
9o ( mg- q* ~ img T'(3%) (4.49)

where Tﬁ(qz) is the mass dependent width

'r' 2 = T1 'ﬁale) mg
@ s G
2 5, 2
with T1g = % Gorn / w5/ mg and 4/93 is the photon-rho

coupling, Brie obtains the best fit for ]} = (149.6 z 23.2) MeV,

$ = (85.7
and 3;/4m

1+

15.3)°, mg = (775.4 = 7.3) MeV, Yorefur = (2.84%0.50)
2
(2.26 £ 0.25), compared to 332/41,,- = 35’11.'1:/4%— =é:55

+ 0-22> with finite width corrections.

Next we consider the n°w transition form factor. Unfortunately
a dynamical calculation similar to the pion form factor has not
been done yet. In this case one has to solve the coupled channel

problem nx => nn and an —> 7nw and calculate from it the
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electromagnetic transition form factor. Instead we shall start
from the § dominance assumption and apply it to the invariant

form factor F defined in (4.30). The result is:

:Frwg m;
G (m - 9% img T22)

Froy (1) = (4.50)

where an is the invariant coupling between nw¢ defined
analogously to Fqu in (4.30). It is to be expected,that because
of the larger spin of the w compared to the pion, the
transition form factor falls off somewhat stronger with q2 than
given by (4.50). But since experimentally Fu seems to fall off
less than given by ¢ dominance, (4.50) might be a reasonable
approximation. The value for gg was given above. ang can be
calculated from the w - 3n decay. If we use the model of Gold-
berg and Srivastavaf1which is a modified ¢§ pole model, we have
from leé 3x = 8.97 MeV, which is the wost recent value for the
3n decay width of the w, the wvalue FWU;AHE = 26.4 GeV-2 (This
leads to T:9“7= 1.50 MeV, compared to the experimental value
T1r>my= (0.9 z 0.1) MeV ). With these coupling constants we
get for the reaction e+e- - now the cross section as shown in
Fig.11. Just above threshold (W = 0.9 GeV) the cross section rises
to its maximum around 10 nb (1nb = 10722 cwm® ) and then falls off

slowly with q2.
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We can apply the same formulas for the transition form factor
x° yo by replacing 33 by gQ and the masses appropriately. With

o . .
is obtained for

@é@ws 18.4 ¥ 2.0 the curve labelled =° §
the cross section (see Fig. 11). This curve can be directly com-
pared to experimental data, since at the energies,we consider,
other two-particle states do not contribute to the final state

+

-_0
L

, which is the decay product of =° 90, x" ¢ and x” 9+.

The ACO results for the cross section n'n n° at 0.99 GeV are
quoted as being in agreement with 36(n°§P)?%Rhe Adone yy group
obtained for 1.85 ¢ W < 2.10 GeV a value for ¢ = (2X2)nb from one
specification of events and ¢ £ (5+2) nb as upper limit for another
class of eventsz.})These values are not inconsistent with the
prediction 0.9 mb for W = 2.0 GeV. Concerning the 7% cross

section we discuss the comparison with the experimental data

after we calculated the other channels which contribute to the

2 1 7%x° final state.

The calculation of the cross section for nA2 is quite similar.

The invariant form factor ¥}A2)' is given by rho dominance

F"'AzS ”'SL
9s (mg — 97- img TCe¥)

me (1*) = (4.51)

The coupling ¥*A1g is obtained from the A, width into R which

2
is (00768 ¥ 0.016) GeV. The relation is:
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T

> §TT

_ﬁ._nml . Fus A
T My,

: * (4.52)

where 'Pg is the momentum of the rho in the A2 rest frame and
T'°" is obtained from (4.36). The final formula for the cross

section in terms of the partial decay width is:

6 = 8659 (B) 5 laper b [ at |
(@) T F e @)

G :m mb ) other 7uani‘£{-f¢s n GeV.

For q2 large ¢ goes to a constant in disagreement with the
unitarity constraint ¢ 'é 1—2- . Therefore we mﬁst expect that
additional 72 dependence gs present through coupling to other
states. Without these additional form factors the cross section

rises from threshold (W = 1.5 GeV) to about 3 nb at W = 3 GeV

(see Fig.11).

For nA1 the calculation of the cross section in the § dominance

approximation proceeds as follows. For the two invariant form

| ! 2
factors TA,y and Fﬂ Ay we have:

v 2
Fras ™M

;1= 12 (4.54)
gs (mg — 9% = img F(qz)) I

FT(,:, Y (‘7 z)
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The width of the A, yields one relation for these two coupling

1

constants

P et IR Ll

1 2 mp (4.55)

where | and I are identical to ( 4.39) with q2 = msz and

with the appropriate replacement of coupling constants
F’“:?f > F-m:,g . We calculate the cross section, inte-
grated over angle, from formula ( 4.40) in termszof two constants,
the width [ = 0.1 GeV and the Tatio Y= ;’f_id_ of the two
coupling constants at the ¢ mass. The result Jz.tsd:seen in Fig. 12,
where we present the cross section for uA1 production for
'? = - 1.0, 0.0, 1.0 and 2.0, We see that the cross section
depends sensitively on the ratio 7 . The cross section may be
as large as several hundred nanobarn at its maximum around
W = 1.4 GeV. To see this variation of the cross section at the
peak we plotted ¢ for W = 1.409 GeV and W = 2.209 GeV as a
function of Y in Pig.13 . The possible waximum under the con-
straint T'A4 = 0.1 GeV is for ’y = 2,2. The reason for this
strong variation of ¢ is the dependence of the width T’,sq onvy .
E1 has as a function of 4(; a minimun; a,rgund this value, which
leads to a large coupling constant (1:7\"‘15‘ )/471: in this case. y can

be measured from the decay density matrix. From a recent measure-

24
ment we have for the ratio of decay matrix elements ?Xg (Xe =o,4)
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in the rest system of the A1

0.68 ¢ #/g, < 1.6 (4.56)

% and g, are related to the s-wave to d-wave decay coupling

in the following way:

/g, -1

d =
g/?s Vz 1?4/30+4

(4.57)

Thus the value given in (4.56) is consistent with no d-wave
contribution in the decay. The relation of 3‘/3o with i is

as follows:

Y/g = Mg (2"‘82 - "8("’#«?* me - "'7?))
ﬁo Z my, e Y (4.58)

which leads to the following limits for 'y sy 1.5 € y £ 1.9,
No d-wave corresponds to g = 1.7. Thus with g = 1.7 the nA1
cross section should be rather large, around 100 nb at the peak.
Unfortunately this comparison of ‘y with the decay matrix elements
cannot be taken too seriously. First there are problems in the

experimental determination of y itself (background subtractions,

assumptions about production mechanism). second with our ansatz
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in (4.38) we propose a special ansatz for extrapolation from

wl = msz to W° above threshold (W = 1.4 GeV). Other assumptions
about the definitions of invariant form factors may lead to
different relations between coupling constants and 4/ e than
those in ( 4.58. Finally we mention that the value of Y  has
also influence on the W2 dependence of the cross section. De-

creasing 11 below 7 = 2.2 leads to smwaller cross sections and

stronger fall off with w2 (see Fig.13).

Another important channel is &§ , where & is the broad o*
resonance around .750 GeV. The formulas are the same as for the
nA1 channel with the replacement = -—>é: ’ A1 > 9 . Since §¢
and & have almost equal masses nggg (£=1,2) can be obtained
only indirectly. 'Fezgg is related by rho dominance to the

€ > 2y decay. This has not been measured. But there exist
calculations for the partial width of the €& into two photons
on the basis of a dispersion theoretical modelz.szle use this

result T;_, 2y = 27.4 KeV as a constraint for our calculation.

2
The relation between this width and Fege is:

(5} i)

e 8 b 1o (2.59)

Fess [ 2
As second parameter we choose X = Fggg . The result

for 0—69 is given in Fig.14. The cross section is appreciable,
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around 30 nb for x = o at the maximum. The threshold is at

W = 1.52 GeV. The cross section depends sensitively on x. It
rises with X positive and has a minimum around x = -0.6, where
also the W2 dependence is changed (the maximum occurs around

W = 3.0 GeV instead of W = 1.7 GeV for the other x values), and
increases again if x becomes more negative. For x = - 1.0 the
cross section falls off with W2 stronger than for x = 1.0,

although at the maximum the values for ¢ are about the same.

It is obvious that we get similar results for the final states
x°B° and ntB; as for nA1 except that the intermediate state is
now the w instead of the § . If the masses of B and A, would
be equal the cross section for 7°B° with the same value for Y
vould be just one tenth of the n+A1 + n-A1 cross section since
9 = Ao ggL . Since the mass of the B is larger (m;= 1.52G¢>,V§
m: = 1.14 GeVZ) the maximum of the peak cross section occurs
for smaller values of 4, around 4 = 1.5 and is only about
10 wb . In Fig. 15 we present the cross section for W = 1.612 GeV,
where the cross section has its maximum, and for W = 2.412 as a
function of 4 (the threshold is at W = 1.372 GeV). 4 is de-
fined in the same way as in the case of ﬁA1. From this we con-
clude that the total nB contribution (all three channels) can
be as high as 30 wp around Wx 1.6 GeV. The decay of B into nw
is a mixture of s and d waves. The limit for $/?oreported in

the literature is 26):

00 & ﬂ»/g1 < 0.8 (4.60)
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These limits lead to: o ¢ Y44 0.82. This indicates that
the total nB contribution may be less than the 30 np at the

maximum.

The w is also coupled to ¢ w and &« . The contribution of these
final states is similar to &9 . Its wmagnitude depends on the

Eww, EfW and E£¥¢ coupling. No calculations are available about
these couplings. Also symmetry estimates are rather uncertain,
since the mixing in the 0" nonet is not known. If we assume that

the & is the singlet wmember of the nonet we have

< ewl 3.«,(0)'0> = '45 <€S"3/~4°”°> and < S‘f’lc’{,~(°)l°>z-§—z- <EQlguteliop  (4.61)
Thus the contributions of these final states seem to be smaller

than €§ . Better estimates are only possible after studying the
mixing in the 0+ nonet and after taking into account also breaking

effects.

As our last example we consider the production of §%¢~ . It is
described by three form factors fc, fm, fq, the charge, magnetic
and quadrupole form factor. The cross section depends on the
relation of these three form factors. In Fig. 10 we show the
integrated cross section for three cases: 1) fm = fc, fq = 0;

2) £,=2f, £ =0; 3) £, = fq = 0.5f , where f_ is given by

q
(4.62)

the ¢ dowinance expression _y

mg1
me— g% — img T

fc(o) = 1, because of normalization of charge. Some formulations

of current algebra predict fm = 2fc’ fq = 0. We see that the
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cross section may vary by an order of magnitude, depending on

the relation of f and fq to £ . (See Fig. 16)

Now we come to the comparison of the cross section for resonance
production with recent experimental data obtained at ADONE
(Frascati) 27). Unfortunately the rate of many pion events is
not so numerous, that resonances could be isolated in the final
state. Up to now only total cross section for different charge
states, sometimes with an unknown number of neutral pions have
been reported. In the process ete™ = atn 11~ evidence against
a pure phase space production seems to be established. It looks
that this final state is very much ¢ nn, instead of four charged
pions. Whether this final state has a large nA1 signal is not
clear at present, although the plot of the invariant mass of
three pions seems to show a maximum in the vicinity of 1.1 GeV.
(See Fig. 17, which has been taken from the report of Grilli 2)).
The experimental results for Gzh(e+e- > atn o+ neutrals),
6;0(e+e- -+ 22717, Gan(e+e- — 7'z 21" + neutrals) and
dtot(e+e--e- %" + anything) are summarized in Fig. 18-21. If
we attempt to explain these cross sections by pure resonance
production we must sum the following termws for the different
charge states:

At 1% Tww , TF %(‘EAJ ’ %(TCAL)) 5’*3"} %(25’), %(jf}

+

RN %(ﬂ‘Aa)) $ (=) ) 5 ko), £ (pf)
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‘lt"’n-n"'n-uo; I(RZ)) %(8(0) ) 2 (3';4,_) ) Z(fA,,) ) 5(4;70)
a1 %x%n0: T8, §(ew), 9hAs , $A, % (wf)

+ -+ - 00

TR RTR 2 10»4,,} WA, z(fz),§(53),%644,44)
A RN 1 (3) ; % (A A1)

R A 1 (AA)

In this table we included also such final states, as for
example ( gf ), which we have not discussed in the last section,
and where very little is known about the cross sections to be
expected. Most of these channels have thresholds above W = 2.5 GeV.
Therefore the main channels for n'n n'n  are %(KA1) and-%(Sf)

and for n'n n°x° : %(nA1),-%(£9 ) and (mw). If we choose the
following ratios of coupling constants: y = 1.0 for nA1 and

¥ = =1.0 for €Y, 6 then we obtain for these two channels the results
shown in Fig. 22. In n+n-n+n- the major portion of the cross
section is €9 , in order to keep the cross section for n+n-n°n°
down. We see that our resonance model can qualitatively explain
the observed magnitude,although the data for 2t T seem to
fall off stronger with increasing W than the model predicts 28).

+ - 00
Furthermore the measured values for n n n n seem to be lower

than the calculated ones. We have to admit, that the resonance
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model is rather crude and needs improvement in several respects.
First the zero-width approximation is rather doubtful, Second
there are contributions caused by the interference of several
resonances. This is particularly important for &§ . Third there
are contributions from other intermediate states like n-exchange
with poles outside the physical region. Furthermore it is to be
expected, that the form factors in q2=-. W2 are only very crudely
approximated by the § , w or « tails and that the q2 dependence

is stronger than given by these contributions. If we rely primari-
ly on the measured points of the pn group (see Fig. 22), then the
variation of the cross section for n'n n'm  production with W
suggests the production of a resonance 5)/ with mass around 1.6 GeV.
This possibility has been considered in more detail by Bramon

and Greco 29). They correlate the process ete™ » n¥n"n"n” with
the reaction yp - xtx %" , in which a 4 nt enhancement
centered at (1.6 £ 0.1) GeV with a width (0.5 £0.1) GeV and a
cross section of (0.9 z 0.2) ub seems to have been found recent-
ly 30). Furthermore they estimate the coupling §,’ of the ¢’ to
the photon from vector-meson-dominance relations based on ¢, w, ¢
and §' . With this (7"/39),' =5 and the partial decay width

+
+

of ¢'> 4 x obtained from the Jp > % & T

R cross section,

they calculate the cross section Oj;mt from:

.
v _ lmPa® Mgt "s'> 4ut
f =

¥ 2 4,3 2 2 2 2 n2
ggf W O\/ - mgr) + M 7-;,:

(4.63)
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and find the curve in Fig. 23, where the shaded area gives the
limit of the theoretical prediction. The calculated cross section
at the maximum is 6;mt=(16 b 5) nb and roughly fits the measured
points. The total width 7}/ was set equal to 0.35 GeV. Clearly
better experimental data are needed before final judgement is

possible.

5. Conclusions and Outlook

The results of the Frascati experiments show,that above 1 GeV
total energy e+e- annihilation consists mainly of multipion
production with a cross section of the order of 100 mb = 10.31 cm2,
slowly decreasing with total energy. In the last section we made
the attempt to explain this large cross section by the summation
A

of all quasi-two-body modes (m+R: mA 7B, mw ... or R+R':

1’ 2’
Ep ,pPP ...) coupled to the intermediary vector mesons p, w

and ¢ . For reasons of simplicity we restrained ourselves to the
discussion of the particular channels n+n-u°, n+n-noxo and
n+n-n+n-. But it is clear that,because of the successive openings
of the various m+R and R+R' channels, the total cross section
should be relatively constant or decrease only slowly with total
energy. Up to now it is not certain whether these resonances are
really produced with such large cross sections as predicted. But
in any case, because of the large experimental cross sections,

the e'e” annihilation imto many pions will be a very important

tool for studying pion-pion dynamics. Actually the process
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e e —> nl, u2, ooy un with n pions in the final state is
characteristically an amplitude for the decay of a vector particle
(the virtual photon) with mass q2 into n pions. By varying the

mass of the decaying photon one has the possibility to study the
mutual ©n interactions in different energy regions, low and high
energies. At low energies resonance phenomena should dominate
whereas at higher energies characteristic asymptotic properties

of the amplitudes should evolve. Using sum rules one has connections
between the resonance region and the asymptotic région. This has
been studied for example for the one-particle distribution functions
by Renard 31). 0f course there are many more interesting properties
of multipion final states which can be studied as a function of

q2, as for example, the multiplicity, the charge distribution and

33)

the mean momentum of the pions.
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Figure Captions:

Fig. 1: Diagram for the reaction e"et = e"e’ + hadrons.
Fig. 2: Initial e'e” states.
Fig. 3¢ Diagram for ete” > hadrons in the one-photon approximation.

Fig. ka: Production of hadron jets H1 and H2 by e*e” annihilation.

Fig. 4b: ete” annihilation into hadrons through point coupling

to protons.

Fig. 5: Cross section for e+e--> u+u- for energies around

the CF mass.2)

Fig. 6: Kinematically allowed regions for efe > m+ anything
and for inelastic electron-pion scattering.
Fig. 7: ete” annihilation into two particles with momenta
10,., , f’b , spins S, § and helicities Aa and 25
Fig. 83 Imaginary part of pion form factor in the two-pion

approximation.



- 471 -

Fig. O Pion form factor with pw mixing with measured

17)

points from Orsay

Fig. 10 Pion form factor above 1 GeV total energy.

Fig. 11: Calculated cross sections for now, nopo and m® = A2+

in the p dominance approximation.

Fig. 12: Calculated cross section for nAl in the p dominance

approximation as a function of W and for various ¥ .

Fig. 13: Peak cross section for nA1 as a function of ¥ .
Fig 1k Calculated cross section for £po in the p dominance

approximation for various x.

Fig 15: Peak cross section for n° B® in the w dominance

approximation as a function of ¥y .

Fig. 16: Theoretical cross section for p+p- in the p dominance

approximation for various models.

Fig. 17a: Momentum distribution of produced pions from

+ +

e e > n+n-n n . The experimental distribution is
compared to that expected in the case of a phase
space production. The total energy is 2E = 1.5 GeV.

(See Grilli, ref. 2).
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Invariant mass of pions two by two M(xnn) ,
invariant mass three by three M(uun), in events

+ - + - + - .

efe” >n'n n'n at 2E = 1.5 GeV. The experimental
distribution is compared with the phase space

calculation for four pions. (See Grilli, ref. 2).

Cross section for processes’in which only two charged
pions plus neutral pions are produced ( Gjbm,) for

various total energies 2E.

Cross sections for the processes
+ - + - _+ - + - + + +
el > (0, ) and e'e » T W W +

(1-2)x° ( 03, ) vs. 2E.

Cross section for processes in which at least four

charged pions have been producedo, , = 6'4)0 +6';m +0g o

Total multi-hadronic cross section vs. 2E. It is
the cross section for processes in which more than

two pions have been produced.

Comparison of resonance model for minn n  and
n+u-uon° production, based on Spo and nAl, with
experimental data from ACO and various Adone groups.
Prediction of p' resonance model for n+n-n+n-

production 29) and comparison with experimental

data.
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Fig. 4a

Fig. 4b
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