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ABSTRACT

It is known that amplitudes which differ
from the Coulomb one by an over-all phase factor
and by a distribution with a support at zero
scattering angle, describe the same scattering
process. We utilize this fact to derive new par-
tial wave expansions, which have finite expansion
coefficients, for amplitudes of Coulomb-like in-
teractions. A modified form of the Lippmann-
Schwinger equation is derived, which is free of
infra-red divergences. For the case of the
Coulomb interaction this equation leads to a
different amplitude from the Coulomb one but
equivalent to it as both describe the same scat-
tering process. The method can be extended to
derive free of infinities partial wave expansions

of some field theoretical amplitudes.
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INTRODUCTION

In recent years several papers appeared with a rigorous treatment of the
Coulomb scatteringl). The anomalies of the Coulomb scattering are well knownl-a).
One way of avoiding some of the difficulties has been the approach of Dollard and
othersl’h) to replace the asymptotic condition by a more general one that is
satisfied by the Coulomb potential. This approach leads to a well-defined theory,
but its practical applications are still rather limited due to complicated cal-
culations. In practice all Coulomb potentials are screened ones, and this fact
suggests that a treatment based on screened potentials should be possible, Such

)

an approach was adopted by Taylor3 , who investigated the Coulomb amplitude as
the limit of a screened one. One of his main conclusions is that the amplitude
of the screened Coulomb potential converges as a distribution to the Coulomb
amplitude times an over-all phase factor. The "screened" amplitude may differ
from the Coulomb amplitude by an over-all phase factor and by a distribution with

a support at zero angle only.

In this work we present new partial wave expansions for amplitudes of
Coulomb-like interactions by modifying the over—all phase and by adding a dis-
tribution with a support at zero angle only. All these changes are not affecting
the observed scattering quantities. On the other hand, this procedure will allow
us to obtain partial wave equations without the usual infrared divergences. 1In
this way the Lippmann-Schwinger equation will be modified to a form free of in-
frared divergences. A similar procedure can be applied to other equations, such
as the Bethe-Salpeter equation and its approximations or to some perturbation
expansions. The modified Lippmann-Schwinger equation is derived in Section 5;
Sections 2, 3, and 4 contain introductory results which are needed for the deri-

vation and its interpretation.

AMBIGUITIES OF COULOMB PHASE SHIFTS

The ambiguities of the Coulomb amplitude were mentioned in Section 1. 1In
this section we will demonstrate that the Coulomb phase shifts have an ambiguity
of an over-all arbitrary constant common to all phase shifts. The Coulomb ampli-

tude is presented in a form

o0 .
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where o, are the Coulomb phase shifts and k is the momentum. Let us consider the

amplitude obtained from (2.1) by adding a constant € to all GQ'S:
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The distribution % I(28+1) Pg(cos 6), for 0 < 6 < m, has the same properties as
the Dirac delta function 8§(l-cos 6). Thus fe(e) differs from the Coulomb ampli-
tude fc(e) by an over-all phase factor and by a distribution with a support at

6 = 0; therefore the two amplitudes describe the same scattering process.

THE BORN APPROXIMATION

The Coulomb amplitude is given by

"t
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where 2
g = 2, 2,6m
k

is the Coulomb parameter.

Expanding (3.1) in powers of n we obtain
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where A = 5(1 - cos 0) and y is the Euler constant. On the other hand, for the

Coulomb phase shifts one has

='Z‘7‘/(ZM)+ 0(73) , (3.3)
where | is the digamma function and
1
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Let us substitute Eq. (3.3) in (2.2) and expand in powers of n. By comparing

equal powers with Eq. (3.2) we obtain for the Born approximation
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It is impossible to obtain this expansion by applying the usual procedure of

finding the expansion coefficients a, of a Legendre expansion

1
a = — 2z M) o cos # (3.6)
n 2k {1-cos 8

as all these integrals diverge. In Appendix A we show that Eq. (3.5) really holds.

We derive there a more general expression
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where € is an arbitrary constant number. The equality should be understood in
terms of distributions. One should note that the inclusion of the number €
changes the Born approximation by a distribution with a support at 6 = 0 only,

thus this has no effect on observed scattering quantities.

THE YUKAWA POTENTIAL

In Section 5 we will derive a modified Lippmann-Schwinger equation by screen-—
ing the Coulomb potential. For this purpose we will use the Yukawa potential.

The matrix elements of the Yukawa potential

Vir) = - « exp(-/«f)/r' (4.1)

in momentum space, are given by
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Xpo = (PP 4p™)/(2P3) o

Pg and QR are Legendre polynomials and functions, respectively, and y is the

screening mass; ; and E are momenta, and the normalization used throughout this
3

paper is (B/g) = 6( )(3 - q). The Legendre functions satisfy the following rela~-

5)

tion
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where W2_1(X) are polynomials of degree £ - 1; their properties are given in

Appendix B. Let us substitute Eq. (4.5) into (4.3)
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The first sum on the r.h.s. of Eq. (4.6) is a distribution such that for py -~ 0O
and for on-the-energy-shell momenta p = q, it has a support only at 6 = 0. Let

us denote this sum by
o
<FIRIZ> = —4-%;; 4, {Xm)Z(z/mf(x,',2 ) (e 6), 4.7)
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We can subtract this sum from the scattering amplitude for u -~ 0, without dis-

torting the scattering process. In the first approximation for the T-matrix

elements we will have

p/v/@> <P IvIg) -<FIRIG>

(4.8)
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for IEI = IE| and for p > 0, X =1 and we obtain
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without infinities. Equation (4.9) coincides with Eq. (3.9) for the particular

case € = -y(1l) = -y.

THE MODIFIED LIPPMANN-SCHWINGER EQUATION

Let us treat first the Coulomb scattering; the generalization to Coulomb-
like potentials is straightforward. We start with the Lippmann-Schwinger equa-
tion for the Yukawa potential, which is our screened Coulomb potential. The

equation for the T-matrix elements is
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where E is the energy, q is on the energy-shell momentum, ; and k are of f-the-energy-

shell momenta, Let us define

<EITIZ> =<PITIES —<FPIRITS (5.2)

where (;|R|E) is defined in (4.7). Let us now modify Eq. (5.1) in the following

way:
dik 7° -
<PITIE> =< p/v1@)+f<fmh>5m e <MIRIED
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n
where (;|V|E) is defined in (4.8). Now the limit Yy » O can be performed on
Eqs. (5.3) and (4.9) without infinities. This can be seen explicitly by going to

the partial wave equations

<p(ll lg£> ~<p[“/‘q,/> j(pfthf}E( - E(k)+(é<k(lkl$€>
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where
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<plIvigls =-7;I:—q/—0j()(m) (5.5b)
and
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Equation (5.4) is now free of infrared divergencies. Equations (5.3) or (5.4) can

be written in the following operational form:

%:?«»Vg/?*»b/g‘f") (5.7
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while the Lippmann-Schwinger equation has the form

~
~s

T = W -+ V\/g T. (5.8)

One can find W by solving formally Eqs. (5.7) and (5.8). From Eq. (5.8) we obtain

~ -1 ~
T = (4‘V9) (V+1/;;A’),' (5.9)
and from Eq. (5.8)

A -4 _
T=(1~—h/g) W= W(i-gw) ! (5.10)
Comparing Eq. (5.9) with (5.10) we obtain

“~
(v+\/3R)(4-gW)=(1~Vg)W, (5.11)
from which, taking into account Eq. (4.8), we obtain the integral equation for W

W=\7+V3R+(R-ng)gh/‘ (5.12)

In practice there is no need to solve Eq. (5.12) as one can proceed directly with
Eq. (5.3).

The generalization of the above procedure to Coulomb-like potentials is

straightforward. If (in operational form) the potential is given by
V=V tV,, (5.13)

where VC is the Coulomb potential and VS a short-range potential, then the modified

Lippmann-Schwinger equation is of the form of Eq. (5.3) or (5.7), where now
~
V=V +V,-R . (5.14)

It should be noted that Eq. (5.3) will not reproduce exactly the Coulomb amplitude
(3.1). We see the differences already in the lowest approximations (3.7) and
(4.9). It is not yet clear what modifications are needed in Eq. (5.3) in order

to reproduce exactly the Coulomb amplitude (3.1). Nevertheless the two amplitudes
should be equivalent in the sense discussed above, and they should describe the

same scattering process.

SUMMARY AND DISCUSSION

Equation (5.3) is our modified Lippmann-Schwinger equation. We have derived

this equation by screening the Coulomb potential using for this purpose the
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Yukawa potential with a mass p. The limit y > O becomes well defined after removing
from the amplitude the distribution (4.7), and the remaining part is free of in-
frared divergences. The amplitude resulting from Eq. (5.3) is equivalent to the
usual Coulomb amplitude (3.1) except for an over—all phase and a distribution with

a support at zero scattering angle. In this work a partial wave expansion for the
Born approximation of the Coulomb amplitude [Eq. (3.9)] was found. This expansion,
although pointwise divergent, is well defined as a distribution. The Born approxi-
mation corresponding to our modified equation is given by Eq. (4.9) and it differs
from the Born approximation of the Coulomb amplitude Eq. (3.7) by a distribution
with a support at zero scattering angle. The procedure used in this paper can
easily be extended to other cases. The matrix element (4.2) appears in quantum
field theoretical perturbation expansions multiplied by some factors. So the
separation given in Eq. (4.6), with the limiting procedure p = 0, can be applied

to all cases where propagators proportional to Eq. (4.2) appear. A natural place

to apply this procedure will be the Bethe-Salpeter equation in a Lippmann-Schwinger=—

like form.
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APPENDIX A

THE PARTIAL WAVE EXPANSION OF (1 - cos 6)7!

In this appendix we will derive Eq. (3.9). For finding a partial wave ex-
pansion one cannot use in this case Eq. (3.8), as all the coefficients are in-
finite. We will use three different methods to derive Eq. (3.9). First let us

assume that the expansion

1/(4—2) = Z (2n+d)a, F,(2) (A.1)
n=<p

exists. Let us multiply both sides by (1 - z) and compare coefficients of the

same Legendre polynomials Pn(z). Using the relation

2P (2) =[nP (D+ne1) B, (2)] /(2n+1) (A.2)

we obtain

f= 3 (an+d A, (41-8)P, (2)

%0
(A.3)
= (ag-a.)R(2) + 2 Lan+ g, - (n+0)d,,, -nd, ] P, (z)/
h=4
from which the following recursion relation holds
QUp - Xy =4 (A.4)
(n+)ty,,, = (20410, -~ nd,_, (A.5a)
or
(a0 ( Bpyy= AL) = 0 (An-Oyey) - (A.5b)
One can see that
(,Vl""‘)(an.u’ Ol,,) = COVtSt . (A.6)

is a solution of (A.5b). The constant in (A.6) must be equal to (-1) in order

to satisfy Eq. (A.4), thus
Apyy = Oy = 1/ (n+1) (A.7)
with an arbitrary a,. From (A.7) we obtain

{
dp =0, -1~ F ~m = G —nra)+ ¢, (A.8)
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where ¢ is the digamma function. The relation (A.7) can also be obtained by cal-
culating the difference between two successive coefficients

4
_ A Frps (B) — B (2)
-a, Zf nr44-2 ) oz , .9

-1

Using the relationss)
n
/g‘: (I//‘/)@[?/ = (,;+4}L_/:')7 (2)__8”_1 (2)_7/(4_;} (A.10a)
-2 + (A.10b)
=52 L R+ Py (2)]

in (A.9), the result in the form of Eq. (A.7) is immediately obtained. Equation
(A.8) can also be obtained by the limiting procedure of Eq. (4.9). A change in

the over-all constant a, in Eq. (A.8) is proportional to a distribution

> (an+a) P, () (A.11)

nxo

with a support at z = 1. Thus
w —
4/( 1—- 2)= - 2 (2nea) [ penea) + consz‘]PM (2), (A.12)
n=o

which is defined up to a distribution with a support at z = 1. The series (A.12)
is a divergent one but it represents the 1l.h.s. of (A.12) as a distribution. All
this can be shown by repeating the procedure of Ref. 3. The series (A.12) can

be summed also be using special summation methods of divergent series. By check-

)

ing numerically, we found that using the Wynn € a1gorithm6 on the r.h.s. of
(A.12) the 1.h.s. value was reproduced. We have also checked the following new
summation method suitable for partial waves determined up to a distribution with

a support at z = 1 only:
N

5N=n2=0 (am+1)(a,-a,, )R (2) . (A.13)
The %;(r)no SN seems to converge (slowly) to the 1l.h.s. of Eq. (A.12). The idea
behind this method is that an over-all constant (aN+1) can be subtracted (a dis-—
tribution with a support at z = 1) in such a way that the coefficients ag T a1
are decreasing for n < N + 1, resembling an asymptotic expansion. The series
(A.12) can be summed exactly to (1 - z)~! using Legendre-Padé approximants. In

Appendix B this is proved for a more general case. The particular case of

Eq. (3.5) was treated in Ref. 7.
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APPENDIX B

THE PARTIAL WAVE EXPANSIONS OF (y - z)~!

In this appendix we shall discuss the expansion properties of (y - z)7 L,

If y > 1 it is possible to use

F, (2)
- L — = (B.1)
a" - z-‘g y“ 2 d?‘ Qi‘? ((j)
and to obtain the expansion
o0
< 2)
4/(3-2):1 (2n+1)Q, (j)P,,(Z). .
hzo0 ¢
But let us follow the procedure used in Appendix A. Let us assume
[-%)
1 /(3- z) = Z (an+1a, b, (2). (B.3)
n=gQ

Let us multiply both sides by (y - z) and equate the coefficients of the same
Legendre polynomials. We obtain, using Eqs. (A.2) and (B.3)

1= (2n+1)A, ((7- 2) P (=)
oY

hz=9

(B.4)
= (qoy'aa)e(2)+ ZL (2"+4)yan“(“+")dn+4 ‘ha,,-,] PV, ().
ns4
Hence the expansion coefficients satisfy the recursion relation
a‘,z/ -0, =1 (B.5)
(n+1) Olpea = (gn+ 4)(7 a, - no, (B.6)
with an arbitrary a;,. Let us substitute in (B.6) and (B.5)
B.7
o, = U B, (y) +b, (B.7)
Due to Eq. (A.2) we obtain the following recursion relation for the bn's:
be =0 b, = -1
° i (B.8)
(n+a)b,, = (2n+4)ct//b,, -nb,_,

Thus

4/(3_2)-:010 ”Z: (2n+1) A, (J) R, (2) +£(2h+4)bhpn(3). (B.9)
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Equation (B.2) is a particular case of Eq. (B.9) with
— - (B.10)
o = Ko (y) bn“ l‘/n-1 (y)7
(y) are polynomials of degree n — 1 and are equal tos)
(B.11)

where W
n-1
n

(y) kZ R (WR_ty)

They can be also evaluated using (B.8) and (B.10) Thus for the first few poly-

nomials we have

Wo (y) =1, M(y):zij,

W_,(y)=0o ,
S, _ ¢t )
Wpty) =z Y "3, et
The distribution which appears in (B.9)
(B.12)

Dey 2)= % Z(znw (4B (2)

is equal to the Dirac delta function §(y - z) for y and z which are in the closed

1] only (the closure relation for Legendre polynomials)

interval [-1,
We shall show below that the series (B.9) can be summed exactly, to give
7 .
’8). We shall approximate the ex—

, using Legendre-Padé approximants

(v - 2)7!
pansion (B.3) by the [N/lj(Z) approximant
an+4)d), B (2-)
Z(Z".‘.,’)d" 2)x do R (2)+3d, B (). Rl *) Y
" R(g)+c, B(& (B.13)

=[Cw/1](2)

in such a way that
M2 N
[Fé(;)a-cﬁ?(z)]é (2n+4)0(nf,>,,(2) "Z-(fn""'.)dn a (2)= 0( A’+2(?)) (B.14)

= z and using Eqs. (B.14) and (A.2),

will differ from zero by a series of Legendre polynomials of order bigger than
]-’ Pl(z) -

N + 1. Remembering that P (z)
we find that
n=g 4., N, (B.15)

Cansactn +Lnoy., + (+0)cty,  Jeq =dl,

(B.16)

(aN+3)d,, .+ [(/Vu)aﬁﬁ(,vu)aﬂ,,.z]g =0
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Equations (B.5) and (B.6) can be rewritten in the form

From Eqs. (B.17) and (B.16) we find
€, = ._4/5 (B.18)
and from Eqs. (B.18), (B.17), and (B.15)
Ol,, = - é;o /5 . (B.19)

Thus from Eqs. (B.19), (B.18), and (B.13) we find

CN/11(2) = 4/(y-2) (B.20)

for any N =0, 1, ... and for any a;.
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