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ABSTRACT

A general scheme is proposed which makes explicit
the relationship between the singularities of off-
shell amplitudes in position-space and momentum-space
in the narrow resonance approximation. In some ways
this may be viewed as a duality scheme for amplitudes
involving external quarks, in which narrow resonances
in certain channels build the Fourier transform of

2 (x¥ being a position vec-

power singularities in x
tor). This scheme is made precise by dual string off-
shell amplitudes. As well as highlighting possible
connections between the general dual framework and the
structure of confined field theories we are able to

pinpoint certain grave shortcomings of present dual

models.

%) Work supported in part by the U.K. Science Research Council.

+) Permanent address: Cavendish Laboratory, Cambridge,
U.K.

Ref.TH.2219-CERN
31 August 1976



INTRODUCTION

In any quantum field theory that builds extended particle states out of con-
fined quarks the space-time properties of products of currents will be exceedingly
complicated even if their short distance behaviour can be understood in perturba-
tion theory (as in asymptotically free theories). Thus, for example, the space-
time singularity structure of the current propagator must be sufficiently elabor-
ate so that when viewed in momentum space it generates only the physical spectrum
of particle states (with no quark thresholds). In the narrow resonance approxi-
mation this would consist of a sum of pure poles in momentum space with positive

residues.

The nature of the relationship between position-space and momentum-space sin-
gularities can be studied in the dual string model which provides an explicit
framework for understanding certain features of amplitudes involving off-shell
states or currentsl_u). We have been able to isolate a strikingly simple rela-
tionship between the space-time and momentum-space structure of off-shell dual

amplitudes which suggests a general scheme for any theory which has, in first ap-

proximation, a narrow-resonance spectrum.

The crucial feature of this scheme is thdt, in quark-antiquark amplitudes,
the direct channel sequence of resonance poles is built up from the Fourier trans-
form of an infinite sequence of discrete singularities in the x? plane (where xu
is the position separation of the ends of the resonance), inside as well as on
the light cone. It may be that discrete singularities inside the light cone oc-
cur only as an approximation, the reflection of the narrow resonance approxima-
tion, and are smoothed out in the real world. It is this correspondence between
x? singularities and the narrow resonance approximation that we shall see is made

precise in the dual model.

Our point of view in describing these results will be to highlight features
that we feel may be quite general as well as to clarify the possible relationship
between ordinary quantum field theory and dual string theory. The main results
have a simple diagrammatic representation, analogous to conventional duality dia-

""quark" lines which couple to the external currents.

grams but involving confined
From the point of view of the dual model the appearance of confined structure in
the description of off-shell amplitudes is perhaps the most fascinating part of
the scheme. This will be discussed more precisely in the latter part of the

paper.
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In Section 2 we will state the rules that are abstracted from the dual model
calculations, We will concentrate mainly on those features which seem likely to
be true in any dual model and may be appropriate for any narrow resonance approxi-
mation, In Section 3 two explicit string model calculations will be presented,
in which the relation between momentum-space and position-space singularities will
become apparent as the result of a Jacobi transformation. The reformulation of
the string model amplitudes in terms of states which have the properties of the
quarks described above will be outlined in Section 4. In present off-shell
dual models there is one singularity outside the light-cone which is highly un-
desirable. In order to show that this is not a crucial feature of any conceivable
narrow resonance scheme we give an example in Section 4 of a function satisfying
all the positivity constraints together with an infinite set of x? singularities
starting on the light-cone. In conclusion, in Section 5 we will make contact be-
tween the a' - « limit (where o' is the Regge slope) of models of the type con-

sidered in this paper and usual field theory.

RECIPROCAL SINGULARITIES IN POSITION AND MOMENTUM SPACE

The simplest diagram that we can consider is the current propagator. For
convenience only scalar currents will be considered in this paper, but there is no
difficulty in extending these results to off-shell states of arbitrary angular mo-

. . . . . 5
mentum (these states are easily defined in the string picture )).

The propagator may be viewed as the sum of resonances in q?, coupling to cur-
rents at either end via quark-antiquark pairs (Fig. la). It turns out that the
propagator may also be written as the Fourier transform of the sum over a discrete
set of singularities in xz(xu = x¥ - xg) represented by the dashed line in Fig. 1b.
The quark lines do not propagate in space-time and thus have no momentum-space
singularities corresponding to normal thresholds. We emphasize that this is not
an ad hoc assumption but is, of course, a crucial property of dual models. It is
made precise in the operatorial method of constructing current amplitudes discussed
in Section 4 and based on methods introduced in Ref. 2). Our diagrams are there-
fore not to be viewed as normal Feynman diagrams since, in the space-time repre-
sentation (such as Fig. 1b) the whole length of each quark line is at fixed x. In
the momentum space pictures (such as Fig. la) both ends of each quark in a pair
always occur together and the momentum is considered to be transmitted by the pair
as a whole. The dashed line in Fig. 1b carries a definite value of (xg - xg), the

variable in which poles occur.
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The equivalence of a sum of momentum-space poles to the Fourier transform of

a sum of discrete position-space singularities for amplitudes involving off-shell

states compliments the usual duality relationship between resonance poles in

crossed channels for on-shell amplitudes.

where we are using the metric (+,-,-,-). As usual o

We find the following structure

Cn Lo-x v

F@) Z < = \C e d d x M

O(C\ -7+ US)

Ee = Z

(2)
n=n (-l+1ﬁki“-zu\)CLo

' is the Regge trajectory

slope. We will return to the derivation of Eq. (1) in the context of the dual

model in the next section, but for the present we would like to emphasize certain

features of this picture which are possibly general properties.

a)

b)

c)

d)

The singularities in x” are discrete and narrow. As noted before, this is
probably a consequence of the narrow-resonance approximation. If this is to
be a good approximation, the real world must be some sort of average of

2 = 0, taking the place of the line of dis-

Eq. (1), with a cut starting at x
crete power singularities.

2

The spacing of the singularities in x“ is 8m%a' and is, therefore, determined

by the inverse of the spacing of resonances in q2.

2

The left-most singularity in x* ought to be on the light-cone (x2 = 0) for ob-

vious causal reasons. We thus expect n; = 0 in any realistic dual model. The
ordinary Veneziano model has nj; = -% which must be interpreted as a sickness of
the model. Likewise, absence of tachyons requires ng > 0 (as is well known,

this condition is difficult to satisfy in presently known dual models).

All singularities in x? are of the same nature, determined by ag. The exact
value of ap depends on the particular model under consideration, but it is a
simple integer or half-integer in all models considered. The high q® be-

haviour of the propagator is determined by the left-most singularity in x?
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if we make the usual dual model smoothing assumption by moving along a small
angle ray in q?. Thus, putting n, = 0, the short distance structure plays

its usual role in determining the high q’? behaviour with the leading correc-
tion terms contributing exponentially damped oscillations of the form

exp {mi /8a'|q?| cos 6/2 - 7 /8a' |q2| sin 6/2}(where 6 is the angle chosen for
the ray in the g? plane). If there were to be an underlying connection with
asymptotically-free field theories we would expect ao to take the appropriate

. *)
free-field value “.

e) The coefficients, Cn’ are all positive in dual theories. This is analogous
to the positivity constraint on the spectral function in field theories.

However, we also find that the coefficients of the x2

singularities, En, are
all positive. This seems to be a highly non-trivial constraint in the dual

model as well as in the mathematical example given in Section 4.

£) Singularities inside the light-cone are somewhat unpopular in quantum field
theory due to constraints on the spectral representation. It may well be
that the complete theory will not have such singularities but they only occur
at the same level as the usual narrow-resonance approximation. Since in the
actual dual models considered in Section 3 we cannot avoid having a pole out-
side the light-cone it is important to know if such a sickness is an inevit-
able result of the narrow-resonance approximation. In Section 4 we will show

by means of a mathematical example that this is not the case.

The next process we consider is the forward scalar Compton scattering process
of Fig. 2a (the diagram corresponding to the other time ordering of the current
interactions is omitted). Fig. 2a may be viewed as a tree diagram for four quark-
two particle scattering in which the q%, q% and M?> resonances are explicit. Once
again the diagram may be expressed as the Fourier transform of a sum of poles in
%2 which can be drawn as Fig. 2b. This diagram can be thought of as a tree dia-

gram illustrating the singularity structure of the amplitude.

We now meet internal quark lines for the first time. These carry excitations
in much the same way as internal resonance lines are excited (this statement has a
precise definition in the dual model formulation of Section 4) but as far as the
diagrammatic rules are concerned, the main point is that they do not have momentum
space singularities. All quark lines occur instantaneously once again, in the

sense that each line corresponds to one value of the space-time label, x.

%) In this point of view the logarithmic cuts in the short distance behaviour of
the field theory will arise as a higher order correction to the pure power
behaviour of Eaq. (2).



Our amplitude takes the form:

Lq. X = .
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where t = (p1 - p2)? and M2 = (p; + q1)? (p, + q2)? and we have omitted a momen-
tum conservation § function that sets q; = pp + q2 - p1. Likewise we have set

xLl = xg - x? = xg by translation invariance.

Once again we leave the derivation of the precise structure of this relation

in the dual model until the next section, but note these points:

a) the parameter n, which determines the position of the left-most x? singulari-
ties is the same as occurred in the ﬁropagator function [Eq. (2)]. In the
Bjorken limit (q% + -, q2 » —», M2 > = with x; = —q}/M* and x, = -q5/M°
fixed) this singularity dominates the amplitude. This means that present
dual models do not have scaling (since n; = -%) but any model with n, = 0
would have scaling behaviour. Again, these statements are meant in the usual
dual model sense of smoothing poles on the real M? axis by taking the limit
along a small-angle ray in M?. The corrections are again exponentially
damped oscillations due to the first singularity inside the light-cone whose

exact form depends on the smoothing procedure used.

. . . 2
b) the natures of the singularities in x° are governed by the parameters a;

which have a simple connection with ao and also depend on the type of exter-

nal particles. In the models considered the a, are all integers or half-

integers.
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In order to generalize the diagrams to an arbitrary process involving M ex-
ternal particles and N currents, we first draw a tree diagram that displays all
the resonance poles —- this is a momentum-space diagram and all quark lines come
in pairs beginning and ending at the same point. There are M +N -1 independent
momenta flowing into the diagram. When the external currents are amputated, the
resultant M particle-2N quark tree diagram will satisfy duality-like transforma-
tion rules in which the basic elements are four-point subamplitudes. For example,
Fig. 3 illustrates the three current—two particle diagram in various configura-
tions. The diagrams are to be understood by analogy with the previous cases, as
being mixed position-space momentum-space diagrams according to which configura-
tion is being exhibited. Whenever a dashed line appears it represents position-
space singularities in the variable labelling the line, together with the under-
standing that the diagram is to be Fourier transformed with respect to all inde-
pendent position labels. Notice that one label may always be fixed at 0 by
translation invariance. This is equivalent to momentum conservation and thus
there are always M + N - 1 independent external variables in our diagrams. There
is clearly much structure in these diagrams that we do not yet understand since
we have only done explicit calculations for two special examples (for instance,
it is not clear how the (x; - x3)2 singularities in Fig. 3d are built out of
Fig. 3c). However, we shall see in Section 4 that the kinds of transformations
involved in passing from Fig. 3a to Fig. 3d can easily be visualized in terms of
distortions of rather peculiar world sheets that arise in the covariant descrip-

tion of currents.

CALCULATIONS WITH THE STRING MODEL

The picture for the coupling of an off-shell string was introduced in Ref. 3)
and has a close connection with the covariant approach of Refs. 1) and 2). In
this picture the external source couples to a section of the string that has col-
lapsed to a point. However, a crucial ingredient in obtaining sensible form fac-
tors is that the collapsing section of string can split away from the rest of the
string at some time, Tg, and this time must be integrated over in the sum over
histories of the string. Thus (see Fig. 3a) the possibility of the string breaking

plays a vital role in providing finite form factors.

In the case of the ordinary Veneziano model in D = 26 dimensions these off-
shell amplitudes are not strictly Lorentz scalars but we shall take the point of
view that this is not a crucial drawback. Indeed, it is possible to construct

off-shell amplitudes“) for closed strings which have the same sort of physical
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point-like picture and which are Lorentz scalars. Although we shall not consider
these in this paper (since they are somewhat complicated) it seems clear that our
general results will hold for them. It is intriguing that the only known consist-
ent description of off-shell behaviour involves coupling the string to point-like
sources exactly like those that define the Green functionms in usual quantum field

theory.

In this picture the current propagator is just the amplitude for a point-

. . . . . . . -1 U
like string at T = T; [where T is the light-cone time variable 1(x0 + xD )/ V2 ] to
propagate into a point-like state at T = Ta. [See Fig. 4b and Ref. 6) for the

- *
relevant conventions.J This is [see Ref. 3) for the derivationj

00 @), - 20TlogN
F(oﬂ - C A(f/zq*) e A 11‘1 (\ - ZTB (6)

where

= =(4%d Ve, 72§ T

As expected, this amplitude which diverges at small T, may formally be ex-
panded as a sequence of resonance poles as in Eq. (1) [in the D = 16 covariant ap-
7
proach these are all the scalar poles of the theory )]. The constant c absorbs

non-scalar factors in the off-shell states which we shall ignore from here on.

The first step in looking at the x space picture of this propagator is the
same as that involved in examining the high negative q? behaviour of Eq. (6) which
. . 8
is to rewrite the integrand in terms of the Jacobi theta functionms ), 9{(OIT),

giving

0o cflz:/zt‘*, | . -L+
Flq®)=ce () € [@‘(OI '{E‘c\l ”

+) We are working with imaginary light-cone times as in Ref. 6). Furthermore

we shall also use x~ = -i (x° - xP~1)//2Z so that x? = 21x~ - x2.
*) 1In all subsequent expressions we shall set a' = 1. It is easy to reinstate
a' at any point since it is the only dimensional parameter in the theory.



- 8 -

and use the Jacobi transform to obtain

w0 e -y
F(®) = _%iz"o (T ‘& (f/zﬁ+)4: é\ hat Ea (o\?.niqf/c]

For large negative q® the small T region of the integral domlnates and the inte-
grand of Eq. (8) can be expanded in a power series in e-4ﬂ q+/T. The first term

gives the nasty divergence at small 1. We shall see the origin of this divergence
in a moment. Equation (8) can ea311y be transformed into X space by first undoing
q X~

the T integral (and dividing out e ), multiplying by et and integrating

+ . . . . .
with respect to g and q in the appropriate regions. This gives:

5 2 ) ot/
x4 4v?) §' i
@/’L ( ) 9)

C(‘Hl‘f qt
\ - (¢ Froe® d( /ZT)

-2n '-F“‘z'c\,z-c 4
™ (1-¢ )

r\—|

The integrand now has a power series expansion in which a general term has

the form:

A\ﬁ \3 Qxe%(x + - 'Zm)'-mz\j‘g (10)
- F(M/( xt -'wa-t—\}

where the number 6 comes from (D-2)/4 with D = 26. This is clearly a model-
dependent number which corresponds to a, in Eq. (2). The series expansion starts
with the term with the value m = 0 in Eq. (10) which gives rise to a singularity

outside the light-cone at x?

= —4m2q". [This was the cause of the divergence at
small T in Eq. (8).] There is also no singularity on the light-cone (x? = 0).
These, of course, are bad features of the model and requiring their absence may
be expected to provide powerful constraints on possible models (see Section 4).
Notice that the integral defining F(x?) [Eq. (9)] is divergent due to the pres-

ence of a tachyon pole in the model at u'qz = -1,
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We have found that the general structure of the dual scalar propagator is of
the form given by Egs. (1) and (2). The presence of both a ¢? tachyon and a x2
. . . . . + .
singularity outside the light-cone means that only the mixed T-p representation

is really well defined.

In order to be sure that the general structure of Eqs. (1) and (2) can really
be consistent it would be reassuring to have at least a mathematical example of a
function without these sicknesses which possesses poles in q% with positive resi-
dues and isolated singularities in x2. In Section 4 such an example will be pre-
cented. For the moment we shall proceed to extract the asymptotic form of Eq. (6)

ignoring the fact that the leading term is divergent.

The high q? behaviour of the propagator can be obtained by expanding the in-
. + . .
tegrand in Eq. (8) as a power series in exp {-4m% a'q /t} which gives a sum of

terms of the form (valid only for n # 0):

ad 2
X'z -(2n-0T /2 L
da € (2)
(&)

=
- q’l (11)

@y

=92K = ((‘Hv" (Zn-") °"°\1>‘,1

P . 8 . .
where Kv(x) is a modified Bessel function ) and q2 lies outside of a wedge along
the positive real axis. The asymptotic form of Kv gives the leading form of the

general term at large qul as:

“Hy. i
~ (X (’*'q"‘(zn-O) 48"(’ Lt (it (Y
(ZAN)‘VI q

The n = 0 term is the divergent piece mentioned above.

Assuming that the basic structure of our result will hold in more realistic

situations with n, = 0, we see that the high q? behaviour (excluding a wedge along

the real axis) will be dominated by the term with n = % and will, therefore, be

power behaved. The leading correction will come from the first x?

singularity in-
side the light cone and will contribute exponentially damped oscillating behaviour

as previously described.
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Our second example was Compton scattering (Fig. 2) which is represented in
the string picture by Fig. 4c. Since the expressions easily become very burden-
some we have chosen a particularly simple situation in which the on-shell parti-

cles are the massless vectors of the theory and we are looking at the forward

amplitude so that the kinematics may be simplified. We can choose:

2P =0

(13)

and

+ +
i J‘:‘ =0 (14)

with p; and p; arbitrary and so there are no singular components of momentum (re-

call p? = pZ = 0). We then have

W=4e29" , =944 as)

The scaling limit of interest is, therefore:

(N e B -
M=—=o0, q},q;—>-00, t=O (16)

¥, = _q?‘,Mm) o -ﬂ%/H‘z e{x-u\_

(with M? actually along a small angle ray), where
y

M*= qla2q¥er = gi+29;4r an
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The amplitude that arises in Fig. 4c has the currents coupling at times 0 and T
to the point-like string states. These interact with the external vector states

at times T; and T, and the amplitude can be written as

T AL e S A Claqr $agy 4T fagy

Qx(’% C‘TT\ + C\; (t~7) +CF_ (1 "TSB H(I)T\)T‘L , q— f—?’) (18)

where:

M= Z ' <Cﬂz.| 8—6) LT—TQ(Q& +0‘¢ﬂ'\' Q-G (TL-Q)LQ}“_»Q&') (19)
M, " e,
e \ <, o\‘>

and |c> is the point-like current state satisfying:

< (
O lc> = 0 V> (20)
The operators a; obey the commutation relations

[:O«:\ , &’v\;\\-} = ‘T\gm,ﬂ %LB (21)

and § 1is the integral of the Hamiltonian over 0 at a fixed time. In Appendix A

we show that Eq. (18) becomes:
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__T, (3 (51?:,61;TJP{L) :'L¢§:$ S)ls (§4>;CLqL2,Ci)S
» 8)(63 "L_\V< (CP.""-#?J q% + (K‘*¢ 2,"‘131) 0)1': - 2—4’1 M‘LBE (22)

> (BLION 3 /BN (B o)

>\ Bt ) 2:Ug ()
where T/2‘q+ = -imy.

The form of this solution is reminiscent of that of Schwarzg) but consider-
ably simpler. This is partly because we are working at t = 0 and with vector ex-
ternal states which eliminate many nasty factors. Also recall that the string
picture often provides expressions for amplitudes in a simpler form than the co-

variant approach.

The integral in Eq. (22) diverges at ¢, = 0 (i.e., T:1 = T, in Fig. 4c) for
two trivial reasons. Firstly, the integral representation is improperly defined
for t = 0 which is above the tachyon pole in the t-channel. Clearly we could
have worked at non-zero t and this would cause no problem. Second, at t = 0 we
are on top of the t channel vector pole. This does not contribute to the fully
signatured amplitude (which includes the other time ordering) or to the M? dis-
continuity. Since both these effects are quite usual for forward amplitudes and
cause no problems we may safely ignore them.

There is also a nasty singularity at small 1. This will be seen once more to

2

be related to the presence of a x“° singularity outside the light-cone.

The asymptotic q® and M? behaviour will again be dominated by small T (and
hence Tlland T,) and so it will be isolated by performing a Jacobi transform on
Eq. (22). This will also be the first step towards looking at the Fourier trans-
form. This change of variables is given in Appendix B from which it is easy to
see that the leading term for y'= -1/y > « is dictated by the leading term of the
same partition function as that appearing in the current propagator. Thus the

leading term has the form
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2
S A'(lzq+ dt‘/zqa- C\T“/zq+ Q"‘fg \'%j;% (f‘:‘ -'t‘.;‘ ..(f-rtan

oo (23)

(_‘t7/2<§¥i;r ‘Zjlnﬁlcv¥l1fr:zs: ( \— {2:'ZL~ 23t1c<VI1;:5‘*l;(?r.}t;TEJia

Once more we see that the leading term is divergent which is a sickness again re-
lated to a x’ singularity outside the light-come. Again we can consider the si-
tuation that would arise in a model with the structure of Eq. (23) but with

n, =0 [Eq. (2)] which would eliminate the positive power of e2ﬁ2q+/T in Eq. (23).
We can now see that the first term in the series expansion of Eq. (23) in powers of

—4ﬁ2q+/T . . . .
e gives a scaling form. Thus, if we change variables to

a—

?

w=" ; V= (ﬂ:"tzj,/1: y ;E=‘411: (:Cz:T._;Tﬁﬁl‘ Ct‘THJJLQ)
t (24)

o)

we obtain an integral of the form

(25)

_:} iE
(M‘) dzdudv € Zé 5(%\/) %1, %)

for the leading behaviour. The integral scales and our result is similar in

. . 9 . . .
structure to the scaling function analyzed by Schwarz ). We shall omit discussion

of the discontinuity of Eq. (25) which is also similar to that given by Schwarz.
Note that non-leading corrections to Eq. (25) arise from the lower powers of vy'
which differ by an integer from the leading term and will affect the power of M?
in Eq. (25) but will still scage; Further non-scaling corrections arise from the
-4méqt/T

power series expansion in e which give oscillatory corrections that decrease

exponentially when M2 is taken along a small angle ray rather as in the case of

the simple propagator.
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It is straightforward to complete the Fourier transform of Eq. (22) by un-

. . e ST . . %~ ig®

doing the T integral (and dividing by ed2 ), multiplying by eV * and ¥ ang
integrating with respect to q+ and ¢, (using the momentum conservation § function
to eliminate q;). The Jacobi transform of Appendix B must first be carried out

which changes ¢1 and ¢» to ¢, and ¢, and we obtain

TG e pa) = ! 6 (d1agl 3 (Tiv)

exe %fc\'\',lt ,,")P\,i( 47"44%!) + C‘Vz-l( 47"__+7'.)§

(26)
% | SN 2 /0.1
P\ D)) BB )
r2m (oo 2 () | (e
where y' = 2miq /T and we have absorbed all constant factors into c'. Notice

1 _2+
imy' _ 4T /ZT, the integrand in Eq. (26) has a power series ex-

that since e
pansion analogous to that of the propagator. This leads to a series of x? sin-
gularities of the form of Eq. (5) with a; = 6. The lower powers of y' in the

2 with strengths

last term in Eq. (26) give rise to milder singularities in x
a; = 5 and a, = 4. The leading singularity is, as previously féund, outside the
light-cone. [Once more we have to ignore a formal divergence in Eq. (26) at

small q+ related to the presence of a tachyon in the model,]

The kinematic situation considered in this example was specially chosen to
give relatively simple expressions. To understand the structure of the amplitude
completely it should be generalized to currents coupling to arbitrary numbers of
external particles with arbitrary momenta. This problem seems to be of the same

order of difficulty as conventional single loop calculations.



- 15 -

CONFINED STRUCTURE AND DUAL MODELS

The string picture used in the previous section has been showna) to give rise
to the same form factors and current propagator as the covariant approachl’Z)
based on satisfying the gauge algebra of the dual model,despite a mismatch in the
dimensions of the two approaches. Furthermore, in the closed string sector, the
two methods are exactly equivalent“’s). We therefore feel confident that the
string results of the previous section will be reproduced in the covariant method.
An elegant formulation of this method was found in Ref. 2) by introducing c ‘mode

states, where c modes satisfy:

[.Cn)A, x>y = - 3}”) gnm (27)
(\)W\ = ’\{)3'21. .

The "propagator" formed out of these modes takes the form 1/(L0C—1), where

= A
Lcc,: - Z (‘Cnr‘cnr (28)

l’\:"z

Since there are mno zero modes in L°c there is no momentum in this "propagator"

and its interpretation is not immediately apparent.

However, we may proceed to draw formal diagrams for form factors (Fig. 5)
which are associated with precise rules and in which the off-shell state is de-
scribed by two c moded ground states coupling to a normal Reggeon tree via a well-
defined coupling. It is these c moded ground states that we have been calling
the external "quarks" in Figs. 1 and 2. With this identification these figures
also have a precise formal definition in the dual model. The excited quarks just

carry higher c modes.

The ¢ modes may be thought of as normal modes for a world sheet with an ab-
normal boundary on which the "position" vector Xu(z) is fixed, instead of its
normal derivative. [This is the analogue model viewpointz) from which the c-modes
were originally obtained. ] We can therefore draw world sheets for arbltrary

processes involving these quark states (but bearing in mind that they do not have

a simple space-time string interpretation because of the unusual boundary conditions).
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In Figs. 6a-6d we show the same sequence of diagrams as in Figs. 3a-3d and it is
now apparent that these are just distortions of the same basic world sheet struc-
ture. We have emphasized the abnormal boundaries by thick lines. The abnormal
boundary condition ensures that the whole of such a boundary is at the same space-
time point and so the labelling of Fig. 3 is clarified. Note that the dashed lines
of Fig. 3 appear as strips with two abnormal boundaries, fixing the space-time
values along both edges to the value indicated. It is these lines that have sin-
gularities in the space-time variables shown in Fig. 3. Indeed, these strips have
a form very similar to the normal string but with the roles of position-space and
momentum-space interchanged*). A further attraction of the terminology "quark"
for the c moded objects is apparent if flavour is added to the string by means of
Chan-Paton factors. This is accomplished most simply by making the c moded ob-
jects carry the fundamental representation (quark quantum numbers).  This theory
quite clearly confines these quark quantum numbers. Furthermore, in quark-anti-
quark scattering (Fig. la), it is apparent that the channel "dual" to the fla-
voured resonances is a flavour singlet. The dashed lines in Figs. 1-3 carry no

flavour and thus behave in many respects like confined glue states.

These statements are summarized very naturally in terms of the world sheets
of Fig. 6. They correspond to the rule that only the normal boundary in any dia-
gram should carry the quark quantum number. (This quite obviously reproduces the

usual Chan-Paton rule.)

The closed string currents of Refs. 4) and 5) may be represented by a closed
c moded loop (Fig. 7a). It has been suggestedh) that the insertion of arbitrary
numbers of such currents at zero momentum into a propagator may modify the model
in a physically sensible fashion since they can be identified with a reweighting
of point-like modes of the string. In the present picture (Fig. 7b) these inser-
tions take the form of quark-loop insertionms.

An altogether different approach to modifying the dual model may be to fol-

10 . S,
) and examine the constraints on the

low an approach similar to that of Nahm
automorphic functions in the theory+). If we were to take the view that the cur-
rent propagator will inevitably be the integral of an automorphic function then
our requirements on n, and n, [Eqs. (1) and (2)] would provide strong constraints
on possible candidates. While we do not understand the nature of these assump-

tions it does provide us with simple candidates for propagators which do not have

*) 1 am grateful to J.A. Shapiro for helpful discussions on this point.

+) I am grateful to W. Nahm for a useful discussion concerning the properties of
automorphic functions.
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tachyons or x° singularities outside the light cone. These serve to illustrate

that the basic structure of Eqs. (1) and (2) is not sensitive to these diseases.

o0 Ge:tlz’
‘—:\(0\"} = C\QI‘Z;\% e T [ @3(0\\6{1 * (29)

where y = iT/Zﬂq+ as before and

2
Oylory = T (1-€ 7Y et o

©o S
. o4y el
Mz

It is clear that F;(q?) has a positive definite spectrum and no tachyons,

the lowest pole being massless. Fourier transforming as before gives

od 2 b
o) =i g JW/‘U) ex Ver ( % )T@&(O‘ - '/K)]LF (31)

which has singularities in x? starting on the light-cone of the form

- ¢ *
(x?/4m%a" - n) (D+2)/2 (clearly the appropriate value of D is not known ). The
function F;(q?) therefore constitutes an example of a function which transforms

in the manner suggested in Egs. (1) and (2) with ny = n; = 0.

*) Strictly speaking Eq. (29) has a mild divergence at small T/2q+ which looks
very much like a normal field-theoretic short-distance divergence. This can
be removed by two subtractioms.
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CONCLUSION

The narrow resonance approximation, in the form of the Born term of the dual
model, represents the first approximation to the full dual theory. The presence
of discrete singularities inside the light-cone which may be excluded in the full
theory is therefore, in this approximation, not a disaster. We would expect that
in the complete theory the higher-order corrections which serve to shield the
resonance poles behind normal threshold cuts will also shield X singularities.
Our hope is that the structure of the complete theory will represent some sort of
local average of the initial approximation. The way in which Eqs. (1) and (2)

are realized in the dual model is very subtle. It is clear that any one singula-

2

rity in x® (at x2 = 0) will give rise to a singularity at q®> = 0 and a non-

positive-definite spectral function. The model therefore incorporates a delicate

mechanism that balances an infinite set of x?

singularities (with positive coef-
ficients) against an infinite set of q? poles (also with positive coefficients).
Since the actual dual model expressions are so divergent when expressed in terms
of ¢? EEqs. (8) and (22)] we must clearly be careful in deciding whether small

x? singularities dominate usual light-cone-like kinematic limits. However, our
analysis, which starts with well-defined amplitudes in the mixed T - p+ represen-
tation, shows that these exponential divergences can be directly attributed to a
x? singularity outside the light-cone. Given the usual dual model method of
smoothing resonances (which is necessary in any case to discuss Regge behaviour)
our disease-free mathematical example [Eq. (29)] suggests that the small x? limit
will be achieved in the usual kinematic regime in a model with realistic struc-
ture. Although we have considered only scalar off-shell states in this paper it
is clear from the manner of construction of higher spin states in the dual models)
that the basic relationship between x? and q? singularities will generalize to

amplitudes involving states of any angular momentum.

Fig. 6 illustrates the trajectories of singularities of the propagator inside
the light-cone [this is the structure of Egs. (1) and (2) with ng = n; = 0 as well
as our example in Eq. (31)]. If we take equal time slices starting at t = 0 we
see that up until t = t; = 2m/2a' the only singularity is the one on the light-
cone. At t = t; the first singularity inside the cone is intersected and subse-
quently spreads out on a hyperboloid. Further singularities are encountered at
t = tn = 2m/2na’ and similarly spread out as shown in Fig. 6. At no time do two

singularities get further apart than 2m/2a' .

In the classical string picture the limit o' - « corresponds to the vanishing

of the tension in the string which ought to be the free field limit in any under-
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lying field theoretic construction of realistic strings. We see from Fig. 6 that
since the spacing of the singularities grows with/a' we recover a single singu-
larity on the light-cone in the limit a' > *) of the form 1/(x? + ie)ao, which
is suggestive of a massless free field theory. The nature of the field theory
is correllated with the value of a,. These observations provide a hint of cor-

respondence between realistic strings and confining field theories.
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APPENDIX A

DERIVATION OF EQ. (22)

The absence of transverse momentum for p; and p, greatly simplifies the op-

erator algebra. Using the property, Eq. (20), of our point-like states we have:

_'z.wt, /zqﬁ) (\ “wnlt-T) ! u{r)

(A.1)

AL

U'/\

=

E?— > . - —Z.171h ¥ —‘EE Th
el € TE™ i T 0 g A

where we have also made use of the standard relation:
. - -n {
[0k, 877 = ("™eqt) oR (a.2)

We can obtain a relation for
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obtain an equation for U;Jn:
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y \ -C§:C —YV\(T:“tJ) A
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(1- e *me/2aT)

We thus obtain

Mt& =SLS i " (\_‘_Q'ZM‘C"Zq*)(\ _\_e:?m(ﬁ-'t) Izq«\-)
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(A.5)

%
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-g-
T . . .
But the factor <c,q2|e |c,q1> is exactly the same as that occurring 1in the

current propagator which allows us to write

-wT

M-S Ime " Gonh 02\ G 1) 249)
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(A.6)
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. . . . . . 8
we can rewrite Eq. (A.6) in terms of Jacobi 0O functions by using the relationms

o &(43\‘6) .'_“_ﬂv_'.\ m
¢ 0u 1Y) g 2 |-qt™ Cos 14‘

and —-LTT( “'\ﬂ-?‘) (A.8)
Duldrixl)=L e \ Ou(e 1)
(the prime denotes differentiation with respect to ¢) and the variables:
q=e™S = g
re. Y= i-f/')__,“.c“\' (A.9)
4),:: L ('CH'T-;) /Lﬂ-vc“\' (A.10)
¢’L = L (t|'f1) /L*T‘-q‘\' (A.11)
where
O - cldrda) & -ildh-da){ -
We obtain
W DA 3‘4’1 91(4>\x |

- "'C[ac‘

[_9 (O\X)/z_ﬂ—l

Making use of the kinematic relations of Eqs. (13)-(17) we have
e"?% QT * 9z (C-T)) +97 (t-mg
2
= e’?‘?% Oﬁ T\(Zp‘*-'*(\?[ (T-1) /Zq*‘ 4 Mz(n“&)/zq-* +q-'l:/?/q\-§ (A.13)

Equation (22) follows by substituting Eqs. (A.12) and (A.13) into Eq. (18) and

making the appropriate identification of variables [Eqs. (A.9)-(A.11):].
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APPENDIX B

In order to evaluate the Fourier transform of Eq. (18) we need to consider

the Jacobi transform of Eq. (A.12) by changing variables to
¥'=- = 2nigt/g (.1)
43 =, |¥ = (tﬁtz (8.2)
4>:,"’ 4’2/X (T'-T"> | (8.3)

The range of integration becomes

¢ Prd)ygdi-40¢

8)

With this transformation we have

oY L) [, (B LD <e’.(4>£w>
M o ) [53% o) 3%\ o) 3.
?,Tn ‘_Z 2 Cbn 4){1)]1[9 (D\X )} e@f/'z‘\

The integration measure changes from

dé, ¢ 3
db 44, &g ¥

to
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FIGURE CAPTIONS

Fig 1 : Representations of the propagator. a) The momentum-space poles
in q2 are displayed by thick lines. b) The position-space
singularities in x2 are represented by a dashed line. TFigs 1a)
and 1b) are related by a Fourier transform. Since the gquarks
do not propagate in space-time there are no phase-space integrals

in these diagrams.

Fig 2 : The forward "Compton" amplitude. a) The momentum space confi-
guration shows the poles in qi, qg and  M°. b) The position

space diagram exhibits singularities in x .

Fig 3 : An example of a more complicated process. The diagrams exhibit
the singularity structure in various momentum-space or position-
space channels. The labelling indicates which variables have
been Fourier transformed. Thick lines represent momentum-space
poles, while dashed lines are x2 singularities. The quark
lines generate no discontinuities. Such diagrams indicate the
dominant singularities contributing to generalized Regge-pole,

resonance-pole or light-cone-like limits.

Fig 4 : a) Form factor in the string picture. Note that the breaking
time, TO, is integrated over.
b) The current propagator in the string picture.
¢) The forward Compton amplitude in the string picture. (The

other time ordering is not illustrated.)

Fig 5 : The operatorial construction of the dual form factor. The
c-moded states generate no normal thresholds. The circles
represent the coupling of the current to c-mode ground states.

Such diagrams provide the rules generating Figs 1-3.

Fig 6 : The world sheet configurations corresponding to Fig 3. The
boundaries marked by thick lines satisfy the abnormal boundary
condition Xu(z):o. Points on the same abnormal boundary are
at the same space-time point. The strips in b)-d) with two

abnormal boundaries correspond to the dashed lines in Figs 3 b)-d).
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Chan-Paton factors are incorporated by attaching quantum

numbers to the normal boundaries (marked by arrows) .

Fig 7 : a) An internal c-moded loop describing closed string currents.
b) A possible way of changing the model to reweight the inter-

nal quark structure (see refs 4), 5)).

Fig 8 : The singularity structure inside the light-cone in the narrow

resonance approximation.
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