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Abstract

Hartree~Fock calculations pertaining
to the determination of nuclear binding
energles throughout the whole chart of
nuclides are reviewed. Such an approach is
compared with other methods. Main techni-
gues in use are shortly presented. Advanta-
ges and drawbacks of these calculations are
also discussed with a special emphasis on
the extrapolation towards nuclei far from
the stability valley., Finally, a discussion
of some selected results from light to
superheavy nuclei, is given.

1, Introduction

The ateomic nucleus viewed as a many
body system, has constituted a long lasting
intriguing problem. Having undoubtedly a
rather smaller number of particles, it has
however been successfully described in a
classical or semi-classical way. For exam-—
ple in the liguid drop model, the binding
energy of heavy nuclei is given with an -
accuracy of less than 1%. On the other hand
a nuclear shell structure which appears as
a gqguantum fluctuation, was necessary to
explain a collection of experimental facts.
The recognition of the existence of an
average nuclear potential has been hindered
for a long time by the repulsive character
at short range of the nucleon-nucleon force
untill the correct understanding of the role
of the Pauli principle.

The Hartree-Fock (HF) approach dis-
cussed here belongs to the second alterna-
tive class of models : nuclear wave functions
are assumed to be well described by Slater
determinants buillt on eigenfunctions of a
mean potential generated by all the nucleons
through the nucleon-nucleon force. Short
range correlations are approximately taken
into account by the use of an effective
force understood as a kind of a Brueckner
G-matrix 1i. . Long range correlation
are definitely absent. On the other hand
pairing correlations can be handled in a
consistent way known as the Hartree-Fock-
Bogolyubov (HFB) method. A non consistent
but still reasonable treatment of such pai-
ring correlations consists in a BCS calcu~
lation following the HF calculation.

The present talk pertains only to a
review of calculations leading, at least in
principle, to a complete description of the
whole chart of nuclides. This excludes a
priori all calculations based on "regional"
forces aiming at the description of a spe-
cial bunch of nuclei, This will also more
or less limit our discussion to calculations
using phenomenclogical effective forces since
the technical difficulties of more fundamen-
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tal approaches have prevented their extensi-
Ve use.

In section II we will present a gene-
ral ocutlock on the HF method. The HF approach
will be compared with other relevant methods
in section IIT, We will especially discuss
the link between HF and liguid drop model
calculations within the frame of the
Strutinsky method. Advantages and drawbacks
of the HF determination of nuclear masses
will be discussed in section IV. A special
emphasis will be put on the problem of extra-
polating such calculations to nuclei far from
the stability wvalley. Section V will be
devoted to a short survey of the HF techno-
logy., Finally in gection VI we will give
some selected examples of HF results.

2. General outlcook on the HF method

2.1 Generalities

The determination of nuclear ground
state wave functions from the free nucleon-
nucleon interaction has given raise to an
enormous amount of theoretical work., A first
family of approaches is referred to as rea-
listic calculations. This family itself can
be split into two classes. In the first one
a soft core interaction is used and the HF
problem plus second and third order correc-
tions is solved in the framework of the
Goldstone expansion. As an example one may
guote the works of Maire B using the
Gogny-Pires-ge Tourreil interaction and
of Strayer 39] using the Tabakin potential39L
The other class deals with calculations per-
formed along the lines of the Brueckner-
Goldstone expansion. Results of such calcula-
tions for finite nuclei have been recently
reported, see e.g. Ref. 5]. The two previous
types of calculations are of great numerical
complexity. Even though they have brought a
lot of interesting theoretical informations
they have not yet clearly met with success
in providing precise values of nuclear bin-
ding energies and radii.

In the second family of approaches,
one derives from realistic nucleon-nucleon
forces, the effective interaction in the
framework of the Brueckner theory within
the local density approximation (LDA). Higher
order corrections are then included phenome-
nologically into the force. As a consequence,
one completely leaves out the problem of
further corrections to HF. Such an "effec~
tive force approach" have been successfully
used e.q. by Negele 1l and by Campi and
Sprung .

For the sake of simplicity one has
also considered purely phenomenological
effective forces. The most important feature
of the more fundamental LDA approach (e.g.
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the density dependence) are generally retai-
ned. In a special case (the Skyrme foree)

it has been even possible to establish the
connexion with the LDA Such phenomenc~
logical effective forces may be classified
by their analytical form. A first group
refers to delta forces plus gradient correc-
tive terms for the two body part supplemen-
ted by a density dependent delta force. This
group includes the Skyrme force and th
modified delta interaction of Moskowski /
The energy density formalis proposed by
Beiner and Lombard, clearly belongs also to
this group. In the second group one rather
considers finite range interactions for the
two body interaction. Gaussians are used in
the Gogny force ° Pinite range and velo-
city dege?dence are included in the
Kshler 40} and the Montreal force 10!, The
latter adds an OBEP tail on a purely pheno-
menological part. In all cases one must
consider a two body spin-orbit force which
is approximated in most cases by a zero
range one Tensor effective forces are
generally left out.

2.2 HF equations

Gilven an effective interaction v,
the HF approximation consists in assuming
that the nuclear ground state may be descri-
bed by an independ particle wave function
{Y>. The latter is fixed by the minimisation
of E=<y|H{y> (where H is the hamiltonian of
the system) with respect to the variations
of |¥>. From now on, we will assume for
brevity that the effective force is only a
two body operator. Introducing the reduced
{one body) density matrix p, the energy E
can be written as :

E = :E::{}i[p;j>

ij

(%j|K{i> + E <k|ple> <j£§$|ik>)] (1)
2

k4

K being the kinetic energy operator and v
the antisymmetrised two body operator.
With obvious short hand notations E writes
as

E(p) = tr Xp + 1 tr tr p v p (2)
2

The variation of E with respect to |v> or
equivalently to its corresponding density
matrix p, leads to the definition of a set
cof single particle states |i> satisfying the
so called HF equations :

(K + v(p)) 2> = e, 3> (3)

The HF potential v(p) i1s the one body reduc-
tion of v defined as

3

<y|v|y> (4)
3<ilo|i>

<i|v({p)|j> =

or equivalently if v is independent of the
density

vip} = tr wp (5)

Finally the density matrix p is defined as
a sum of projectors on a set of N eigenstates
of RK+v{p) namely

p o= 2{: [as<at (6)

A

In other words, the Slater determinant Rk
is built out of N single particle states
elgenfunctions |A> of a mean cone body hamil-
tonian K+v(pg}.

The solutions of the HF eq.{3) is
genera11¥ obtained by iterations. Given an
ansatz p® of p leads to a potential v(p {0}
and after diagonalisation to a new density
matrix p'l) and so on. Starting from a den-
sity matrix p{©) optained in a phenomenclo-
gical mean potential and asking for a rea-
sonable rate of convergence for E (say less
than 10 keV) needs generally some 10 itera-—
tions.

1f one projects the HF equation (3)
on the x representation basis, one finds a
set of coupled integro-differential egua-
tions. In the case of interactions. of the
Skyrme type, E can be expressed as a
spatial integral of an algebraic function of
two density functions p(%) and t(¥) :

E = -/~ ax 3 o, (7)

where
N
PR = <EloiE = D e B2 (8)
A=1
and
N
T = ) [T, (|2 (9)
A=l

The HF equations then reduce to a purely
differential system of equations of the type

> Bt
-
{ 2n* (%)

where all the x dependence in the effective
mass m*(X) and the potential v (%) is expressed
again algebraically from the densities {(8)
and (9). It can be noted that in the energy
density formalism of Ref. 8], instead of
starting from an effective force, one para-
metrises directly the hamiltonian density
defined in (7) and therefore ends up with

the same type of HF eguations (10).

Vv (%) } P (X) = ey v, (%) (10)
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2.3 Pairing correlations

A consistent way to include pairing
correlations is referred to as the Hartree-
Fock~Rogolyubov (HFB) method. It consists
in assuming that the ground state wave func-
tion is well represented as an independent
quasi particle wave function [¢>. The guasi
particle states defined from particle sta-
tes by a unitary Bogolyubov transformation,
are determined through the minimisation of
<¢|H|¥>. This can be achieved by conside-
ring the reduced density matrix p

. . +
<i|pli> = <¢]aj a, | o> (11)

together with the so called pairing tenscor

<ififid> = <®|aiaj|<b> (12)
as new variational parameters.
Contrarily to the HF state {y> ., the

state |$> is not an eigenstate of the par-
ticle number operator N. Therefore in the
variation, one must introduce a supplemen-
tary condition ensuring the conservation of
the average particle number.
tation ngug g Otﬁgdga%? %ggggiogén
written as

tgg expec-—

<0|H|8> = tr pR + = tr [p v(p)+I a1 (13)
2

where v(p) 1is again the one body reduction
of v :

3

<i|vip)|d> = <d|v|e> {14}
a<j|p|1>
and the gap tensor 4 is defined as
<ila|j> = 2 2 v (15)
. %
a<j[H) 1>

Gogny has been the first to perform comple-
te HFB calculations for both spherical and
deformed as well as light and heavy nuclei

A cheap way of including pairing
correlations consists in doing a BCS cal-
culation on the top of an HF calculation.
the first difference with HFB lies in the
quasi particle transformation used,the so-
called Bogolyubov-Valatin transformation,
which is lesgs general than the Bogolyubov
one. On the other hand, consistent varia-
tions of the occupation probabilities and
of particle wave functions are not achieved
at all.

An other level of approximation is
reached when instead of using pairing type
matrix elements (defined as <ii{v}3jj>) of
the interaction v entering the microscopic
hamiltonian, one vntilises other matrix
elements. For instance, in the HF+BCS cal-
culations of Refs. 8] and 12], the pairing
matrix elements are computed from HF parti-
cle states but with an other phenomenologi-

9] |

cal twe body interaction w' 13] specially
adjusted to give correct pairing properties.
In HF+BCS calculations of deformed nuclei
using the Sky)ime interaction, a further
approximation +) has been employed 14]
Pairing matrix elements <ii|v'}jJ> are kept
equal to G,¥i, j, which clearly leaves ocut
the dependence of G on the intrinsic confi-
guration (e.g. on the deformation of the HF
solution). This appears to be of some im-
portance in shape transition region where
one may hesitate between an oblate or a pro-
late solution for instance. Then the gues-
tions arises of the choice of the G constant
in one and the other HF local minimum

3, Relation with other approaches

3.1 Generalities

In this section we want to discuss
the connexion between HF calculations of
nuclear binding energies and ligquid drop or
Strutinsky approaches to them. We skip the
discussion on extrapolation formulas (see
e.g. Ref. 16}) mainly because for known nu-
clei they hardly go far beyond a simple para-
metrisation of experimental figures, whereas
for unknown isotopes they are a priori una-
ble to predict any sudden change in the
neclear structure if such a transition has
not shown up for any known nuclei in the
neighbourhocod.

It has been soon realized that bin-
ding energies calculated within the liquid
drop medel exhibited clear deviatiom from
experimental ones. Moreover, these discre-
pancies showed regularities connected with
the 1ocatioq of magic numbers. Myers and
Swiatecki I ! have been the first to syste-
matically add to liquid drop masses a spegf-
fic shell effect correction. Strutinsky !
has sgettled down in the HF framework a pro-
per microscopic deviation of these shell
correction energies as well as a convenient
technical procedure for their practical com-

(+)For brevity we skip the discussion of so
called A constant calculations and refer to
Refs. 14-15] for further details. In this
connexion we would like to point out a mis-
take in Ref. 141, where the variational
equation (7.7) writes as

G[E Zeif{ ¢ (R){%&°R }‘nzi:‘sqi,-l/zni

by A=
Pzﬁqi,l/znl] 0 (16)
1
with
2
E=f3€(p,T)da§ - g (Z‘Ei(l-ni)) (17)
i

If the varlation in (16) with respect to

6¢§ leads to ordinary HF equations (7~8), the
variation with respect to d§n; does not give
the BCS equations (7-9). Should Ije; in {16)
be replaced by Ijnje;, Eg. (7-9) wouid be ful-
£filled but not Eq.%?—S). Therefore the varia-
tional character of the determination of
both occupation probabilities and wave func-
tions is not ensured.
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tation. The microscopic derivation will be
referred to after Bethe 1 as the
Strutinsky energy theorem whereas the tech-
nical recipe will be called the Strutinsky
smoothing procedure. It should be emphasi-
zed that the later represents only one among
other possible ways of achieving the
smoothing procedure. Moreover its proper
foundation in terms of a semi classical
approximation has been further established
as we will shortly discuss it. As a whole,
the complete approach has received the name
of the Strutinsky method and has been wide-
ly used, in particular f0f the determina-
tion of nuclear masses 20J,

3.2 The Strutinsky energy theorem

The HF energy (2) can be considered
as a functional E(p) of the reduced density
matrix p . The "theorem" consists in expan-
ding such a functional around a semi-classi-
cal approximation p of p. So far we reserve
the discussion of how p would be defined
for sub~section 3.3 and take for granted
that the Strutinsky smoothing procedure
does it well for us. Namely we will define

p as
D= E 5y A <l (18)

A

where the set of {m} is the ordinary sef
of Strutinsky occupation probabilities2l
defined only through the HF single particle
energy spectrum, The expansion of E(p)
writes :

E(p)=E(E)+tr(k+trpV)(0—5)— Lertr (o=p) v (p=7)
2 (19)

The first term is the semi~classical appro-
ximation to E{p) and according to Strutinsky
represents the liguid drop model energy.

The second term is nothing else than the
first order (ordinary) shell correction
since

tr (K + trpv) (p-p) = fe - Ie (20)

where Ie is the sum of HF occupied single
particle energies and iLe its Strutinsky’
smoothed value.

The last term of Eg.(l19) has been
assumed by Strutinsky sufficiently small to
be neglected.

As a matter of fact Strutinsky 18]
has not exactly proposed his theorem accor-
ding to the previcus lines, but in a slight-
ly more involved way. Starting from the HF
density p, he first defines p as in (18)
and then diagonalising the mean hamiltonian
K+v{p), he gets a new density §, the smooth
value of which is p. Finally utilising the
stationarity of E{p) around p in the space
of normalised Siater determinants he gets

E(p) = (T6 - Ztr pvp) + (3@ - T8)
2
+ gtr tr 0-F)v(p-F) - (p=p)vip=p)]} (21)

where the set {&} corresponds now to the
spectrum_of K+v(p). Assuming with Strutinsky
that (p-p) and (f~p)_are of the same order,
assuming also that {(p-p) is one order less,
leads in (21) to zero and first order terms
identical (up to second order terms) to
those obtained in (19). Indeed Strutinsky
wanted to define the first order shell
correction from a single particle energy
spectrum obtained in a smooth mean potential
v{(g) as the phenomenclogical potentials are,
contrarily to the HF ones. That is why he
has derived his theorem through auxiliary

f and p densities,

All the preceding assumptions have
been recently numerically checked 2224
within the HF approach. The HF solution p
and energy E{p) being known, one defines o5
according to the Strutinsky procedure then
computes zero and first order terms and
therefore deduce higlier order terms.

The E{(p) term has been shown to be
qualitatively and guantitatively very simi-
lar to a liguid drop energy. This is seen
for instance on fig.l where_ the deformation
energy curve E(p) of the Yb nucleus for
the quadrupole mode, is reported. On the
other hand the higher order terms in {19}
or (21) have been found very small (see fig.2).
A third version of the energy theorem has
been also derived in Ref.24]. It corresponds
to a self consistent calgulation of the
density matrix labelled p. Such a calcula-
tion is self consistent in the sense that ¥
is formally identical to the p defined in
{18) but with single particle wave func-
tions eigenstates of K+v{¥). This selif-
consistently smooth HF sclution is formally
similar E? an HF solution at finite tempe-
rature 2 .

Within this last version of the
energy theorem, the zero and first order
terms exhaust almost all the HF energy,
leaving only less than .6MeV for higher
order terms. The latter is true for a sample
of nuclei scattered on the whole chart of
nuclides as shown on Table 1. It should be
noticed that for nuclei as light as 16g, or
even Ca, the smaliness of the corrective
term is also obtained, whereas for the
ordinary versions (192} or (21) of the ener-
gy theorem, first and higher order terms are
found to he of the same order of magnitude.

3.3 Strutinsky smocthing method and semi-
classical approximations

We are left now with the problem of
how the Strutinsky smoothing procedure isg
related to a semi-classical approximation,
since such an assumption has been made
before (e.g. when considering E{(3) as a
liguid drop model energy). Such a relation
has been extensively studied, but so far
only for one-body hamiltonian. Among other
approaches it is worthwhile to quote the
partition function method ggvg%fped by
Bhaduri and collaborators ” . Starting
from the fact that the single particle level
density is the inverse laplace transform
of the single particle partition Ffunction
7, they expand this functionZ in powers of
h using a general formalism due to Wigner and
Kirkwood 291, Retaining only the first terms
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of such an expansion constitutes a semi-
classical approximation to Z. By inverse
Laplace transformation one obtains a smooth
level density to be directly compared with
the Strutinsky one. These two smooth level
densities have been shown to be agﬁ%gticallz
equivalent in some special cases Tn other
cages, the two methods yields numerically
the same classical energies within
n1Mey 2 }, thig is also true when the one
body haTiltonian includes a spin orbit
term 281,

3.4 Conclusion

The expansion of the HF energy in
terms of the difference between the HF den-
sity matrix and its semi-classical approxi-
mation seems to be rapidly convergent. Howe-
ver so far the practical way this approxi-
mation is made is not yet completely proven
to be correct (even though it is likely to
be the case) for two body (or more) hamilto-
nian. Should it be correct, the validity
of the Strutinsky method as an approximation
to the HF approach would result from the
preceding. Nevertheless, disregarding small
possible inaccuracies in the technical
smoothing procedure, it should be emphasized
that this validity has been essentially
‘proven for a liquid drop model and shell
correction energies deriving consistently
from the same nucleon~nucleon interaction.
This a priori conditicn is of course impos-
sible to establish in practical utilizations
of the method.

4, Advantages and drawbacks of HF calcula~
tions of nuclear magses

Let us start our general discus=~
sion of HF results by summarizing some gene-
ral remarks on the main drawbacks of these
calculations.

The first source of systematical
errors in such an approach is naturally to
be found in the choice of the force itself.
In the most fundamental effective forces of
Refs. 1-2] it has already been quoted that
phenomonelogy is not quite absent, as far
as inclusion of higher order diagrams is
concerned. Moreover in these calculations as
in the purely phenomenclogical ones {i.e.
using entirely phenomenological effective
force) one must choose a priori an analyti-
cal form for each part of the force, in
particular for the density dependence (see
e.g. the discussion of Ref. 2]}. The pre-
ceding brings clearly into the whole approach
a touch of arbiltrariness and sometimes con-
siderable limitations. This obviously hap-
peng for forces as the Skyrme ones with a
zero range for the main part of the attrac-
tive force. On the other hand, in the absen-
ce of explicit tensor forces, one must exert
caution about some predicted properties of
non spin-saturated nuclei and spin-orbit
splittings. The latter restriction is of
primary importance for the discussion of HF
results obtained in the super heavy nuclei
region. Finally, one shodld bear in mind
that as soon as the analytical skeleton of
the force has been choosen, one has to de-

termine the actual values of the parameters
through a fit which is always to be under-
stood as a compromise within a selected sam=-
ple of constraints.

Due teo its range, the Coulonb
interaction does not contribute to the total
energy in an analytical form as simple as
the Skyrme force does. Therefore in calcula-
tions using Skyrme forces one generally ap-
proximates the Coulomb exchange total ener-
ay Eg,exc. wWithin a Slater approximation
proposed in Ref. 30] :

1/3 N

E (22)
C.exc, 4 \n

The contribution of E, ... to the BF poten-
tial 1s local and writes

1/3
23 >, 1/3
Ve, exc, (F) = & ( ) [pP(r)]

kil

(23)

Some HF calculations including such an
approximation have been tested against

exact calculations 311 for light nuclei

(from 180 to 96Ni). Relative arrors for
Eqs.exe., ranges from 5% to 8% (let us recg}%
that Eg5 exe. represents roughly (-0.76/2 1%
of the direct Coulomb energy).

Practical resolution of the HF
equations may lead to a systematical lack of
binding energy. This can be first caused by
the choice of too restrictive symmetries,
as spherical or axial symmetry. So far the
breaking of other symmetries, as left-right
reflexion symmetry Is generally not belie-
ved to play any role in the static descrip-
tion of nuclear ground states. With the
exception of some HF codes working within
the spherical symmetry, HF eguations are
generally solved, as we will see in the
next section, by diagonalisation of the HF
hamjiltonian in a truncated basis. A depen-
dence of the binding energy on the parame-
ters defining the basis is yielded by this
practical way of resolution. Such a depen-
dence 1s sometimes very important, for ins-
tance is the size of the basis is small
(see the discussion of section 5). The
resulting lack of binding energy will be
called the truncation energy. The guestion
then arises of how one can determine such
an energy ? For the Skyrme force case one
can proceed in the following way. First one
assumesg that for a given size of the basis
the truncation energy is independent on the
deformation. On the other hand the trunca-
tion energy is known for the spherical solu-
tion since a diregt resolution of the HF
equations in the X space is available 111,
Therefore one can in such a way estimate
truncation energies, even for deformed nu-
clei. In the Skyrme case 112 parameters
have been fitted by a direct comparison bet-
ween calculated (with truncation correction)and
experimental binding energies. This was
not the case for instance in the case of
the Gogny force ?!, where no spherically
symmetric solutions were available to esta-
blish the truncation error. The parameters
in that case have been fitted in such a way
that nuclear masses computed in a reasonna-
bly sized basis {(v7 major shells for s-d
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shell nuclei, ~11 for rare earth nuclei,
13 for actinide nuclei) fits relatively
well with experimental ones.

In sub-section 2.3, the limita-
tion of HF+BCS calculations with respect to
fully consistent HFB calculations have been
already discussed. Let us simply reformula-—
te that when pairing correlations are pre-
sent in the way we have included them, our
solutions, being not elgenstates of the
number of particles operator, are mixtures
of different nuclei. This might have some
importance in regions where any kind of
transitions occurs where the nucleon number
is changed. This could be in principle
remedied by a projection on states having
a good number of particles but has not been
done in the calculations reported here.

We will now turn the discussion
on some limitations arising from the inde-
pendent particle or gquasi particle charac-
ter of our ansatz (HF, HF+BCS or HFB) for
the ground state wave functions. Such wave
functions are eigenstates neither of the
total angular momentum nor of the total
linear momentum. Both approximations intro-
duce spurious energies due to the rotation
or to the center of mass motions. When the
collective variables associated with one
or the other mode can be easily decoupled
from intrinsic ones (e.g. for the rotation
in the perfect rotor case, for the transla-
tion in the harmonic oscillator case) one
knows the exact amount of energy to subs-
tract to the calculated HF mass. In that
case this energy is for rotation %) 33] .

T2

2
"...--f-‘—— <J

E > {24)
rot. 2‘3

and for translation

E == <P?%> {25)
transl. M

where the expectation value are to be taken
on the HF wave function, and where J and
M are respectively the total moment of iner-
tia and the total mass of the nucleus. Ge-
nerally the correction (25) has been taken
into account during the variation of the
individual states, whereas the correction
(24) has been included after variation. It
could be added that in thF calculations
using the Skyrme force 12 only an appro-
ximate correction energy (25) has been
used, precisely the two body part of P2 has
been omitted3 ?he latter approximation has
been tested -4/ and found to only result in
a slight renormalisation of the parameters
of the force.

More generally, long range corre-—
lations are known to play an important role
in some nuclei (as the so-called vibrational
nuclei) . Their systematical inclusion which

*Clearly all calculated spherical nuclei
correspond exactly to zero total angular
momentum states as long as all magnetic
substates of a subshell are egually filled,
which is generally the case.

is presently far beyond the theoretical pos-
sibilities, would lead to a lowering of the
calculated total energies. On the other hand
it could be also said in other words that
our approach is purely static. Choosing a
set of collective variables, we assume that
the ground state is defined as the absolute
minimum in the energy surface obtained by
the variation of all the collective varia-
bles. Since the inertial parameters may in
principle (and do in many cases) vary stron-
gly with the collective coordinates, a cor-
rect dynamical treatment could produce a
displacement in the location of the ground
state ocut of the statically defined one.

For symmetry reasons, one would
expect a list of advantages to be found in
HF caleculations of nuclear masses, at least
as long as the ligt of drawbacks. This will
not be the case, mainly since advantages are
only relative concepts. The related approa-
ches to be compared with,are the extrapola-
tion formulas and the ligquid drop approach
supplemented by the Strutinsky method. We
have already recalled the limitations of the
first approach, whereas we have previously
insisted on the main problem of the second
approach the degree of consistency between
parameters of its two ingredients (liguid
drop model and shell model). On the other
hand the Strutinsky method is faced with
the problem of finding a correct parametri-
sation of t?e shell model for all region of
nuclides 33! and of the liquid drop model
especially for light nucledi . Would such
a fit be correct, again the above recalled
inconsistency might lead to very bad results
when the strutinsk¥ me ?od is applied to light
nuclei (e.g. 3-241y | Moreover the
goodness of a fit does not imply the validi-
ty of extrapolation towards unknown region
of nuclei if the correct concepts are not
included in the theory.

Such a perspective is proper to
understand the relative validity of the HF
approach to nuclear masses. We do believe
indeed, that even though drastically appro-
ximate, a solution of the many body problem
out of a two body force provides an a priori
correct scheme for extrapolation to unknown
nuclear species. Such a confidence is subs-
tantiated by the fact that with the Skyrme
force one is able to reproduce rather accura-
tely a lot of nuclear properties on the whole
chart of nuclides with only 6 constant para=
meters.,

If it is apparent that HF calecu-
lations provides the more fundamental prac-
tical approach to nuclear masses, it remains
to be shown that their results favourably or
at least egually compare with those produced
by more phenomenclogical methods. This will
be the subject of section 6, However it is
important to sketch rapidly at that point,
some of the technical methods which have
allowed the practical achievement of such
calculations.

5. Short survey of main technigues in use

Two features dominate the teche
nical problems raised by the practical re-
solution of the HF equations. The First is
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the analvtical form of the interaction. For
instance, as we have seen in section 2, the
HF eguations are considerably simplified in
the case of Skyrme like forces., The second
important feature consists in the symmetries
imposed to the HF solution. In the case of
the spherical symmetry, the angular varia-
bles are trivially taken into account and
one is left simply with a one variable in-
tegro-differential (if not purely differen-
tial) system of equations. With axial symme-
try one is left with a two variable problem.

For the practical resolution
of HF equations two maln possibilities are
offered either one projects these equa-
tions onto the x representation or one does
it onto harmonilc oscillator states. The
first case is well suited for spherically
symmetric solutions. Such integro-differen-
tial systems have been first sclved by
Brueckner et al. and by Vautherin and
Veneroni 371, wWith Skyrme like forces the
resolution of the HF differential system is
gquite easg to be achieved for spherical so-
lutions For deformed nucleil, the reso-
lution of the HF equations in the configu~
ration space has not generally been adopted.
On the contrary the projection onto a defor-
med harmonic oscillator basis has been wi-
dely used.

One of the main technical
problem is the computation of the two body
matrix elements v for such basis states
labelled v;. Consider such a matrix element
in the one dimensional case as

<ij]v§k9v>=fs0§(xi)xo’jl(xz)v(xl-xn\ok(x])

¢2(XZ}dx1de {26}

There are two methods to evaluate the inte-
gral (26). One consists in changing the
product vy (x1)¥ws (X2} by a Moshinsky trans—
formation 1nto s%ates whose arguTents are
(21+%2) /¥E and (xy=-%,)/V3 The same
is done for ¢y (x:i)vg{xz) and then the center
of mass variable integration is readily
done to yield a simple integral in the
relative variable. This integral is given
analytically if the force is e,g. gaussian
or has a zero range character. For more
complicated forces as the coulomb one one

is lead back to the gaussiaP case by simple
integral representations An alternatjiv
method to compute (26) has been proposed

and recently widely extended 1. 1t consists
in using the property of a product of two
harmonic oscillator wave functions which can
be written as the following restricted sum :

¢y (x)e;(x) = nmi/4
it i1k L _2/2
E\/ e o x)
(i+5- k) Gitk-3) (3+k i)
2 2 2 (27)
({i+4+k}) = even).

Furthermore if v is a gaussian, one uges an

integral equation transforming J v(x;=X3z)
¢{x1)dx, into a harmonic oscillator wave

function ¢ (mx,) ,a being related to the

width of the gaussian. The remaining inte-
gral for the x, variable is then trivial.

It should be emphasized that the
method of projection onto an harmonic oscil-
lator basis implies the use of truncated
basis. As well known this introduces for a
given size of the basis z dependence of the
HF solution on the basis parameters, i.e.
for the axial symmetry case the two frequen-
cles w; and w, or equivalently q=w] /We ,
b=/mmo§ﬁ (withzmg—w wz) . In the Spléltzof
the HF variational method, one searches for
the lowest possible energy and therefore
tries to minimize Egp(b,q} viewed as a func-
tion of b and g. The result of such a two
dimensional minimization is reproduced in
Fig.3 for the 248%Ccm deformed nucleus
whereas in Fig.4 the variation of EHFéb,q 1}
is given for the spherical nucleus 0cad?
The similar behaviour of Eyp{b) for various
effective interactions can be noticed.

6. Discussion of some selected HF results

Binding energies of some spherical
nuclei obtained in thf effective force cal-
culationf of Negele and of Campi and
Sprung are displayed on Tables 2 and 3.
Calculated values and experimental ones 44!
are in reasonable qualitative agreement. In
Tabkle 2, the results of an approximation 30]
to the calculations of Negele are also repor-
ted., Such an approximation is obtained by
expanding the density matrix in order to
produce a total HF energy given by an equa-~
tion similar to Eq. (7), thus carrying most
of the numerical simplicity of the Skyrme
like forces. As seen on Table 2, the results
obtained in this approximation (DME) are
found in better agreement with experimental
figures than those obtained in exact calcu~
lations (DDHF). However it should be men-
tionned that the effective force used in DME
had not the same phenomenological correcting
part than the one included in DDHF. On Fig.5
binding ?nergies of even tin isotopes calcu-
lated with the effective force of Campi
and Sgrung, are compared with experimental
ones . Pairing correlations are included
in a2 HF+BCS way for neutrons. The reproduc-
tion of known masses is found excellent.

Gogny 8] has been the first to per~
form HFB calculations which are complete in
the sense that no restricted (at least in
principle) space is used for the variation
of the guasi particle states and no kind of
inert core is introduced. Such calculations
have been extended in the whole chart of
nuclides for spherical and axially symmetri-
cal nuclei., Table 4 illustrates one of the
main feature of such calculations. Splitting
the HFB energy into two parts, one Ey stem-
ming from the HF potential v(p) and the
other Ep from the pairing gap tensor A, one
finds that the introduction of pairing corre-
lations increases Ep and decreases Ep, resul-
ting as expected in a lowering of the total
energy. For all calculated nuclei the abso-
lute value of the difference between calcu~
lated and experimental masses lies wi=-
thin 0 and 5 Mev. Such a statement however
is simply indicative since one should been
in mind the problem encountered in that case
with the truncation energy as recalled in
section 4.
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With simple phenomenological
forces as the Skyrme force, one can rather
cheaply perform a lot of HF calculations
assuming the spherical symmetry for the
solutions. The results for binding energies
obtained with the Skyrme SIII force are
summarized on Fig.6. The solid line corres-—
ponds to results obtained for nuclei located
along a path in the N-Z plane, wiggling
accross the stability valley. In region were
nuclei are known to be deformed, the assump-
tion of spherical symmetry leads to a lack
of binding. For some ngclei ?eformed ground
states are available 48,5I-52] Estimating
the truncation error as sketched in section
4,0one y%ifds agreement with experimental
nasses better by far. As a result,cal-
culated binding energies disagree by less
than 5 MeV on the whole chart of nuclides.
Rather similar results are obtained for
spherical HF solutions cbtained %P the so-
called energy density formalism . Figure
7 shows the results of the latter calecula-
tions for the determination of the neutron
and proton drip lines It should be
stressed again that such calculations assu-
me spherical symmetry and therefore might
be corrected for specific deformation
effects.

The determination of ground
state properties needs sometimes a correct
knowledge of the deformation energy curves.
This is particularly the case of the so-
called shape-transitional nuclei like the
Cadmium isotopes calculated with the
Skyrme SIII force whose results are repor-
ted on Fig.8. Indeed one has to decide
wether the ground state has an oblate or a
prolate shape. No real choice is left in
fact and one takes generxally the solution
yvielding the lowest HF energy, but this is
not free of all the gquestions raised in
sections 2 and 4 (pairing treatment, dyna-
mical effects, imposed symmetries, rotatio-
nal spurious energies,...). However such
calculaticons provide rather useful infor-
mations, in particular they ascertain the
"soft" character of such nuclei.

In the HF calculations of neu-
tron rich sodium isotopes of Ref.46], not
only binding energy systematics has been
fairly accounted for, but also a hint on
the possible deformation behaviour of such
isotopes has been proposed. The prolate
side of deformation energy curves calecula-
ted with the Skyrme SIII effective force
are displayed in Fig.9. Inspecting Fig.l0,
one clearly sees that for N=20 a negative
shell effect should occur for a rather lar-
ge {fv.4,0, V50fm ) deformation. Its origin
iz simply gelated to the crossings of
1£7/2 and 1d3/2 subshells., In fact one
see8 on Fig.9 the appearance at such a de~
formation of a secondary minimum for the

INa isotope. For this particular isotaope
the more deformed minimum lies higher in
energy but correcting approximately (as
written in (24)) for the spurious rotatio-
nal energy makes the more deformed state
more bound than the other minimum. This is
summarized on Fig.,ll together with other
useful informations. The experimental re-
sults of Ref.58] have been displayed in the
form of the two neutron geparation energies
Bayn. The most striking fact is the raise
of the guantity By, for A=31. As in other

nuclear regions, this could be related to a
sudden change of deformation. Such an expla-
nation is substantiated by the calcoulational
results of Ref.46] as demonstrated in Part
c} of Fig.ll. Part a) displays guite a nice
example of possibly misleading agreement
between regional calculations and experimen=—
tal results. Assuming spherical symmetry,

HF results (with the Skyrme SIII force)

just fit the Byn systematics in the vicinity
of the 31lNa nucleus. In fact it is purely
coincidental as the bad results for lower
value of N demonstrate. On the other hand

it is interesting to notice the discrepancy
between spherical solutions cbtained with
Skyrme SIII and SIV forces compared with
their overall agreement when deformation is
allowed. This example clearly indicates that
one should exert caution hefore concluding
from a too restricted sample of calculational
evidence.

The stability of superheavy ele-
ments is known to be related to negative
shell effects at sphericity producing a
trap in the continuously decreasing liguid
drop deformation energy. On ¥Fig.12 the de-
formation energy of one possible candidate

8114 is displayed. It has been calcula-
ted 47 with the Skyrme SITI force and
exhibits a first fission barrier which is
lower than those cbtained within the Stru-
tinsky method 9-61] | predictions of beta
and alpha decay properties have been also
derived from calculated HF masses with the
help of some simple approximations. They
are generally, as for the fission mode,
more pessimistic than those calculated in
more phenomenological approaches 29« .
Finally an example of spherical single par-
ticle spectra near the Fermi level for some
superheavy nuclei is displayed in Fig.13,
The proton number %=114 and to a lesser
extent Z=120 and 138 together with the
neutron numbers N=184 and 228 are found to
be possible candidates for a sufficiently
negative shell effect. One interesting de-
tail lies in the fact that the gaps are
self-consistently dependent on the filling
of levels. For instance, in 2114 the gap
at N=184 is 2.2 MeV and only 1.6 MeV in
298114, or in 348120 the gap at =120 is
1.4 MeV and only .7 Mev in 304120. Thig is
of course of some importance to our problem
and it is to be considered when appreciating
the results obtained from phenomenclogical
mean potentials. However as previously said,
in that case the predicting power of all
calculations (including HF) is greatly gdi-
minished a priori by the absence of an ex-
plicit tensor force,

7. Conclusion

It was the aim of this review to
show how far HF determinations of nuclear
masses have reached both in the technologi-
cal aspects and in the precision of results.
It is fair to conclude that for known nuclei
they produce results which are in general
as good as those cobtained by more phenome-
nelogical approaches, whereas for unknown
nuclei they provide a convenient tool for
extrapolation.

Calculations within the HF appro-
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ximation constitutes therefore a convenient
tool for the study of nuclei far from sta-

bility, nothing more than a tool but quite

an effective one which has already provided
promising results.
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v e

Nucleus|  Ep E i 5B (€) §E1 () §E2 () §E2 (£)
164 - 126.8 - 122.1 |- 122.7 - 4.7 - 5.7 0.0 1.6
40

ca | - 339.6 - 337.5 |- 1338.1 - 2.7 - 4.8 0.5 3.3
56, .

Ni | - 479.9 - 473.7 |- 473.5 - 6.9 - 5.5 0.6 5.1
90 )

zr |~ 779.2 | - 774.3 {- 775.7 |- 5.3 -~ 5.8 0.6 2.3
Mg, 1L 960.4 - 961.1 |~ 961.3 0.5 0.1 0.2 0.8
188yy | - 1352.2 | - 1349.6 |- 1349.9 - 3.0 - 4.3 0.3 2.0
208

Pb | - 1625.4 | - 1606.6 |- 1607.1 - 19,2 - 20.6 0.5 2.3

Table 1 :

First order §E:; and higher order &8
tions obtained with the Skyrme force (set of

respectively to the version (21) of the Strutingk
in Ref. 24]. For comparison,

the two smooth energies E and
to the two previous cases) are also reported along with the H
lations were performed at the ground state deformations.

2z shell corrections calculated frommHF solu-—
parameters SIII). The labels £ and £ refer
Y energy theorem and to the one derived

(corresponding in that order

T reference energy Eyp. Calcu-
Energles are given in MeV.

Nucleus 16O 40Ca 902r 208Pb Nucleus 160 40Ca 48Ca 90Zr 208Pb
Exp . 7.98 8.55 8.71 7.87 Exp 7.98 8.55 B.67 8.71 7.87
]
i
DDHE 7.59 7.99 8.33 7.83 DDHF 7.68 8.33 8.40 8.63 7.87
DME 7.99 8.82 8.97 8.08 Table 3 : Same table as_table 2 but with the
Campi and Sprung force
Table 2 : Comparison of experimental 44]

and theoretical binding energies per par-
ticle expressed in MeV. The Negele force
wasg used for DDHEF results 1

proximation
DME results

and its ap-

ggaNegele and Vautherin for

Nucleus 70Ge 114Sn 1188n 122Sn

- EHF 601.7 968.4 1001.814 1017.9

- EP 17.0 11,1 11.4 11.9

- EH 590.4 959.1 993.2 | 1023.6

- EHFB 607.4 970.2 1004.6{ 1035.5
Table 4 : Calculated binding energies in HFB

calculations of Gogny . Energies are given
in MeV, The subscript HF refers to HF calcu-
lations and HFB to HFB calculations. The HFB
energy is split into two pieces : Ey where
enters the HF potential v{p), Ep where enters
the pairing gap tensor A (see formula (13)

of the text).
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Figure 1 : Comparison of various deformation energy curves for the 168Yb nucleus.
The Eyp energy is obtained with the Skyrme SIII force, whereas B is the correspon-~
ding zero order part defined in the formula (21) of the text. The energy Eyp is
obtained with the Myers and Swiatecki liquid drop parameters 17] . The energies E
are plotted versus the mass quadrupole moment { expressed in barn.
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Figure 2 : Variation of the sum of higher order terms §B: defined in the formula

(21) of the text as a function of the nucleon number A. Calculations?2 have been
performed with the Skyrme SIII force.
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Figure 3 : Examples?f a two parameters optimization of the HF energy E, for a typical

eformed nucleus 4

Basis parameters b and g are defined in the text and energies E

are expressed in MeV. The Skyrme SIII force has been used.
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Figure 4 : Example of a one parameter
optimization of the HF energy E for
the 40¢ca nucleus 49}, The solid, lines
correspond to the Gogny force },

the dotted line to the Skyrme SIII
force 121 and the dashed one to the
DME approximation 30 of the Negele
force . The numbers N refer to the
size of the spherical harmonic oscil-
lator basis {N=n means n+l major
shells included in the basis). The
line N=x refers to a calculation in
the x space 11!, Energies computed
with different forces have arbitrary
origins and are expressed in MeV. The
parameter b is defined in the text.
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Figure 5 : Compgﬁison of experimental
840 G-0 and calculated binding energies per
: particle for tin isotopes. Spherical symme-
try has beeqn assumed. The GO force of Campi
and Sprung 2] has been used. Energies are
plotted against the nucleon number A.
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Figure 6 : Comparison of energy differences between calculatedlz
and experimental 44) binding energies. The Skyrme SIII force has
been used. The solid line has been obtained along some paths
accross the stability valley and with spherical symmetry assumed.
Dots correspond to energy differences corrected for the deforma-—
tion energy (s.d. shell nuclei : 51], rare-earth nuclei : 52],
actinide nuclel 48]). Energy differences defined as ABchalc'Bexp'
are plotted against the nucleon number A.
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Figure 7 : Structure of the nucleon drip lines for light and medium spherical nuclei 53], Full
circles indicate the last doubly even stable nuclei, Open circles denote the last even-Z odd-N
stable nuclei on the proton side and the last even N odd-Z stable nuclei on the neutron side.
Stars indicate the first unstable nuclei for odd-Z on the proton side and for odd-N on the neu-

tron side. The thick lines indicate the position of the magic numbers ;

the semi-magic numbers.

E (MeV)

-86] 98Cd
-8l ]
%2Cd:
-856| i
8581 ]
L 106Cd.
-896| i
-898l ]
N 1
- 0Cd
-93f ]
-933p (barn)
-10 0 10 Qrrgss

- 138 -

the dotted lines show

Figure 8 : Deformation energy curves as a
function of mass guadrupcle moment for

some Cadmium isotopes. Calculations have
been performed with the Skyrme SIII force.
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Figure 9 : Deformation energy curves as a
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some odd sodium isotopes. Caleulations 46!
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force.
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Figure 10 : Single particle neu-
tron spectrum of 3lNa as a func-
tion of the proton gquadrupole
moment (prolate part only). For
the spherical symmetry case,
levels are labelled by ni3j whe~
reas for deformed states they
are referred to by Q". Calcula-
tions 46} have been performed
with the Skyrme SIIT force.
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Figure 11 : Comparison of calculated 46!

and experimental 58] two neutrorg separation ener-~
gies B nt as a function of the nucleon number A. Calculations have been performed with SIII
and SIV effective forces. Part a} of the figure is obtained when the spherical symmetrv is
imposed, Part b) when deformation is allowed. In Part c) the solid line represents the
calculated Boy after rotation energy correction as defined in the formula (24) of the text.

The dashed line is the same as in Part b). The dotted line corresponds to By, energies not
corrected for rotation energy but obtained when the more deformed minimum is used in the
computation of Bap in the 3INa region (see text).
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Figure 12 : Fission barrier of the 298

114 nucleus expres
a functicn of the mass guadrupole moment. Calculations 4
been performed with the Skyrme SIII force.
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Figure 13 : Calculated fingle particle spectra near the fermi level of some super heavy
nuclei. Calculations %7 have been performed with the Skyrme SIII force.
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