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1, Introduction

The energy density method used in the
present work originates from the Kohn's
density functional approach 1 In its
earliest formulation, the Kohn's theorem
says that the total energy of a fermion
system can be written under the form of a
functional of the density,

EtOt. = B [D] ' (1}

subject to the constraint that

Jp(r)d3r =A (2)

where A represents the particle number. The
ground state properties are then obtained
by minimizing Efpt with respect to pl(r).
The ground state density py (r) determines
not only the total energy of the system but
also any observable directly related to it.
For instance, it gives the average size of
the system, usually takern as the r.m.s.
radius. Consequently, in the functional
method, checking the particle distributions
appears as important as checking the .
binding energies when testing the validity
0f a particular functional. Conversely, in
a idealized case, if a functional reprodu-
ces binding energies accurately, it must
yield accurate ground state densities.

Adapting the method to nuclei, a func-
tional has been constructed by considering
a density dependent effective interaction
(derived in connection with nuclear matter
properties} and a ground state wave func-
tion taken as the product of proton and
neutron unprojected B.C.S.-wave functions.
The field variables are constituted by
single particle orbitals and their occupa-
tion numbers. The minimization procedure
leads to a system of Hartree-Fock-Bogoliubov
type coupled equations. By neglecting the
variational derivatives of the pairing
correlation energy with respect to the
single particle orbitals in the field equa-
tions (which turns out to be a reasonable
approximation), the system reduces to
Hartree-Fock-BCS equations, which can be
solved rather easily by iterations. The gap
ratrix is calculated by means of a simple
effective interaction derived from the
Hamada-Johnston potential. Details concer-—
ning the basic equations can be found in
ref. 2].
xLaboratoire associé au C.N.R.8.

The energy density method has been
used to calculate the ground state proper-—
ties of about 2500 spherical nuclei inside
the drip lines for NSB8(¥2) and z<54 (¥N)
with few exceptions around Z=82 and N=126.
Results concerning the bfnding energies have
already been discussed 3!. To fix ideas we
recall that for the known spherical nuclei,
the average difference between calculated
and measured binding energies is of about
-2.5 Mev with a mean quadratic deviation
of 1.7 Mev.

In the case of particle distributions,
the main problem consists in extracting
useful informations from experimental data,
unless model independent analyses exist. In
order to avoid a tedious discussion, which
stands outside the scope of the present
paper, we shall simply quote the following
results :

For stable spherical nuclei, the elec~
tron elastic differential cross sections
calculated by using our self-consistent
charge distributions are in good agreement
with available experimental data up to
momentum transfers of about 2fm~l. The
charge radii agree with experimental va-
lues within 1-2%, Similarly the proton
and neutron densities have been used succes-
sfully to calculate hadron scattering ?ross
sections (mainly elastic scattering) =1,
This general agreement,_which jis found
roughly from 160 up to <2Y€pp guaranties
that the model is free from particular dis-
torsions and gives us confidence when extra-
polating it to unstable nuclei.

In what is following, we shall be
concerned with the predictions of the ener-
gy density method with respect to the
nuclear sizes (r.m.s. radii). It is known
that the commonly accepted al 3~type laws
are only approximative and deviations are
expected to grow significantly as one goes
away from the B-stability region. Particular
attention will be payed to the variation of
nueclear radii in the drip line regions. Im-
plications of the resulting large total
Coulomb energy variations between neighbou-
ring nuclei will be emphasized.

2. Properties of the calculated nucleon
distributions

2.1 Proton distributions of stable nuclei

The experimental r.m.s. charge radius,
re» is accurateiy known for many stable even
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nuclei distributed along the valley of a-
stability. A good estimate of the r.m.s.
proton radius, r,,, can then be obtained by
using the follow?ng simple relation

ry = (x} - 0.64)1/2 (3)

based upon the assumption of a gaussian
charge distribution of the proton.

The variation of r, against A is given
in the right lower part of Fig.l. The cal-
culated values correspond to even nuclei
lying on a step line which connects alter-
natively isotope and isotone series, Each
isotope (isotone) series contains all the
nuclel for which the masses have been mea-
sured 7l . This step line follows on the
average the valley of B-stability (starting
at 160 and ending at 254Fm) and allows to
study separately the theoretical effect on
the proton radius of the addition of pairs
of protons (black stars) and of pairs of
neutrons (black circles). We have also
plotted the experimental proton radius
(open stars) of 160, 40ca, 58nji, 90gr,
1285n and 208pp,

This plot shows clearly that

i} the agreement between experimental
and calculated r.m.s., proton radii is very
good ;

ii) the average behaviour of the cal-
culated proton radius along the valley of
B-gtability is almost consistent with a
Al/3-law. However such a law underestimates
T, in the case of light nuclei and overesti-
mgtes it slightly in the heavy ones ;

iii) the proton radius of isotopes
(isotones) increases less (more) rapidly
that the prediction of the average Al/3-]aw.
This is in qualitat%ve agreement with the
experimental data 4.

2.2 Deviations of the nuclear sizes from
Al/3-laws

It is interesting to check if property
iii) holds on a larger scale and if a simi-
lar, symmetrical situation occurs for the
neutron r.m.s. radius rp. The study of the
variations of the nuclear radli of even
spherical nuclei ranging from one drip line
to the other will therefore bring signifi-
cant informations.

We have found that the two calculated
functions of two integer variables r_(%Z,N)
and r,(Z,N) cannot be approximated with an
acceptable accuracy by simple Al/2-laws,
even in relatively small domains of the
arguments Z,N. In particular, for a given
value of A, rj as well as r, spreads out by
sizeable amougts as one proceeds from the
proton to the neutron drip line.

The results summarized in Table 1,
which concern ten series of even isobars,
give a first illustration of this finding.
They are briefly described in the following
three paragraphs :

i) Except for 140

Er, all the proton-rich

extreme isobars (Z,N)(p) (see caption for
Table 1} are unstable against the emission
of one proton, whereas the large major%ty of
the neutron-rich extreme ischars (%,N) D

are stable against the emission of a single
neutron.

ii) The pairs of tabulated iscbars are
mirror nuclei only for A=10. In this case,
we note that Ary, is significantly larger
than Ary,. For A=20, the mirror nuclei (6,14)
of (2,8) (P)={14,6) has two neutrons less
than (2Z,N) (M) =(4,16). Replacing 20Be by
20C for which r,#2.55fm and r,=3.22fm would
lead to Arp=.92 m>Ar,=.69fm, which is in
agreement with our general results for pairs
of mirror nuclei (see subsection 2.3, in
garticular Fig.l(a)}. For the pair (iﬂsi,

OBe), we find that Ary is larger than Ar .
which is also the case for all heavier pairs
of extreme isobars.

iij) The fact that Arp is smaller than
Arp for A*20 is due to the proton confine-
ment produced by the Coulomb barrier, which
remains important even at the proton drip
Iine.

A second example of the failure of
al/3-laws is given in Fig.1l{a), which shows
the "surface" r,(2,N) for <20 and N<28.
(The few additional results represented by
open squares will be discuss later). The
top-left hand {(bottom~right hand)limit of
this surface contains nuclei close to the
neutron (proton) drip line or belenging to
it. Here, the unadequacy of Al/3-jaws is
obvious in any domain, as small it might be.
The important spreading out of rn along iso-
bar series is clearly shown by the vertical
extension of figure 1(a) at any value of A.

2.3 Symmetry properties of the nuclear radii

If the Coulomb effects could be remo-
ved, the charge independence of the N=-N

interaction would imply the following obvious
relation

rn(Z,N} = rP(N,Z) {4)

where the first (second) argument refers to
the actual number of protons (neutrons) in
the mirror nuclei.

This relation is not valid for heavy
nucltei (say A>100} for which the mirror
nucleus (N,Z) of any nucleus {Z,N} stable
against particle emission is generally situa-
ted far beyond the proton drip line.

In the case of light naclei, the Cou-~
lomk field distrubes oniy slightly the symme-
try relation (4) and our self-consistent
HF-BCS approach yields in most cases the
following results

r {z,M) < rp(N,Z) (5)

An illustration of this relation is
given in Fig.l{(a) where we have added to the
two typical sequences of neutron radii

a) the isotope series ry {8 ,N),2sN<22,

and
b) the isotone series ry(Z,8),2<<18,
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Tabhle 1

In this table, (Z,N)(p) and (Z,N)(n)
rich) even isobars which are unstable
{rp(P) and r_(n
distributions and Ar,.zr (pP-r (n)
cgtes a‘nucl

further,
{neutron)

r (p)

and ry{n)

Radii of extreme even isobars

spreading out. A single star ingi
emission while two stars refer to a nucleus which is stable against one nuclecn emission
but unstable against the emission of a pair of nucleons.

refer to the first proton-rich {respectively neutron-

(ar sy () .y

against protorn {neutron) emission !extreme isobars);
} stand for the r.m.s. radii of their proton
{P)) gives the corresponding

n,n .
eus which isnunstable against one nucleon

a (z,m P (g, @ p‘P’ rp(“) Ar r ‘P r (%) ar_
10 (8,2) % (2,8) % 3.85 2.00 1.85 2.00 3.38 1.39
20 (14,6)% (2,16)%% | 3.46 2.42 1.04 2.53 3.78 1.25
40 (24,16} % (10,30)%%  3.61 3.02 .59 3.24 4.18 .94
60 (34,26) % (16,44)% | 3.98 3.48 .50 3.67 4.31 .64
80 (44,36) % (22,58) %%  4.27 3.77 .50 4.04 4.95 .91
100 (52,48) % (28,72) %4 4.49 4.11 .38 4.34 4.93 .59
120 (60,60) % (36,84) %% 4.74 4.40 .34 4.64 5.05 .41
140 (68,72)%x | (44,96) %% 4.95 4.62 33 1.89 5.46 .57
160 (78,82) % (46,114)%% 515 4.82 .33 5.08 5.63 .55
180 (84,96) (52,128)% 5.32 5.03 .30 5.31 5.74 .43

the two symmetrical
radii {open sguares

a') the isotone
and
b') the isotope

sequences of proton
connected by thin lines)

series rp(Z,B),3<Z€18,

series rp(B,N),2$N€a8+Z

The compariscon between a) and a') as

well as between b) and b'
ty of the ineguality (5).

shows the wvalidi-
It is worthwhile

to note that the eguality in (5) is almost
satisfied for Z»N whereas the differences
rp(N,2)-r {Z,N) are important for N®Z,
Tgus, in the case of light nuclei, the

neutron radius of a
proton drip line is

nucleus close to the
practically the same as

the proton radius of its mirror which is
located in the neighbourhood of the neutreon
drip line, whereas the proton radius of a
nucleus at the proton drip line is signifi-
cantly larger than the neutron radius of

its mirroxr.

it should be emphasized that the rela-

tion (5}

supposes that the Coulomb distor-

tion is not strong encugh to change the
number of bounded orbitals and of quasi-~

bounded ones (i.e.,

in mirror nuclei.

subbarrier resonances}

We have to remember here

that in the gap squation, as well as in the

+)

By reading the arguments of these two

additional series on Fig.l(a), do not for-
get to interchange the labelling of the

coordinates.

pairing correlation term (see Egs, {51) and
(46) of ref.2]), we have extended the sum-
mations over all these orbitals. Actually we
have encounted a few examples where the
above assumption is not verified. For ins-
tance, this is the case for the pair of
mirror nuclei (10,4) and (4,10). It illus~-
trates typical features of our self-consis-—
tent approach, and we shall discuss it in
scme details.

In 14Ne, the Coulomb field is large
enough to push out of the self-consistent
potential well the proton orbital 2s1/2,
whereas the symmetrical neutron orbital
2s1/2 is just bounded by .16 MeV in l4Be.
The proton (neutron) subshells wh}gh enter

the HF~BCS calculations of 14ne (**Be) are
the following :
1s1/2, 1p3/2, lpl/2 and 1d5/2 for ‘*Ne and

ijl/z' 1p3/2, 1pl/2, 1d5/2 and 2si/2 for
Be,

Their eigenenergies, r.m.s. radii and
palir occupation probabilities are

Ejpw—18.54, -6.92, ~1.58 and +3.18 MeV,

r. = 2,14, 2.94, 3.3a and 4.21 fm,

v%p: .9985, .9931, .9525 and ,3542 and
Ejn=—22.49, -10.76, =-5.15, -.30 angd ~.16 MeV,
rjn= 2.13, 2.88, 3.15, 4.23 and 7.96 fm,
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Fig,2 Variation of the r.m.s. radii, r, and rp., of the calculated nucleon distributions
of the isotopes %Z=1¢, 20, 30, 40 and isotones N=10. Graphical symbols as in fig.4.
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Fig.4 Variation of the r.m.s. radii, r, and Yn, of the calculated

nucleon distributions of the isotones N=28, 50 and 82.

Black circles refer to stable nuclei, open circles to nuclei
unstable against one nucleon emission while black stars indi-
cate nuclel unstable against the emission of a pair of nuclecn
but stable against one nucleon emission.
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v%FW.9974, .9931, .9520, .2653 and .2684

réspectively.

We finally obtain

rn(4,10}=3.510>r_(10,4)=3.189 which viola-
tes (3) s
rn{10,4)=2.368<rp(4,10)x2.370 which satis--
fies (5).

If we constrain the neutron 2s1/2 orbi-
tal in l4e to remain unoccupied, the above
neutron figures beccme

Ejnm-ZZ.TS, -10.84, -5.29, -.36 and -.20MeV,

Ton™ 2,12, 2.88, 3.13, 4.18 and 7.59fm,
V§n= .9984, .9930, .9504, .355! and .0.

In this case, both r,(4,10)=3.126 and
rp{4,10}=2.367 satisfy the relation (5) up
tg the numerical uncertainties. (see also
the first points of the isotope (isotone)
series Z=10 (N=10) in Fig.2).

An interesting feature of self-consis-
tency, which typically occuxrs when the sa-
turation property is ensured by a density
dependence of the hamiltonian, is the weake-
ning of the binding of low-% orbitals
{mainly s and p levels) with the infrease
of their occupation probabilities 8i+) . In
l4pe the binding of the neutron ls and 2s
levels decreases from 22.75 to 22,49 and
from .20 to .16 MeV respectively as the
occupation probability of the 2s orbital
increases from .0 to .27. The r.m.s. radius
of this tightly bounded 28 orbital is very
large and depends sensitively on small
variations of its binding. Such effect
brings numerical convergence difficulties
for the particular neutron-rich nuclei for
which the binding of the last s {(or p) orbi-
tal, as well as the neutron chemical poten-
tial, is close to zero.

2.4 The r.m.s. radii of isotopes and
isotones

In order to establish in a systematic
way the variations of ry, and r, against N
and Z, calculated values for isotopes and
isotones are displayed in Figs.2 to 4. A
thin line allows a direct comparison with
an Al/3-growth of the radii.

In general, at fixed values of 2(N)
the neutron (proton) radius increases quasi-
monotonically as a function of N(Z). Slope
discontinuities are due to shell effects and
are, in critical cases, sensitive to the
presence (or the absence} in the configura-
tion space of orbitals situated very close
to the continuum limit, On the other hand,
Z(N) being fixed, the proton (neutron)
radius varies between smaller limits in a
way which follows from self-consistency.

The proton radius of isotones increa-
ses more reqularly than the neutron radius
of isotopes. This is to be assigned to the
Coulomb potential which in addition to the
centrifugal bharrier confines the proton
orpitals situated above the Fermi surface
and therefore stabilizes the configuration

) See in particular Figs. 7,9 and 10 of
this reference.

space.

For isotopes, the increase of rp in
very neutron-rich regions has two typical
behaviours according to the way the stabili~
ty limit of even N isotopes against the
emission of a neutron pair is reached with
respect to major shell closure. If the drip
line occurs just before a closure, the in-
crease of r, is approximately constant (see
2=50) or reduced (Z=30). This diminishing
of the r; increase before N=82 is responsi-
ble for the small value of Arp, observed at
A=120 (see table I¥). On the other hand, if
the stability limit arises after a major
shell closure, the increase of ry is signi-
ficantly enhanced (see Z=20 and 40). For
%2=20, the 3s neutron orbital is unbounded
and unoccupied up to N=54. If we congtrain
it to remain unoccugied, then N=56 becomes
a magic number and ’6Ca is unstable against
one neutron emission {see open circle on the
ry plot at N=356). In fact, we find that the
35 neutron level is bounded for N>56 and has
an occupation probability of .76 and 1.0,
and a2 r.m.s. radius of 11.9 and 11.2 fm in
76Cca and 78Ca respectively. The presence of
the 3s neutron orbital in the BCS configura-
tion produces the large value of Ar, for
A=80 (see Table I).

Finally it is interesting to note the
actual decrease of rplr,) for %=10, 20, 30
(any value of N) as one proceeds from the
proton (neutron) drip line and adds pair of
neutrons (protons), up to the minimal value,
which occurs, in light elements, close to
the B-stability point. For %240 this effect
on rp is not any more observed.

3. The nuclear Coulcomb energy

As shown in section 2, self-consistent
calculations predict nuclear size variations
which differ sensitively from a A ~law as
one goes away from the f-stability region.

A first interesting apolication concerns the
Coulomb energy estimate. For illustrative
purpose, the self-consistent total Coulomb
energy is compared to values given by
ligquid-drop-model (LDM} expressions based on
a Al/3-increase of the proton radius.

For the sake of clarity, the two ex-
pressions used here to calculate the Coulomb
energy are given below. We restrict ocursel-
ves to spherical shapes,

In the energy density method, the
Coulomb term reads (see ref.2, Egs.(16) to
(183) :

4/3

g = é e pcvc =~ ,7386 e? Pa ' (6}

where p, represents the charge density asso-
ciated to the self-consistent proton densi-
ty. The Coulomb potential Vi(r) is solution
of the Poisson equation

aVc(r) = 41 e Peiry . (7}

The second term in {6) corresponds to
the statistical treatment of the Coulomb
exchange.
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As LDM expression, we have chosen the
direct and exchange part§]+) of the Coulomb
energy given by Jdnecke and used exten—
slvely by Seeger and Howard for their cal-
culations of the ground sfate binding ener-
gy of some 8000 nuclei . For spherical
shapes, this expression reads

LDM T
B (2,A)=Eq, . (Z,R} + Eexch(z,R) (8)
where
2 4
R=Ry {1+ 22 (a_) o o (9- ,Roarf,z!xl’/3
6 Ry 24 R (9}

3 4
3 Z(Z-1) - a a
E.. (Z,N)== =20 lg, 1+c, “) +C (—) } (10)
dir 5 R { (R \r

(Z,R)—3(—3~)2/3 etz??

exc dir

167

1
E (z,R})== E
h & R

fre (@) i

The wvalues of the five numerical cons-
tants ¢ to cs are given in refs. 9] and
10].

The parameter ro is fitted on the
Coulomb energy of 40Ca calculated in the
energy density method. The surface diffuse-
ness parameter is fixed at a=.513fm. The
difference AE - AEEFB 1s plotted in
fig.%? against N for 18 wvalues of 2 ranging
from 8 to 84.

5

At first glance we see that the diffe-
rences increase with N, but are contained
within a band of -1l16Mev up to 12Mev. Conse-
quently the effect accounts only for a few
percent of the total Coulomb energy. However,
the rapid variation of AE, with N and 2 is
significant. It reaches easily 2Mev for
neighbouring isotones with AE=2,

The dotted line indicates the position
of B-stable nuclei. It clearly shows that
as N increases, the LDM expression has a
tendency to underestimate the Coulomb enexr-
gy. We see also that AE. varies more rapidly
on the proton rich- than on the neutron rich-
side.

Shell effects are present and modulate
the results in two ways. They induce non-
monotonic behaviours of AE, along isotope
lines, as well as sudden changes between
adjacent isotopes, as in the case Z=82-84,

Whether the observed deviations from a
simpie monotonic variation of the Coulomb
energy (as predicted by a al/3-1aw) may be
compensated by ad hoc parametrizations of
other components of the LDM formula is du-
kious. In this respect we note that, in
general, the A-~dependence of the matter

+)We have omitted the monotonic contribution
of the spin-orbit texm, which reaches only

a few tenths of a percent of the total
Coulomb energy.

radius ry follows a Al/3—1aw more closely
than r, and ry independently. The present
results suggest, for instance, that inade~
guate choices for the variations of r
against ¥ and Z may lead to unreliablg
predictions concerning the proton drip line.
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