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ABSTRACT

In this paper, dealing with high energy quasi-two-
body or multiparticle production, we focus on what can be
learned about exchanged naturality amplitudes from final pola-
rization measurements with polarized or unpolarized beam and/
or target. The separation of t channel (boson exchange)
and u channel (baryon exchange) exchanges into components
of natural and unnatural parity and the measure of natﬁrality
ipterferences are extensively studied in all cases which are
now or will soon be available with preseant experimental tech-
niques. Special attention is paid to the transversity ampli-
tudes which are shown to be always naturality consexving.
In order to help in preparing or analyzing polarization ex-
periments, we have considered in detail and taking each case
separately many specific examples including reactions with
unpolarized initial state or with initial polarized protons

or photons.
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INTRODUCTION

1)

combinations of density matrix elements it was possible to separate the con-

Some years ago we have shown that by considering given

tributions of both natural and unhatural parity exchanged in some forward

two-body reactions a’ high energy. Such a procedure, which allows~0ﬂe to

extract from experiment dynamical information in a model-independent way,

has been used in many places, and, we believe, has demonstrated its usefulness.

The first attempgs in this direction are in fact due to Gottfried and Jackson
3

and to Stichel with his well-known theorem for single pion photoproduction

with linearly polarized photons. Subsequent analyses of specific reactions

4)
6)

, polarized photon reactions by Thews .

can be found in the literature: vector meson photoproduction by Cooper
and by Schilling, Seyboth and Wolf 5)
General bilinear relations between density matrix elements have been given

by Ringland and Thews 7), but the most complete and general study of two-body

reactions can be found in the work of Saenger and Schmidt 8>, and many of the
results contained in the prpsent paper have been formally derived by them.
Some results on diffractive multi-meson processes were also obtained by Meggs

9)

and Van Hove , and polarization ‘effects in meson + nucleon »meson + mMesSon +

nucleon have been investigated by Kimel and Reya 10).

We have extended our results to multiparticle reactions 1)
and to backward scattering 12)’(baryon exchange). In this paper we give a
complete survey of the subject by considering all possible types of reactions,
two-body, quasi-two-body, exclusive and inclusive reactions, all possible
types of exchanges, meson or baryon, and by studying explicitly and in detail,
reactions with polarized initial states. More precisely we shall consider

in this paper all scattering processes a+b—1+2+ ... +n, assuning that

the polarization and momentum of particle 1 is measured, and that the
initial particles are either unpolarized or polarized protons or photons

(we do not consider lepton beams). Final systems of different mixed spin-
parity states will not be studied here. Some model-independent tests of

the absence of unnatural parity exchange have been recently derived by

Sekulin 13) for the produqtion of a mixed scalar-vector-tensor two-boson

system.

We define, in each case, the observable quantities and the type
of measurement which allows one to separate the contributions of exchanged
states with given naturality in the crossed a+T->b+2+...4n channel, or

to compute interference contributions between the opposite naturalities. To

2)



take a middle course between a simple cross-section measurement and a complete
amplitude analysis which requires measurement of all polarizations and all
momenta of interacting particles, we try to find the simplest polarization
experiments which provide valuable and immediate information on some dynamical
mechanisms. It is clear that such information is particularly relevant for
reactions which are supposed to be of a peripheral nature, i.e., high-energy
two-body or quasi-two-body reactions, inclusive reactions in the triple Regge
limit, etc., ancé we shall constantly use the words exchanged state or exchanged
naturalities. In any case, our formalism is based on purely kinematical
considerations and is a priori absolutely free of any dynamical assumption.

It would be therefore more general but less convenient, to avoid everywhere
the exchange notion and rather to speak only of the naturality of the state

al>.

The paper is organized as follows. Section 2 first recalls
the symmetry properties of scattering anplitudes and definitions of naturality
conserving helicity amplitudes (which are well known) and transversity ampli-
tudes (which we shall widely use). We emphasize the importance of Section 2.4
Whichvgives a general classification of various types of experiments. This
section is in fact the central part of our paper and presents in a rigorous,
but we believe transparent and simple way, all results which will be developed
throughout the paper in a more explicit but more technical manner. In Section
%3 we consider the unpolarized initial state case. Initial states with pola-
rized protons or photons are investigated, respectively, in Sections 4 and 5.
In each of these last three sections we follow the same procedure, giving

first very general expressions and definitions, then explicit applications.

We consider successively cases in which a produced particle
of spin O, i, 1, 2 and 2 has its polarization measured. The case of both
polarized beam and target reactions is discussed in Section 6 and G parity

relations are finally studied in Section 7.

We have tried to organize this paper in such a way that many
parts, in particular all applications, are independent of each other. This
implies a certain amount of repetition, but, we hope, will help people in-
terested only in a given type of reaction to find all necessary information

without being forced to read everything preceding it.

In order to facilitate a first reading, we would like to emphasize

two unusual notations or definitions used throughout our work.



a) Observable quantities E , and O,

------------------------ mm' -—=--—-"mm

Anyone interestéd in polarization phenomena is familiar with

the density matrix formalism emm' and should be with the multipolar para-
meters or statistical tensors tﬁ. Unfortunately, it is not possible in
general to measure all density matrix elements from experiment. We call
Emm' and O, those combinations of density matrix elements, defined in
Egs. (3.2) and (3.3) which are actually accessible from experiment. When
the polarization of a final-state particle<is measured from its decay angular
distribution, only the even part of the polarization Emm' can be measured
from a parity-conserving decay, conversely measurenent of the Omm,'s requires
a parity non-conserving decay. For two-body reactions the Emm' and omm'

reduce, respectively, to Re ehm' and Im Com' @ well-known result.

b) Reaction classification

The present work is not restricted to two-body reactions
a+b-1+2, but includes all possible types of reactions, in particular
inclusive reactions or multiparticle reactions a+b-—1 +2+ +00+n. We found
it necessary. to classify reactions into two types, which we call Class 1 and

Class 2.

i) Class 1

We call Class 1 reaction, a scattering process a+b-1+2+ ...41,
in which none of the spin or momentum of the 2...n final state particles are
measured. Only the spin and momentum of particle 1 are observed. This case
includes two-body reactions (a4—b—>1+—2), quasi-two-body reactions

(a4—b—e1*4-2*), inclusive reactions (a+b—-1+X, where X implies a sum-

" mation over all possible 2+ ...+n states, truly inclusive reactions, or
a summation over only a given subset 2+ ...+1n, for example a+ b—-1 +neutrals

or a+b—1+pions, a+b—-1+p prongs, etc. ) or exclusive reactions

a+b—=1+4+2+...+10n in which the n final state particles are identified
without measuring the momenta or the spins of the 2...n particles (for
example }I+p-# QOJl+p with measurement of the density matrix elements of
eo

expressions related to the polarization measurement (decay angular distribu-

but no measurement related to )(+ or p). In all cases the general

tion, properties of density matrix elements emm' of multipolar parameters
L
tM’
parity contributions, interferences, etc.) are just those known for two-body

etc.) and to its interpretation (separation into natural or unnatural

reactions.



ii) Class 2

We call Class 2 reaction, a scattering process a+b—-1+2+...+n

in which one measures some momenta of the packet of particles 2...n 0;23).

The interesting point with Class 2 reactions is that they allow
measurement of pseudoscalar quantities which is not possible with Class 1
reactions. Clearly these new quantities give a null result when integrated
over the whole phase space. They are, in particular antisymmetric with

respect to reflection in the scattering plane.

It is in general sufficient, in order to evaluate the pseudo-
scalar quantifies mentioned above, to determine the emission.direction of a
particle (say particle 2) with respect to the scattering plane (a, b, 1).
Therefore, one observes a+b—-1+24+...+n, measuring the polarization and
momentum of particle 1, and separates experimental events into two sets
according to whether particle 2 is emitted above or below the scattering
plane. This Class 2 excludes two-body reactions (particle 2 always in the -
scattering plane) but includes both exclusive reactions (a+b—1+2+...+n,
n fixed) and quasi-inclusive reactions a+b—-1+(2+X), where, as in
Class 1 reactions, X can represent a summation either over all possible
states, or over given subsets a+b—1+2+neutrals, a+b—1+2+pions,

a+b-1+2+k prongs, etc.

The essential tools in our study are the parity relations among
scattering amplitudes and symmetry properties with respect to reflection in
the scattering plane of observable quantities. The general prOperties of
observables for spin 1, 2, = and 3 particles are collected in four tables
in the Appendix. We refer quite often to this Appendix, particularly for
each application, and therefore suggest that the reader familiarizes himself
with the use and content of the tables contained therein. We found it very
convenient to use the label Bohr-symmetric or Bohr-antisymmetric 14 to
characterize the transformation law, by feflection in the scattering plane,
of the observable quantities Em1m'1 anq Om1m'1, when other particles are
polarized. This depends on the direction of the polarization vector f7 of
the incident particles. For initial polarized protons the Bohr antisymmetric
components of the polarization vector refer to P in the scattering plane,
for initial polarized'photons the thr symmetric components correspond to the

-
parallel or perpendicular components of the electric polarization vector € .
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Let us emphasize that one should not forget, in any polarization

measurement, the important constraints due to positivity and rank conditions of

the density matrix. Anyhow, as they require a specific study for each particular

case they will not be mentioned in this work. For recent contributions to this

subject see Ref. 14).

GENERALITIES

2.1 Definitions, notations, reference systems

We consider in this paper production processes of the type
ab->1+...4n or ab-1+X. We shall always assume that the pr'odﬁc‘bion plane
is defined by the three particle momenta Pgr Py and Py and we specify the
n-1 other final state particles by their polar co-ordinates (pi, Gi , P51
In the over-all c.m. system, we define a fixed frame of reference XYZ, such
that ;a and 3b are along the Z axis and ;1 in the XZ production

plane according to Fig. 1.

We shall consider only two possible choices of quantization
axis for the measurement of the spin of a given particle. The helicity
system (z axis along ;i’ and for a particle in the production plane x
axis in the production piane and y axis orthogonal to this plane) with
corresponding scattering amplitudes denoted by M and helicity indices
labelled by A 3 the transversity system (z axis perpendicular to 3i)
with corresponding scattering amplitudes denoted by T and transversity
incides labelled by T . Our conventions for a two-particle state are those
of Cohen-Tannoudji, Morel and Navelet 15) and for a multi-particle state
(n>2) nave been given in Ref. 11). Our transversity frame of reference
is defined in such a way that it is related to the helicity frame by the

rotation R=R(®/2, S/2, -9/2), following Kotanski's conventions 16).

We shall omit in general an explicit reference to kinematical
variables in the argument of the M or T amplitudes, with the exception of
the azimuthal angle dependence for multiparticle production reactions. In that
case, we denote by M(\fi) or T(\Qi) the corresponding amplitudes. The
reason for such simplified notation is that we shall assume that we are working
at fixed total energy s and fixed production angle 9 , and that the only
transformation to be considered is the reflection in the production plane in

which case the azimuthal angles \Pi change into -*ei.
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In general we shall not specify whether the helicity or trans-
versity system under consideration is the s channel c.m. one, a+b-1+...+n,
or the t channel c.m. (which is related to the Jackson frane), a+T-b+...+n,
because the general properties of scattering amplitudes or experimentally
accessible quantities can be expressed in a strictly equivalent way in any of
these two systems. Furthermore, when the properties under consideration are
even independent of the quantification system (helicity or transversity) we

shall in that case denote the amplitudes by F and the spin indices by m.

2.2 Observable guantities

Once the reference frame has been chosen, it is necessary to
specify a set of independent variables which fully describe all experimental
measurements. When the polarization is deduced from observation of the angular

distribution of the decay products of a given particle the most convenient

choice is in terms of multipolar parameters 17). The multipolar parameters
tﬁ, or statistical tensors, are coefficients of the expansion in spherical

harmonics Yﬁ(ﬂ,tf) of the decay angular function W(B,*f), whicn for two-
body decay reads:

W(e,y) =._Zn C (L) t; Y:\*(G,\p) (2.1)

Only those parameters with even L can be measured in a parity
conserving decay. More generally all experimental measurements can be expressed

in terms of the density matrix

—

e{- _ Fei F"l' | (2.2)

whose matrix elements are related to the multipolar parameters by

)
t:‘:Z m mote (»m", (2.3)

M)M' S M m

where S denotes the spin of the decaying resonance.

Clearly not all density matrix elements can be measured in a
parity comnserving decay. Furthermore, they are subject to a number of important
symmetry properties. Most of these properties are deduced from parity conser-

vation in the production process, but their explicit formulation differs from
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one frame of reference to another and according to whether the initial state
is or is not polarized. We shall therefore investigate each specific case
separately in the following sections. To carry out such an investigation we
shall make use of the symmetry properties of scattering amplitudes which we

now briefly recall.

2.3 Scattering amplitudes

2.3.1 Parity relations and reflection in the scattering plane
Relations among scattering amplitudes due to parity conservation
in the production reaction are well-known, but they remain the starting point
and the main tool of our study. We therefore briefly recall that for a

reaction ab—1+...+n, parity conservation implies the following relations:

i) In the helicity system, helicities change sign under reflec-

.) (2.4)
with .

hd)
R A=A
= - - - 2.5
E=7C ) )-1"(;” (2.5)

In the two-body case the preceding expression reduces of course

to the well-known relation

e M

m).g Az Aa Ay = “Ag=Az =X - Ay

ii) In the transversity system, transversities do not change

sign under reflection in the scattering plane, and one obtains

) 2.6

£ I (2.6)
Ta

t.‘ ..-tl.\ .C‘-CL (‘PL) = "'.c‘h-tﬂ‘ts (.?i)

with

h
) L (Ta* Ty) -LRT; | (2.7)
£ = 1‘15 e )-—( ‘V(; e

v=l



Such a relation expresses the fact that transversity amplitudes are either
symmetric and antisymmetric under reflection in the scattering plane.
Conversely for two-body reactions Eq. (2.6) implies that all transversity

amplitudes such that §g'=-1 are identically zero:

— z;*'q,-t,.-tz
T.T2Ta Ty = o Whan 1a1k141z (=) = -1 (2.8)

i) In the helicity_systems, one can define helicity amplitudes
which are naturality conserving to leading order in 1/s and for fixed values
0f the momentum transfer t between particles a and 1 (|t|<s), by
considering the following linear combinations

M

3 (02 M (2.9)

4
A‘.{AJ} )a)b ‘[— [MAA{)\})A -A, {}\} ha?‘b]

with

T(U+h,-A a~ A
€O, ) = 1,1, © L (745424 + 8u-2a ) (2.10)

where v=0 when a+1 is a bosonic channel, v=% when a+1 is a

*
baryonic channel ) and where {}\j} is a shorthand notation for ()‘2”'7‘11)‘

We recall that the only amplitudes which are truly naturality-
conserving (at all orders in 1/s) are the t channel (a+T-0+...+n)
helicity amplitudes with ',\a= ',11. (For example N N—*CN with e having

nelicity zero in the Jackson frame.)

ii) In the transversity systems we first write down the relation

between helicity and transversity a.mplitudes given by

T, ZD(R) (R) (HD(R* )ma Ay (2071)

Ta Ty Ta 1:5

where the rotation R defined by its Buler angles (o, ﬁ ¥ ) =(n/2,
n/2, -MN/2) enjoys the following property
* v

) One should pay attention to the fact that for baryonic channel, the natu-

rality of the al state is not the same as that of the al one.



&4-7\ A

LT 4 -2
D (r 71 = € D ()< (2.12)

We now rewrite (2.11) as

Taee T TaTy 2.

T, y IZDm) (JU Dy, [ D' x

(2.13)

“Ay . M -0 Ap

34 As da  ~da -3
X D (R*')Id HM;\:... AnAq A + D(R D (R 44 m ]

and using (2.12) finally obtain

IR » i :
T, ; Dy, D (R)zz ():(1 Db(n*);)

- 4
4..; IHTATb - Z

[ M w(‘na‘-mnqo‘.)m
AdeAndady TEYY € S Az dn-2a Ay

(2.14)

where

i.ﬂ(lr+t4—'tn)
= L’l. e (2.15)

Since (= does not depend upon the helicity indices, relations (2.9) and

(2.14) express the important fact that:

*
transversity amplitudes are naturality conserving amplitudes ) both

for boson and baryon exchange. The naturality associated with a

transversity amplitude is given by (2.15), natural parity for & =+1,

unnatural parity for 6 =-1.

The preceding property together with relation (2.6) due to reflec-
tion in the scattering plane show that transversity amplitudes enjoy much
simpler properties than helicity amplitudes, and we shall in the following

therefore prefer transversity amplitudes to helicity amplitudes in order to

*
) We thank Dr. A. Kotanski for pointing out to us that this result for
meson exchange has been independently obtained by A. Golemo, thesis,

University of Krakcw 1972 (unpublished).
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We would like to point out that it is not our purpose to
recommend the use of one system of reference rather than another one. From
an experimental point of view there is a priori no reason to prefer any
system over other ones. In particular we shall show that the evaluation of
natural and unnatural parity contributions can be achieved equally well in
any system. One might be guided by possible selection rules (as for instance
helicity conservation), but up to now no such general rule has been clearly
established. From a theoretical point of view the choice ﬁay be directed by
model-dependent considerations (such as geometrical properties of spin-
dependent amplitudes), but the most general rule will be simplicity. In this
respect, we recall that s channel helicity amplitudes are.the easiest
set of amplitudes one can find at high energy to avoid the cumbersome problems
of kinematical singularities and constraint relations. Transversity ampli-
tudes are difficult to deal with because of their complicated constraints

at the boundary of the physical domain.

It is now widely recognized that polarization measurements allow
one to obtain in a model-independent way valuable information on the naturality
of exchanged states in a production process, aad in a number of cases to
actually separate the natural and unnatural parity contributions. We intend
in this section to give a classification of experiments which do achieve
such a separation, or are aple to exhibit interference contributions between

opposite naturalities.

Quite general statements, which are valid for boson as well as
for baryon exchanges, are obtained in a really straightforward way using the
transversity formalism. Detailed demonstrations and exanples will be given in |
Sectioas 3 and 4. Consider in fact a ‘ransversity density matrix element for

particle 1 when the initial state is unpolarized:

- 4 Z_ T ‘T'* (2.16)

— ‘
6‘5‘1;'1 N ta, ti\"t& T4 {t:‘} T@Tl, T4 {1:3} Ta tb

i) For two-body or quasi-two-body reactions, the only non-vanishing

terms contributigg to (2.16) are those for which 't1 -'t{:=2nl, because

otherwise due to the parity relation (2.8) on transversity amplitudes, one

of the two amplitudes T or T is identically zero.
T1{T{ TaTo T {T T Ty
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Such a result applies also to inclusive reactions, because in that case

after integration over all kinematical variables of the unobserved particles,
only combinations of transversity amplitudes which are symmetric with respect
to reflection in the scattering plane survive, i.e., such that 't1 -'t{ is
even. Recalling that transversity amplitudes are naturality conserving ampli-
tudes, and that for 'L',] - Tj=2n, both 'l‘.';1 -{tj"ta w O°F T T {"%]lta T,

are related to the same naturality, we can make the following statement:

Statement 1: In two-body or inclusive reactions, with unpolarized initial

state and measurement of only one polarigation in the final state, any

observable quantity can be expressed only in terms of incoherent sums over

* - =%
natural or unnatural parity, of the type ZA(F+F+ +FF 7). In particular,

observable quantities are insensitive to_the relative phase between opposite

naturality contributions.

ii) When particle a has spin zero, then amplitudes T T, {tﬁ} o tb

and T with t1 - t{ =2n correspond to exchange of the same

T 0Ty T im(viTy)

naturality & = My N,° where v=0 (3) for boson (baryon)

exchanges respectively. This can be stated as follows:

Statement 2:° Whén particle a is spinless, then any density matrix element
_&[1_-;_,}, in the transversity frame, is of the type ;_ pret* or ZF_F'*,
and therefore isolates one type of exchanged naturality in the al+b+2+...41

channel of any reaction. In any other frame of reference the separation of

observables into natural or unnatural contributions is also possible by
combining various density matrix elements. In any case, for baryonic channels

such an evaluation may require measurement of odd polarizations.

iii) When particle a is not spinless it is clearly not possible
to.extract from Eq. (2.16) contributions corresponding to a given exchanged
naturality unless the transversities 1:a are fixed at some given values.

This means that the initial particle a has to be polarized. When the initial
particle a can be polarized in any direction, then it is possible to compute
separately the contributions of each type of exchanged naturality, and for
Class 2 reactions to get also an evaluation of interference terms between
opposite naturalities. When only one type of initial polarization is available
(for instance transverse polarization) then one has to consider in detail each

specific case.

Such a study will be performed in Sections 4 and 5 for polari-

zed nucleons and photons respectively.
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Statement 3: Separation of density matrix elements of particle 1 into

natural or unnatural parity exchanzed in the a+T1—-b+ ...+n channel,

requires measurement of both polarizations of particle a and 1. This

means that either a is spinless or has to be polarized in a specific

direction.

iv) When T, - TJ=2n+1, then amplitudes T ¢ ¢r 3y ¢ T,

a
and Te are associated with opposite naturality exchgnges,

{cj} Ta Ty ,
and their product is antisymunetric with respect to reflection in the scat-

tering plane.

Statement 4: When the difference '51 -‘t{ is an odd integer, transversity

density matrix elements 6'51‘t' are related to bilinear combinations of
1

_%
transversity amplitudes of the type Z: 7y , and therefore provide a measure

of interference terms between natural and unnatural parity.

According to statement 1 above, such elements are identically
zero in two-body or inclusive reactions (class 1). Their evaluation is
possible in multiparticle reactions and requires measurement of space co-

ordinates of another particle in the final state (class 2).

v) Prom the former discussion it is clear that the evaluation
in Class 1 reactions of interference contributions between opposite naturality
exchanges implies the simultaneous measurement of at least two polarizations
within the same reaction. Consider first the case where only the polarization
of two particles (say particle a and 1) at the same vertex are measured,

and let us define the correlation function

' r
. TaiT;
Ta -L'q N tbﬁf;l 1:4{1:‘} TaTy 4 { J‘t TaTy

e T T*

The two transversity amplitudes occurring in this expression
are related to opposite naturalities if and only if either 1:1 - IH =2n
_ 1 = 2n!t _T! = - T!' =2n! ]
and T, - Ty 2n'+1 or T, -T| 2n +1 and T, 'l:a 2n'. But then in
each of these two cases one of the two amplitudes is either zero or anti-
!
symmetric with respect to the scattering plane, and therefore eta ta:()

T T
for Class 1 reactions.
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Assume that the two particles (say particles 1 and 2) are

produced at different vertices, and consider the corresponding correlation

e‘UzT'z 4 Z I‘TI 1—[—1'7‘

’
TaTs N TEyT, eitilTaT T {T:} Ta Ty

function

The coandition '51 - 1:1' =2n+ 1 ensures that the two trans-
versity amplitudes are related to opposite naturalities and a necessary

condition to get a non-vanishing C in Class 1 reactions is 1:2 - ré=2n' +1.

Statement 5: Interferences between natural and unnatural parity exchanges

can never be obtained in two-body or inclusive reactions from measurements

of polarizations of two particles at the same vertex. They require measurement

of polarizations of two particles at opposite vertices, and are given by the
T2 T ; '
*; ‘I:1' with T,-T] and T,- T,

joint decay correlation function 6

being both odd integers.

A1l the preceding statements have been depicted in Fig. 2.
An arrow on a single particle line means that the polarization of the
corresponding particle must be measured. An arrow on a line within a multi-
particle packet means that the emission direction of the corresponding particle
has been observed, in particular that one can assert whether this particle has
been emitted above or below the scattering plane. Figure 2a represents cases
where observables are given in terms of incoherent sums over both exchanged
naturalities of the type 2:(T+T+*-+T_T-*). Figure 2b represents examples
for which separation into natural and unnatural parity exchange is possible.
Figure 2c shows in which cases interference contributions are Oobservable.
In any of these figures one can of course interchange particles belonging

to the same vertex.

UNPOLARIZED INITTAT STATE

3.1 Symmetry properties of observables in different decay frames_of

Equation (2.3), relating density matrix elements to multipolar

parameters, can be inverted to give

25¢4 \S Mwm

e w LS L
€’ (9.) * ch,-ml\f;)zzt.: 3_'-:1( ) ntm(u(-f) (3.1)
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Thus observables available from measurement of the even part of the polari-

zation (correSponding in most of the realistic cases to parity-conserving

decays) are given by

" . . ) : M.w' o :
E‘W“M'(‘fi)= %[em“.’ (tﬂ) ) e—m'-m {‘ﬁ)] (3.2)-
In parity noﬁ—conserving aecays, one can measure supplementary

quantities which we define as:

?

Om, ()= %[(’W(((;)— - € ol (‘fe)] |

(3.3)

From their defihitions, and the hermiticity property of the
density matrix, the even and odd L polarization observables E and 0]
enjoy the following properties '

i) ¥ .
E»;w.' - EMIM (3.4)

, *
Ow\w’ = Ow’ m

14
EIMM' = (_)"‘"“ E-m'-m
. (3.5)

’
Omw' = - (-)M—m Qm’-m

iii) Diagonal elements E ~ and O .
are a priori complex, which means that both their real and imaginary parts
Em_mEO for baryonic resonances

are real, and all other elements

can be measured. However, from Egs. (3.5),

and Om mEO for bosonic ones.

iv) Trace condition:

k=1

(3.6)
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The preceding definitions and properties are independent of
the choice of the quantization axis. However, the study of consequences of
parity conservation in the production process on multipolar parameters and

observables requires us to distinguish between helicity  or transversity

quantization.
a) IE-EE%EEEEZ-%X?EE??’ a reflection in the reaction plane yields 11)
[ L L*
En ()= tn (-4:)
e V(W) = (—)7‘-7‘, ’ -7
AN ("?) e.)-z (“P.‘)
and, consequentiy,
>
Eav ()= B (-4:) (5.8)

O (§:) = - O’ (- )

The well-known result that in two-body reactions only real
parts of density matrix elements can be obtained from parity-conserving
decays, and that other observables given by parity non-conserving decays are
related to imaginary parts of density matrix elements is thqs readily reco-
vered, because in that case only the symmetric parts in \Pi of E and O

survive.

b) In transversity systems, parity conservation in the production

process now requires

’

e (4.) = (-)t- e (- ) (3.9)
Tt ) Tt/ f:

giving for the density matrix of Class 1 reactions its characteristic "chequer

board" pattern of transversity frames.

Jsing the C.G. coefficient property
v/ LA -t /T L 3
= (~) ,
A Mot A -0 T
s L* M,L . . .
the hermiticity property (\ei)= (-) t_M(lfi), and relation (3.1), it is

easy to translate (3.9) on multipolar parameters to obtain:
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M oL
t:\(\ﬂ) = () ‘:n("ﬂ‘) (3.10)

Therefore, in transversity frames, multipolar parameters are
symmetric or antisymmetric with respect to azimuthal angles following the

parity of M. Consequently, remembering that M= T'-T:

ELv () = - E v -¥)

(3.11)

]

Oz (4 Bt O (- ¥:)

Thus both real and imaginary parts of even and odd polarization

observables are symmetric (or an‘tisymmetric) with respect to azimuthal

angles when the transversity difference T'-T is even (or odd). Moreover,

. . . _ . .
E ctT! and 01: <1 vanish whenever ' -T is odd for two-body or inclusive

processes.

3.2 Separation into natural and unnatural parity exchange contribution

As pointed out in Refs. 1), 8), 11), 12) and in Section 2,
when the initial particle a has spin zero, it is possible to separate the

contributions of opposite naturalities in the a+ Tob+2+... channel.

a) For transversity quantization the exchanged naturality associated
('t1 - T even) is simply

with a given density matrix element e <, 'l:1'

given by

LSU(U+ Ta)

S = -11 1& e (3.12)

b) For helicity quantization the situation is a bit more involved.

We first define

+ t T *
67“7\'4 N {ZX:—‘},AB AfN}oa, M)«Q Ao A ( )

terms of observables as follows:
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Re ei, = Re[EA Al * 6)53 _){'] (3.14)
RA‘AA 474 A

-

IM e;:N = IM{ O)ANA 3 6) 034’3’4] (3.15)
PR

with

) 3 - Ny
£ = ’(4"(; -) | | (3.16)

One should notice in the preceding expressions that both the
0dd and even parts of the polarization (i.e., for parity-conserving and
parity-non-conserving decays) can be separated into natural and unnatural

contributions.

For two-body or ianclusive reactions (Class 1) relations (3.14)

and (3.15) reduce to

+ )
— + 3.17
en,. Mo T ez\a Vo T ¢ (07'4 -y ( )

ii) For baryon exchange in the crossed channel equivalent results

are obtained using the following expressions
Re C* ) = Re E ) 2 & Im O ! (3.18)
Ay LY a=24

—— * —— )
lm = 1m O s ¢ Re E !
Coa,= ~M Yk Aa=Ng (3.19)
In that case separation requires measurement of both even and
0odd parts of the polarization of particle 1. Finally for two-body or

inclusive reactions (Class 1), these relations simplify to

£ ?

= T LE (3.20)
Cmﬂ. 61,7«'. em. -2
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3.3 Imterference contributions

We now turn to interference contribution between opposite
naturalities. We recall that such an experimental investigation is not pos-
sible for two-body reactions (Class 1), without measuring the polarization of
a particle other than particle 1 (which is not the object of this section).
As already stated in Section 2 interference terms are given by observable
quantities which are antisymmetric with respect to reflection in the scattering
plane, i.e., ImE )1 A and ReO )1 Al for helicity quantization and
E T, T or O-C‘l T with T, - T} odd for transversity quantization.
Such quantities are measurable only in Class 2 reactions.

In terms of helicity amplitudes we explicitly obtain

IIM En‘ 7‘14 IW\ Z- . X
4 -
R O = ,5; 2o,y (NAI {Ai} A2y Ml’.{)]})ﬂ)5 + (3.21)
e A Re Ay - .
1 + NA“{AJ}AQABM;!’&A}}AOJ.L)

When the initial particle a has spin zero we get supplementary

relations. Defining first:
T < + -
e _ 47 ( M ) (3.22)
AN T o ArloAy A THE!
N A} ! 7
we obtain for meson exchange

I T 1
Re €, = Re | O T E OA.-)’. ] (3.23)

T - !
IM e).?\":: J-Wl[ E)‘)" - £ E;\.-?i'|] (3.24)
and for baryon exchange
I :
Re va‘= Re Oy,5, + ¢ Tm Ea,-u’, (3.25)

IM e:\.}"-—- IM E)|)’| + e/ Re Oz'_z" (3.26)
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We now turn to specific applications of the general expressions
given above. We recall that in this section we are concerned with experiments
in which only the polarization of one single particle in the final state is
measured, while the initial state is unpolarized. We successively consider

polarization measurement for a particle with spin 1, 2, % or %.

%3.4.1 Measurement of the polarization of a spin 1 particle

We first study vector or axial mesons produced in reaction
a+Db—- (particle 1 with spin 1) +2+ ... The polarization is in general
expressed in terms of density matrix elements which can be computed from the
decay of particle 1. We give in the Appendix the decay angular distribution
for 1-0+0, and 1—-0+0+0, and the relations between observable quan-

tities, density matrix elements and multipolar parameters.

a) Measurable quantities
A1l independent measurable quantities and their properties both
in the helicity and transversity systems are given in Table A.1 of the
Appendix. Because the initial state is unpolarized only the columns labelled
H-B (for helicity quantization) or T-B (for transversity quantization) have
to be considered. For the even polarization of the spin 1 meson there
are six independent real measurable quantities. This number reduces to four

in the two-body or inclusive case.

One observes for instance from Table A.1 that E1_1, which
is equal to €1_1, is in general a complex quantity, but that it becomes

purely real in two-body reactions for helicity quantization.

b) Separation into natural and unnatural parity exchanges

i) 8,=0
When the spin of particle a 1is zero, then it is always
possible to separate the natural from the unnatural parity exchanged contri-
butions in channel a+71—-Db+ ..., which is therefore necessarily a bosonic
channel. We give in Table 1 the d.m.e. or the combinations of d.m.e. which

perform explicitly this separation for parity-conserving decay measurements.
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In this table O is the naturality of the exchanged state, and one should

be aware that elements on the same line are not necessarily equal.

The two other independent elements, ImE1_1 and hnE1O

for helicity quantization, ReE10 and DnE1o for transversity quantization,
which do not appear in the table, give a measure of interferences between
natural and unnatural parity exchanges. They vanish of course in the two-body
case (in agreement with statement 1 of Section 2), because, as can be seen

in Table A.1, they are antisymmetric with respect to reflection in the scat-
tering plane. They can be measured in multiparticle reactions (Class 2)

from an asymmetry measurement relative to particle 2, for instance from
%%'E%’
are given by Egs. (3.13), (3.21) and (3.22).

The relations between observable quantities and helicity amplitudes

i1) 8,40
When the spin of the initial particle is non-zero, the observable

quantities are related either to incoherent sums over both exchanged naturali-

ties, or to interference contributions, according to whether they are symmetric

or antisymmetric with respect to reflection in the scattering plane as can

be read off from Table A.1. The separation between natural and unnatural

parity contribution can be achieved only when the initial particle a is

polarized, and this will be studied in the following sections.

3.4.2 Measurement of the polarization of a spin 2 particle
We consider production of a spin 2 particle in a process
a4—b—+(particle 1 with spin 2) +2+ ... Most of what has been said for spin
1 polarization in the preceding paragraph can be readily extended to spin 2
polarization. We give in the Appendix the decay angular distribution for
2 > 0+0 and the relations between observable quantities, d.m.e. and

multipolar parameters. Also two classes of reactions should be considered.

a) Measurable quantities

All independent measurable quantities and their properties are
given in Table A.2 of the Appendix. For unpolarized initial state only

columns labelled HB (for helicity quantization) or TB (for transversity
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quantization) have to be considered, and there are now 15 independent real
‘quantities to describe the even part of the polarization. This nunber

reduces to nine in two-body or Class 1 reactions.

b) Separation into natural and unnatural parity exchanges

We give in Table 2 the nine density matrix elements or com-
binations of density matrix elements which, for parity conserving decay,
allow a separation into natural (@ =+1) or unnatural (6°=-1) parity
exchange in the a+71-b+2 ... channel, when particle a is spinless. The
six other quantities which do not appear in the table (i.e., Eg1, E?O and E£_1
for transversity quantization, ImE AN for helicity quantization), give a
measure of interferences between opposite naturalities. The relation between
the observable quantities and helicity amplitudes are given by Egs. (3.13),

(3.21) and (3.22).

ii) _S_a;éO

When particle a is not spinless, the observable quantities
are related either to incoherent sums over both exchanged naturalities, or to
interference contributions, according whether they are symmetric or anti-
symmetric with respect to reflection in the scattering plane as can be read

off from Table A.2.

The situation concerning the measurement of a final state
particle with spin %4 in a production reaction a+b- (particle 1 with spin %)
+2+ .. is slightly different from what we have considered previously for
bosons with spin 1 or 2. In fact polarization measurements require either
rescattering measurement (for nucleons) or weak decay measurement (for hype-
rons). Therefore in that case both the odd and even polarizations may be

experimentally available.

a) MWeasurable guantities
All independent measurable quantities and their properties
are given in Table A.3 of the Appendix. For unpolarized initial state
(columns HB or TB) and two-body or inclusive type reactions, one recovers

the well-known fact that the polarization is always normal to the scattering
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plane (Py for helicity quantization, PZ for transversity quantization).
But for Class 2 reactions a non-zero polarization in the scattering plane 18)

(along P_ and P, for instance for helicity quantization) is now obtained.

b) Separation into natural and unnatural parify exchanges
The unpolarized cross-section or the cross-section with the
polarization of the final state spin L1 particle normal to the scattering
plane is expressed in terms of incoherent sums over both exchanged natural-
ities, while the asymmetries with polarization component in the scattering

plane depend upon interferences between opposite naturalities.

When particle a is spinless, and therefore channel a+T-b+
2+.. 1is a baryon exchange channel, the separation between natural and un-
natural parity exchanges in this channel is readily obtained by considering

the following combinations

ds":du-(A:qal’é) (3.27)

where qla is the intrinsic parity of particle a, Pt the usual polarization
parameter measured along the normal to the scattering plane, and d& the

differential cross-section.

Such an analysis allows one to separate coatributions of parity

doublet partners and has been studied in Ref. 12).
11) §aé0

When the initial particle a is not spinless the separation
into natural and unnatural parity exchange requires an experiment with
polarized initial particle a according to statement 3. of Section 2.

This situation will be investigated in the following sections.

3.4.4 Measurement of the polarization of a spin % particle

We finally consider measurement of the polarization of a spin

particle produced in reaction a+b- (particle 1 with spin 8Y+2+.. From

© o

practical point of view there are essentially two types of such processes:
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[S production with parity-conserving decay into nucleon + pion, from which
only the even part of the polarization can be deduced, and Y* production
with a two-step decay including a weak decay of N\ or Zf, from which one

can deduce the whole density matrix.

a) Measurable guantities
All independent measurable quantities and their properties are
given in Table A.4 of the Appendix. For unpolarized initial states only
columns labelled HB (for helicity quantization) or TB (for transversity

gquantization) should be considered.

b) Separation into natural and unnatural parity exchange

We give in Table 3 the eight real observable quantities which
allow a separation of opposite naturality contributions. In contrast with the
meson polarization measurement case, one should notice that this separation
requires measurement of both the even and odd part of the polarization (i.e.,
E and O quantities). This means, for instance, that one cannot deduce the
opposite naturality contributions from measurement of the decay angular
distribution of a l& , which is a parity-conserving decay. On the other
hand, this separation can be achieved for Y%, by observing the two-step

decay Y*->Y ST and Y-NAR.

For multiparticle reactions, there are eight more observable
quantities (see Table A.4 of the Appendix) which can be measured in Class 2
reactions and are related to interference contributions. The relation between
observable quantities and helicity amplitudes are given by Egs. (3.13), (3.21),
(3.25) and (3.26).

1) 5,40

When the spin of particle a 1is non-zero, it is not possible
to separate the exchanged naturalities, unless particle a is polarized.
This case is studied in the next sections. However, it is possible to compute
interference terms, even for a parity-conserving decay of the spin % particle,
in Class 2 reactions as for instance pp—+£§4—2+i3. These interference terms

are given by ImE31 and hnE3_1 in helicity quantization, related to
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helicity amplitudes by Eq. (3.21) and by E31 in transversity quantization.

Other combinations giving interference contributions from
parity-non-conserving decays can be easily computed from Table A.4 and

Eq. (3.21).

POLARIZED PROTON TARGET (OR BEAM)

This section and the following one are devoted to reactions
induced by polarized protons or photons (assuming that only one initial
particle is polarized) with measurement of a single polarization in the

final state.

We study first processes with a polarized proton target, or
polarized proton beam, and give the specific properties of observable
quantities. These properties depead on the space orientation of the pola-
rization vector. When this vector is perpendicular to the production plane,
the properties are similar to those described in the unpolarized case (see
Section 3.1). They are referred to, following a now standard terminology 14)
as Bohr-symmetry properties (B). On the other hand, when the polarization
vector lies in the production plane, quite differeat properties follow from
parity conservation in the production process. We shall call them Bohr-
antisymmetry properties (BA). Then we discuss the relevant experimental
observables which allow one to separate crossed channel exchanges (both
mesonic and baryonic) into components of definite naturality, or to detect
opposite naturality interferences when the observed final state particle is
produced at the same vertex as the polarized proton. The section ends with

some considerations on the case where the final state particle and the

initial proton are not associated with the same vertex.

4.1 General properties of observables

4.1.1 Initial density matrix and decay distribution

The density matrix describing a polarized initial proton is
given by a linear combination of the 2x2 wunit matrix and the three Pauli
matrices 6’k

6. (¥)= 4(1+7F) (4.1)

M
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“ where P is the polarization vector. Tne final state is described by a final

density matrix:

€;(?)= F(’ﬂ"?'?> F+/Tz.(FF+) (4.2)

and we expand the density matrix of a final state particle (say particle 1)

on the basis (1, Gk) exhibiting the dependence on the polarization vector

-

P:

(4.3)

YA -
emm' = Cuw * Rk P"- € o’
where the O superscript refers to an unpolarized iritial state and

ef . = Fus Fl/ T (FFY) (4.0

corresponds to an initial proton with polarizatior along the x, y or =z

axis for k=x, y, z, respectively.

In general, measurement of emm, is achieved by analyzing the
decay angular distribution W of particle 1. Since a decay angular distri-
bution is linear in C , the representation (4.3) may be also used to expand

W

W) - W)+ Z R w ) (4.5)

where W (fL) 1is a function of el only (i=0, x, y, z) and L =(8, ¥)
refers to the decay products of particle 1 and therefore depends obviously
upon the choice of the quantization frame of reference. We recall that

6) by

helicity and transversity axis are related within our conventions
H H H T T T
(X y ¥ 9 2 )=(X y 2y =¥ )-

Whern the initial proton target polarization is parallel to the

beam, the observed decay distribution is

W//(e,,)=[Wo(ﬂ)+o( e,,W(%’-% )(.Q)] (4.6)

where ™ is the degree of polarization of the target and e, =1 (—1) when
the polarization is in the same (opposite) direction as the beam. The two
upper indices on the right-hand side of Eq. (4.6) refer to a helicity or

transversity system.



- 26 -

Consequently two successive measurements, one with ey =1
and the other with a reversed polarization e, =-1, give wo(fl) and
H — T
w2 (fL) |or wo(QL) ama WY (Q), respectivelil in the helicity (or

transversity) frame:
woea) = %[W”m + W”(-n] (4.7)

w )(_(L) = _i_“[W"(A)- W”(-A)] (4.8)

Consider now a proton with polarization perpendicular to the
beam, and let us denote by @ the angle between the scattering plane and the

polarization vector. Then the polarized cross-section is given by
(x"l ,‘r) (%“' T‘)
W) = (W) rawdW () +asmdW 1)) (19

which allows a straightforward determination of the two other distributions:
2 b
(x*, x7) *(d) mP d
W ) s A | W) (410)

25
W(%'S)(.O.): di. W) b d P (4.11)

‘and moreover another determination of WO(IZ):

W) = e W ($) d P (4.12)

Explicit expressions for the decay angular distributions of

spin 1, 2, 4 and 2 are given in the Appendix.

4.1.2 Observable density matrix elements

As in the unpolarized case, it is straightforward to show that
available quantities from the measurement of the angular distribution of a

parity-conserving decay are defined by:

L
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and that, in parity-non-conserving decays, supplementary quantities are

moreover observables:

.

OlmW\ (\.?4 [ ehw’(\p ) - ’) e_.;n'.m ("p")] (4.14)

In the two preceding definitions the upper indices refer to the initial
polarization. For completeness, we quote some properties of the observables
E and O, which are independent of the quantization frame of reference and

of the target polarization:

i) hermiticity

L
E‘lmn': Em'm (4.152)
v HE
O'Mlh’: OIM'IM
ii) L

' N
Evmn' = (-)M-M E-w.'-m

. ! L (4.15b)
v wm-m
Ow\m': - =) O-w’-M
thus for half integer (or 1nteger) spin
L
Em-m =0 (0" Dm m =0) (4.15¢)

iii)

o
Z Emm =4 (trace condition) (4.154)

m

4.1.% Bohr symmetry and Bohr antisymmetry properties

Since for a nucleon, the reflection operator Y in the pro-

duction plane is given by 8

H L)
y = = E\a, (in the helicity system)

. (4.16)
\/ e =1 g'.? (in the transversity system)

We deduce that
H)-l &k , R=0y
h( = k for helicity quantization
- g’k =N
» 3’ (4.17)

T T\ Ok » k= 0,3
Y =
e () {-%, ke

for transversity quantization
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Thus the reflection properties of density matrix elements defined by
Ea. (4.4), which follow from parity conservation in the production reaction,
depend on the polarization direction k of the proton target, the difference

being just up to a sign.

i) TFor positive sign in expressions (4.17), then, as in the unpolarized case,

Egqs. (3.7) and (3.9) remain valid, and the matrix elements will be called

Bohr symmetric (B). This is the case for PyE\z' and eii,v,. Explicitly

p T . (4.18)
-) € 2y (-tpj) Jon i=o, Y

]

.
€ ()
in the helicity basis

.

v -t/ . .
ef"—" (q)j) = (=) f-,_ft/ (-‘PJ-) fo':. L=0 % (4.19)

in the transversity basis.

ii) When an over-all minus sign is introduced by expressions (4.17), the
matrix element will be called Bohr antisymmetric (BA). Parity conservation

now yields:

L

N .
(’n, (tfi)=-l-) € 5 ("ﬂ‘) oo v= 3 (4.20)

-

v -t
Cov (‘Vj )R b N %) for t=my (4.21)

In other words, when the proton polarization vector lies in the
production plane, the density matrix elements describing the polarization of
a final state particle obey Bohr antisymmetric reflection properties.
Conversely, for an unpolarized initial state or a polarized proton perpendi-
cularly to the production plane, the density matrix elements follow the

Bohr symmetric reflection properties.

From the preceding discussion it is very easy to deduce the
symretry properties, through reflection in the scattering plane, of multipolar
parameters and observables. For B symmetric polarization these properties
are of course just the same as those described in Section 3.1 for the unpo-

larized case.
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i) Helicity system

¢ (B) L L (B) ¥
tn ()= ty (-f;) (4.22)
(8A) L, L (8A) ¥
en i) = -t ER T gy
and consequently
_e B¥ B 82
Ean ()= Eqnx ¢4;) 5 Ony () == Oy 1) (4.23)

BR A* BA BA ¥ |
Enor (4) == Ear -9;) 5 Oy (4)= O 'par ()

Thus from a parity-conserving decay measurement, in two-body
or inclusive reactions induced by a Bohr symmetric initial polarization,
one can obtain real parts of density matrix elements, whereas imaginary
parts can be deduced from measurement with B antisymmetric initial pola-

rization.

ii) Transversity system

Parity conservation in the production process requires now

L (B (

M L (8)
b"l (‘f.i) = {~) t m - (“f“)
E._m(sh)wi) - Mk, (sn)(_%.)

Multipolar parameters are symmetric or antisymmetric with respect to reflection,

(4.24)

depending on the parity of M and on the initial polarization state. From

M= T'-T , we deduce

[ -/ B

B -t~ B
E ooy = 5  Eew -4,); 0= O vy
(4.25)

BA z-t’ -~ BA BA ot BA
Eev t)=- 0 Eco9); Opp (9)==60"" Oy iy

Thus even and odd L polarizations are symmetric (antisymmetric)
with respect to reflection, when the transversity difference T'-T 1is
even (odd) for a B symmetric initial polarization, or whem T'-T 1is

0odd (even) for a B antisymmetric one.
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A1l preceding properties are summarized in Tables 4 and 5.

L1

. M ,

with respect to reflection in the production plane. In Table 5, we give the

In Table 4, we give the properties of multipolar parameters T

symmetry properties of the observable quantities E and O.

o o e o o e o o o - - - - " > " o S S e e S e S e

. - —— T — o — " o

In this Section, we dwell on the measurement of the polarization
of a final baryon (particle 1), produced off a polarized proton target
(particle a), assuming a small momentum transfer between the two baryons.

The crossed channel a+1—-Db+2+... is therefore a meson exchange channel
(e.ge, p?4-K—»Y*-+X). We shall derive the linear combinations of the
observable quantities E;m, and O;m, (the superscript 1 refers to the
direction of the initial proton polarization), which isolate a well-defined
naturality in the crossed mesonic channel, or give interference contributions
between opposite naturalities. We shall first use transversity quantization
which is the most convenient way to make these combinations explicit, then,
for the sake of completeness, we shall give similar expressions for helicity
quantization. Throughout this section we shall use, in any quantization
frame, the compact notation
Lo

. .
E r + A E.:nh'

mwm

mm/
(4.26)

Lady v :
Omw = Omm' 4 o O:\ml

where ¥ =% 1, =i.

a) Transversity gquantization

The preceding observable quantities are related to transversity

amplitudes -as follows:

0%

E . [T o T ¥ (4-278)

4 ’
W 2gqr) CRT TR, “TT) T

*
X T" {Tyt4z Ts]

»*
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OOW Z_ [T T* | - T T* ](4.27b)

7~ Tmy ClEitRTe imieT, ST tRTy TG Ty
11 u!& —_— 'L'-t' *
Z[T LT O T, .*tl o=y ) (4.282)
2, Ty, 4T} Tt Ty ""{"" i+ k b -t{TY TRy TR
Ii‘i\& »* -t *
ya -
O'm:’ "z [“’:{-‘a TR titlIkT, © I’ifﬂ*k’s -f{filﬂirb] (4-28D)

Since, as shown in Section 2.3.2, transversity amplitudes

T T:{Tjk i%“tb are naturality-conserving amplitudes with definite naturality

TF)h 5
G = .14 (4.29)

it is clear from Egs. (4.27) that, for the Bohr symmetric components (0,z)

of the initial polarization, the separation between natural and unnatural
parity exchanges can be obtained by isolating observable quantities of even
transversity difference T -T'. Elements with odd T -T' give an evaluation
of interference terms between opposité naturalities. For Bohr antisymmetric
polarization components (X,y) the situation is reversed: interferences

are associated with T -T' even.

These properties are summarized in Table 6. The first column
gives the combinations of measurable quanitities which should be considered in
order to obtain specific information on the exchanged states (quoted in the
last column). One should notice that for Bohr symmetric components (pola-
rization normal to the production plane) both the odd and even polarizations
(parity non-conserving decay) of the final baryon arc required. The third
column refers to symmetry properties (with respect to reflection in the scat-

tering plane) which have been already recorded in Table 5.
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b) Helicity quantization

We now turn to helicity quantization. We shall use the sim-
+
plified notation MA to denote the naturality conserving amplitudes
+
M by {ij . >b( q)i) defined by Eq. (2.9), and define the following quantities
+ 2

Do At (or D 2‘)J) related to natural or unnatural parity (or interference)
contributions:

t x + o/ 3 + ¥
2N DL = -
(4.30)
I Z + ¥ AN m* - ¥*
! = -4—- ;. - (- ’
DM 2N P [mA m" © M’A' M';‘ ]

These D functions can be experimentally measured when the
*
initial proton has Bohr symmetric polarization (0,y) components ).

Explicitly one obtains:

t 0 - '
Re DAN’ = Qe EA}’ bray 6(7{’, 12 ) Lm O:'-Aj (4.31)
* o Y
IM Dh)/ = Im OM' + 8(7(, 1f2) Re El_l.f (4.32)
Re D, vy e\, 4) Im EF
e Dh)’ = Re Oﬁl’ + 8?%,4/1) —Lm E;\~A/ (4-33)
T —° ¢

=

3

N4
>
y‘-

i

Tim t;.," £, 42) Re Osl-z' (4.34)

with

The y axis is the normal to the production plane because we are

referring now to helicity quantization.
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Similarly for Bohr-antisymmetric initial pelarization of the
proton (X, Z components) we Tirst define bilinear combinations of naturality-

conserving amplitudes:

% * T
Co= 2 Z IMEme™ MG My
2 zb){)ﬁ (4.35)
T R I U O
Cl)! = i [ mz N -+ (") M-h m-l'
)h{h‘

related to observable quantities by the following expressions:

b 4 % ‘ .

Re Coy = Re Opy £ €3, %) Re O:-z’ e
+ - 73 ) — 2%

I\Y\ C?\’l’ =1 E}l’ t 8(),"/&) .I.m E’\.;\’ (4.37) -
I Z . " x* '

Re Con' = Re B - €d,4z) Re E, (4.38)

kg —_ X
T C = Lm O =€, ) Im O, (4.39)

The above expressions deserve some comments with respect to

specific experimental situations.

i) Target polarization orthogonal to the beam

From this kind of experiment only part of the preceding
atd s : ; y y
relations can be computed due to lack of information on E ., and O 1
in the transversity system, or on E” AN and OZA.A' in the helicity one.
Only the Bohr symmetric components of the initial polarization can be used
to separate natural and unnatural parity [%he two first lines of Table & and

relations (4.31), (4.32)].
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Anyhow the x component of the polarization can be used to isolate inter-

ferences (for T -T' even) or incoherent sums (for T -T' odd).

ii) Target polarization along the beam

: ¥ y z . z
Inothls casi only E _— and 0%¢g, OT E A and 0 AN
(and obviously E and 0 ) can be measured. Therefore, the separation
into natural and unnatural parity contributions cannot be achieved with this
type of experiment. Interference contributions can be obtained from Eort'

or 001:1:' (T-T' o0dd) and Eytt' or oyttu (t-T' even), whereas

o o
Eggr 24 O¢ (g-Tt' even) or Eyrt' and oy‘l:'c' (t-¢' odd)

correspond to inceoherent sums.
iii) When the polarization of the final baryon is measured by analyzing its
parity-conserving decay angular distribution, then, as already quoted in
Section 4.1.2, only the even part E- of the final density matrix can be
obtained in general. Thus, it is not possible to measure independently for
instance the first end second lines of Table 6. The same remark applies to

. . s + - +
Egqs. (4.31)-(4.3%4) in which case only ReD AN +ReD , 5, and ImD’ 5 a1 -
Im D_A A can be computed. Interference contributions can be obtained using

E measurement only, through the following relations

Re D;l’ - Re D)?A = 2 '74 ‘_)'54-) IM EA‘&.Z’

(4.40)

- T T °
-LW\ b,\,\' - IW\ b}'h= < IW\ E7\7«’

iv) We recall that E;_mEO for half integer spin particles (see Section
4.1.2) and that diagonal elements are real. Looking back to Egs. (4.30) and

(4.35), we find

+

Re D,.» =

]
o

- + (4.47)
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v) For quasi-two-body or inclusive reactions, all interference terms
between opposite naturalities are zero, being antisymmetric by reflection in
the scattering plane [éccording to Table 6 in transversity frame or from
formulae (4.33), (4.34), (4.%8), (4.39) and properties depicted in Table 5 in
the helicity systeﬁﬂ.

As in the previous section, we are still interested in measuring
" the polarization of two particles related to the same vertex (particle a and
1), assuming now that the crossed a+1-b+2+ ... channel is a baryonic
channel, i.e., that particle 1 1is a boson produced off a polarized target

with small momentum transfer (e.g., pAh +3 - A +N, r? +K—-K¥* + N).

a) Transversity quantization

For transversity quantization the relation between the observable
L oxz oxz iy x iy . . .
quantities E — 0 ct!"’ EXt < and 0" . o and transversity amplitudes
are again given by Egs. (4.27) and (4.28). The only difference from the
previous case is that the transversity amplitudes T 1 are
yoamp T %‘Cj} = Ty
y

naturality-conserving amplitudes with définite naturali & now given by

(4.42
=z, (> )

instead of Eq. (4.29).

From Egs. (4.27), (4.28) and (4.42) we easily deduce those
observable quantities or combinations of them, which are related to well-defined
exchanged naturality or to interference terms. Qur results are presented in
Table 7, which should be compared with Table 6 for meson exchange. Despite
their apparent similarity important differences can be observed between the
two tables. In particular it should be noticed that, in the present case,
parity non-conserving decays are not required to separate exchanged natura-

lities when the initial polarization is normal to the production plane.

b) Helicity quantization

+
As in Section 4.1.2 the bilinear combinations C a?l' and
+,1
Dan
(4.35) can be related to combinations of observable quantities. For Bohr-

of naturality-conserving amplitudes, defined by Egs. (4.30) ard

symmetric initial polarization we find
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Y .
Re Dy = Re By £ ecd) Re EY (443
T & o ) Y .
Lm Dm’ =Im O * E(n) Im O?\-a’ (4.40)
R Ny ¥ ' ¢ (4.45)

e D,mr = Re 07“! -~ e) QC OZ-A' .
, T . _ .

In Dy = L Eppr + €03') Im E?w\’ (4.46)

where

s,
e(') = 1, -y

For Bohr antisymmetric initial polarization the combinations of
observable quantities E and O which allow a separation into naturality

+
components C or interference contributions CI are given by

+

Re CZK’ = Re Ozl + 8(2') IW‘\ E;_z' (4.47)
+ - 3 %

I Coy=ImEX 7e) Re Ojn (4.48)
I _? , w— b 4

Qe C)\Af - RC tA)I - €(A') lm Oh-?" (4.49)

-—

- I - ¥ x
I C, 0 = Im OM/ + £() Re En-a' (4.50)
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To summarize this discussion on boson production off a polarized proton,

let us emphasize that it is possible, in this case, to achieve a separation
between opposite naturality contributions from even polarization measurement
of a meson reonance produced off a nucleon with polarization orthogonal

to the scattering plane. This is in fact the most likely experimental situa-
kion, which should be contrasted with the more constraining requirements

found in the preceding paragraph for baryon production.

4.4 Polarized target and observed particle 1 associated with

Finally, we consider the case where the final state particle 1
is produced at a different vertex from that of the polarized proton b, as

for instance in forward production of e in ¥ pp- (JN (see Fig. 3).

The corresponding transversity amplitudes T T r} T i% are
‘ j a -
naturality-conserving amplitudes, with & , the naturality of ihg. a+T-b+2+...

channel, given by

_ U+ Ta- T
G = 'YL.L =)

Looking back to Egs. (4.27) and (4.28) giving the relation
between the transversity amplitudes and the observable quantities, and
Ty 2T, U TT{T} T

matical configuration depicted in Fig. 3, one can easily be convinced that the

+ + 3
observable quantities Eo!?iv’ 0°ZZ EX T

replacing T in order to recover the kine-

X 1
L ot ard O t'l:B'r can be expressed
in terms of an incoherent sum over both exchanged naturalities when ¢ --'
is an even integer, or of interference coatributions when T -T' 1is an odd

integer.

For two-body reactioans, according to Table 5, the only non-

vanishing quantities with T - T' odd are those related to Bohr-antisymmetric
. . . X X v y

target polarization, i.e., E T 0 p—y E T and OT:"F"

We formulate now these results in terms of helicity d.m.e.
restricting ourselves to Class 1 reactions. From a phenomenological point
of view it is useful to know what observables are needed to obtain real or
imaginary parts of interference. Thus, for BA initial polarization
i=x, z, we express the related d.m.e. in terms of naturality-conserving

amplitudes:
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(’:;'=f—'- Z[M+ M-* +

EIARTATN ApYrady  Ai{pYAa-Y2 ~ (4.51a)

- +*
+ mM)A} Ao Y2 m"'{ﬂ Aa-Ye ]

and

¥ + - ¥
= 4. r1 ! '
G =4 xrzﬁa[ bt Nippre T (5.7

- +*
+ ml{y}%ﬁ mz'{y}lq 173 ]

where the 'Mi anplitudes are defined in Eq. (2.9) for boson or baryon ex-
changes. For quasi- two-body or inclusive reactions (where now the unobserved
packet is assumed to be produced at the same vertex as the proton) only
hnEi7\)' and ReOi AN survive for 1=X, 2z _(see Table 5). Imaginary
parts of interferences are then obtained through even polarization measurements,
whereas odd polarizatvion leads tp real parts.

A1l the preceding resulté are in agreement with Statement 5 of
Section 3.4. Interferences between natural and unnatural parity exchanges
can be deduced, in two-body reactions, from polarization measurement of two
particles associated with different vertices. For a polarized proton target
we have shown that it is necessary, in addition, to have the proton polariza-

tion in the scattering plane.

4.5 Applications

We now present some specific applicasions of the general
results obtained in the preceding sections for particle production on a pola-
rized proton target (or with a polarized proton beam), p4 +b—-1+2+ ... +n.
We assume that the polarization of particle 1 in the final state can be
measured, and we shall consider that particle 1 may have spin O, 5,01, 2 or

2.

4.5.1 p $+b-(particle 1 with spin ZeT0) + 2+ eee

In this simple first example one 1is obviously measuring only

the polarized cross-section. We consider separately the two cases where the
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polarized proton is associated with particle 1 at the same or at the opposite

vertex.

i) When the polarized proton and particle 1 are associated with the same
vertex (i.e., small momentum transfer between both particles and baryon
exchange mechanisms), as for example in backward I N elastic scattering on
polarized target, backward pseudoscalar meson photoproduction p1'j -JnN,
pﬁt'ﬁ—é n+ 5~ etc., one can separate the exchanges of opposite naturalities.
This result has been emphasized in Ref. 12) in particular with respect to the
parity doublet problem. From Table 7 we deduce (T =T'=0, and therefore
0;:0) that the separation between opposite naturalities caﬁ be achieved by
combining the unpolarized cross-section Ego ae°/dt =a0/dt and the pola-
rization parameter P:=E§o corresponding to the target polarization normal

to the scattering plane. The final result, in agreement with Eq. (3.27) is

(4.52)

N

(427,P)

%5

de
ot

The two other Bohr antisymmetric quantities Eio de/dt and
Ego A6 /dt for transversity gquantization, corresponding to polarized cross-
sections with target polarization in the scavtering plane, permit an evaluation
of interferences between opposite naturality exchanges. These quantities,
being antisymmetric with respect to reflection in the scattering plane (see
Table 7), vanish for two-body or inclusive reactions (Class 1) and can be
measured in Class 2 reactions from a measurement of asymnetry with respect
to the scattering plane. Their relations to helicity amplitudes are given by

Egs. (4.49) and (4.50).

ii) When the polarized proton and particle 1 are associated with different
vertices (i.e., small momentum transfer between particles a and 1), then,
as stated in Section 4.4, all measurable quantities are given in terms of
incoherent sums over both naturalities. It is not possible to measure inter-
ference contributions. These interferences are trivially zero if particle a
is spinless (well-defined naturality in the crossed channel), and if sa;éo
they can be computed when both a and b are polarized from Bohr anti-
symmetric components of the two initial polarizations as will be shown in

Section 6.
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a) Measurable quantities

We are now investigating the case where the polarization of
a final spin % particle is measured. The general properties of observable
quantities are given in Table A.3 of the Appendix. These properties clearly
depend upon the initial proton polarization, and in agreement with the
defini@ions of Section 4.1 we denote by the superscript 1 for E;m" Oim"
or e;;n,, the polarization orientation of the initial prdton (i::x, Yy Z

or O for unpolarized initial proton).

b) Separation into natural and unnatural parity exchanges

When the two polarized spin % particles are related to the
same vertex (i.e., small momentum transfer between the two particles, and
meson exchénge), then according to the discussion of Section 4.2 and to the
results of Table 6, it is possible to separate the contributions of given
exchanged naturality by comsidering suitable combinations of observable
quantities. For the sake of clarity aﬂd completeness we give in Table 8

the explicit combinations which allow such a separation for a final spin z

particle.

One should pay particular attention to the second line of
Tghle 8. In fact (for transversity quantization) OZL is nothing but the
final polarization Pﬁ_ along the normal to the scaiiering plane for un-
polarized initial state, and Eg% is the up-down asymmetry for the polarized

initial proton along the normal to the scattering plane which we denote by
L v
At A
Therefore the second line in Table 8 can be rewritten as follows

o ¥ £ a
O + E = £, 2 P, (4.5%)

V2 'l Y2 V2

Using Egs. (4.30) and (4.38) the preceding quantity is related to helicity
amplitudes by
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_ + + % (4.54)
Lem Z M il V22, M‘ CRL RPN
L

|

o
-
I+
Fo
» -
I

2

and therefore gives an evaluation of the imaginary part of products of ampli-

tudes corresponding to a given exchanged naturality.

The interesting point about Eq. (4.53) is that computing this
expression does not require experiment with correlation measurements between
the two initial and final polarizations. Instead, oae can use the results of
two separated experiments, one with cross-section measurement on a polarized
target, aﬁd another one with final polarization measurement on an unpolarized
target, and for example combine electronic experiments with bubble chamber

experiments.

As a consequence of Eq. (4.53) we recover for (07 +3"-07+3")
reactions, due to the fact that .only natural parity can be exchanged, the well-

known relation: R

Pf - |:>'L (4.55)

L

i.e., measurement of the final polarization is equivalent to measurement of

the asymmetry cross-section on a polarized target, as for instance in JUIN-KA.
Equality (4.55) is of course trivially satisfied when the initial and final
states are identical. On the other hand, this equality is not satisfied for
more general reactions, such as for instance JUN- A + anything, YY¥—-KA.
Joint experimental data from an experiment with a polarized target and from
another one with /\ polarization measurement on an unpolarized target will
then yield interesting information on the relative phases of helicity ampli-

tudes with a given naturality.

ii) When the two polarized spin % particles are related to opposite vertices
(i.e., small momentum transfer between particle b and 1), naturality
splitting is only possible in particular cases. However, as was underlined in
Section 4.4, naturality interferences may be isolated. As an illustrative
example, consider the inclusive /\ production (Class 1) on a polarized

target: W pf—>/\X in the pion fragmentation region. Owing to the pseudo-
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scalar nature of the incident particle, hyperon polarization gives the

relative amount of naturality exchanges for each Bohr symmetric spin component
of the proton target (unpolarized and transverse polarization perpendicular

to “he production plane). In addition, Bohr-antisymmetric polarizations of the

proton lead to interferences evaluation |see Egs. (4.51a) and (4.510)] .

4.5.3 I_Jt+b—)(particle 1" with spin 1)+2+...

a) Measurable quantities

A1l spin 1 observables are given in Table A.1 of the Appendix.
Their symmetry properties by space reflection depend on the initial polari-
zation component of the target; for instance, Eit:t, enjoys opposite
symmetry properties according to whether the superscript i refers to a
Bohr symmetric or to a Bohr anti-symmetric component of the proton polariza-
tion. Only the even part Eim' of the density matrix can be measured without
ambiguity as briefly discussed in the Appendix. Thus our discussion will be

restricted to this part of the density matrix.

b) Separation of opposite naturality exchanges

i) Baryon exchange

— T o o e o =

We present in Table 9 both in helicity and transversity quan-
tizations those combinations of observables which isolate natural.from un-

natural parity exchanges, in the baryonic channel pP +T-Db+...

Obviously an experiment such as I pp->NV is very difficult
to achieve since correlation measurements between the vector meson and
the target, in the backward direction, are required (small statistics). How-
ever, we must emphasize that some combination of particular quantities depicted
in Table 9 may be evaluated more precisely and more easily than each of them.
This result is readily established by combining lines 1 and 4 of this table

and using the normalization condition
s v .
13
ok
we obtain in helicity quantization [éf., Eq. (4.435]:

RQ(D;‘;- 2 D»ltd): ;(ifo(E:o‘z Re E:--')"-' 1, i%% (4.56)
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On the right-hand side of Edq. (4.56), the first term is nothing but the final
density matrix elements with unpolarized initial state, whereas the second

term is the up-down asymmetry cross-section on polarized target.

ii) We turn now to the case of a spin 1 particle produced in the forward
direction (boson exchange), the polarized target and the decaying particle are
related to opposite vertices (i.e., small momentum transfer between Db and 1).
It is then possible to measure interferenceé between naturality contributions
in a Class 1 reaction. As shown in Section 4.4 only BA target polarized

states have to be considered and the even non-vanishing density matrix

elements are (see Table 5)
— L R
lwm E ./ L= %3
Thus only IHlf?i? and Inleﬁgz depend on opposite naturality interferences,

whereas all the others can be expressed as incoherent sums in Class 1

reactions.

a) Measurable gquantities

The set of observables related to polarization measurement of
a spin % particle is given together with detailed properties in Table A.4
of the Appendix. In general the measurement procedure consists in analyzing
the strong decay process %~+%u+0, from which the even part only E;m' of
the angular distribution may be extracted (e.g., n pf—>A+...; A —-»pjz).
But, if the polarization of the final decay produced baryon is analyzed,

the odd quantities are also accessible, as for instance in

0
* *
np¢-Yr..., Y >Ants A-psl.

b) Separation of natural and unnatural contributions

i) Boson exchanges

Combinations of density matrix elements which distinguish
between natural and unnatural parity contributions exchanged in the channel

pR+T-ob+... are given in Table 10.
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It is apparent that the evaluation of a well-defined naturality
contribution requires at least either even and o0dd polarization measurements
of the final baryon when the initial proton polarization is normal to the
pro@uction plane, or even polarization only when the proton target is polarized
in the production plane (normal and parallel to the beam). Thus for inclusive
[} production (in which Eim' only are available) a polarized target with
non-zero component along the beam is required and isolates the following

& =% N, quantities (helicity quantization):

Im Exf 5 Im Excy

]:VV\ EE;E| £ Im E?!::
Inclusive Y* production off a polarized target may lead, in
principle,, to much more information. In that case, the only quantity which
does not require polarization correlation measurements can be obtained from

lines 7 and 8 (helicity quantizatjon) of Table 10. From Eq. (4.3%2) we obtain

Tm (D, - D)= ds'Tn(0 - O] )2y ¢ dxt  (on

4 -4 3 -3 dt -4 3-3 4 dt

ii) We present now some brief comments on the reaction y(pf—él&J[
in the backward direction, in order to illustrate the case of spin % production
on a polarized target at opposite vertices. A Bohr symmetric initial polari-
zation disentangles natural from unnatural baryonic exchanges in the following

way (see preceding discussion, Section 4.5):
* (%)
ds™ o ds® 3 ﬁtﬁ‘% (4.58)

in the helicity (or transversity) system.
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Due to the fact that only natural parity can be exchanged in

the XN —N A channel, we deduce from Eq. (4.57) the exact relation

l* P o o
fllks =2 ﬁf (Im O, - Lm O;-; ) (4.59)

which, on the other hand, can be obtained straightforwardly from parity

relations on observables 8). Substituting Eq. (4.59) into (4.58) we obtain

45*_ 48°(452ImO;, £ 2 Im Oz ) (4.60)
arx ar

in which only unpolarized initial state quantities appear. This result is

actually contained in Table 3.

Bohr antisymmetric polarizations of the target or of the I&
isobar are not expected to provide a separation of naturality contributions,
since N and [5 are both assoriated with a spin zero particle. However,
interference terms can be obtained from <the following even polarization

measurements:
Tom ¥ T 0% (neries .
" 634 and ‘LIim 63_' (helicity quantization)

These quantities are not independent, and by a straightforward calculation

one finds:
¥ p 8
esn = - (os-n

(2?i| = (2::

POLARIZED PHOTON BEAMS

In this section we deal with processes induced by polarized
photon beams. We shall, of course, work henceforth in the helicity system.
Following the same study scheme as in the preceding section, we recall first
some general features of polarized photon states, then consider separately

the two general possibilities of meson or baryon exchange, and finally
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turn to some specific examples of photoproduction reaction of low spin par-

ticles.

5.1 The photon density matrix
In view of its ﬁwo-helicity states the photon polarization is

described by an initial density matrix similar to that of the proton:
g
—»
e.= 4(41+ P.F) | (5.1)
[} 2

However, the vector 7 measuring the polarization degree must
not be confused with the electric polarization vector i? of the photon.
In fact, this latter is defined by T =(cos¥, sin¥, 0) for linearly-
polarized photons, where 4’ is the angle between i? and the production
plane (see Fig. 4). A helicity basis is implicitly assumed with 2z axis

along the photon momentum ?X and y axis along (f% :<f1).

For linearly polarized photons, the three-vector P is given

by R
- —
P = ’P, (- w2V, -sin¥, 0)
(5.2)
and the corresponding initial photon density matrix by
- ¥
4 —lvle
L _
C = 4 (5.3)
¥ 2
uy
-
~1ple 1
For circularly polarized photons, with helicity +1, one has

- - .
obviously P =|B| (0, 0, #1), and consequently
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6, =t
1 2 (5.4)
~
0 4- 1P|
We consider now the photoproduction reaction Y b—1+2+ ... with measurement
of the polarization of particle 1 from its decay angular distribution
W(e ,?). With the same notation that was introduced in the polarized proton
target case, we define the decay angular distribution Wl(G,if), where i

refers to the orientation of the vector polarization f of the incident photon.

For linearly-polarized photons we therefore get

W8 = [W IR (2 Weesinzd WH) ] (5.5)
with -

J.,m. Wy = 4 (5.6)

One should keep in mind that the superscript i in Wi refers to the orien-
tation of the vector polarization ? of the photon (not ET). Therefore,
the parallel (W =0) and perpendicular (¥ = N/2) distributions are
defined Dy

\AI-L = \A/o -+ VV,L (5.7)

/4 o »w
W = W b W : (5.8)

Similarly, for circularly polarized photons with helicity =+1:

W o wes 17 w? - (5.9)
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The general properties of the observable guantities which can
be now computed from Wi are the same as those already given in the polarized
proton case, and are summarized in the Appendix. The only difference is that
the reflection operator Y is now given by Y= - s’X Eco be compared with
Eq. (4.16)___1. Therefore, the Bohr symmetric part of the final state density
matrix corresponds now to i=0, x and the Bohr antisymmetric part to

i=y, z.

We discuss in this section the situation where particle 1 1is
a meson produced at the same vertex as the photon (i.e., with small momentum
transfer between these two particles). The cross channel is therefore a

meson exchange channel (e.g., forward @ production ¥* N—>€X, etc.).

_ In general, measurement of the Bohr symmetric part of the
decay distribution (WO, WX), allows one to compute exchanged naturality
+ I
contributions D and interference terms D, related to observable quan-

tities as follows:

t = ° ' * (5.10)
Re D’n?". = Re (Eh.z'. reay E, )

% o
Tn DM'. = Tm (O,  £Cl) OL-)&) (5.11)

-] A

Re D:,)'4= Re (O;,;‘ﬁ- £ (VL) O,, _;.'4) (5.12)
I o x

T D;.‘;'4 = lm( EM.,4 ~ E(AL) Ead-)g) (5.13)

where the D's have already been formally defined in Egqs. (4.30) but with
naturality-conserving helicity amplitudes now given by Esee Eq. (2.5):]:

£
- 4 ‘
["\mwp A \,—.;_—-(M,\,“j},,% E(R,) MM{A,} A ) (5.14)
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and

a2
) = - ", -3 : (5.15)

For Bohr antisymmetric initial polarization of the photon (y,

Z components), we obtain similar expressions:

Re C-

A,y

]|

1
Re O/m‘,4 7 e0l) Im E,g*,‘(1 (5.16)

+
I-M C247"4 :Im E;.{A', * 5(2,4) Qe O/?»: —A',. (5.17)

T
¥ %
Re C).;\:‘ = Re EM?& + &%) T OM Ay (5.18)
I T ‘ k.1 ' %
.IW\ C')[):l = -hv\ Oz'al" =- 5(/‘\4) Re Eh4 ’Al‘l (5.19)

the C's being defined again by Egs. (4.35).

Let us briefly discuss some relevant properties of the preceding

relations.

For parity-conserving decays, as it is usually the case for
mesons, only the B symmetric part of the initial polarization can be used
to separate the exchanged naturalities. Interference contributions between
different naturalities can be obtained for Class 2 reactions for Bohr-anti-
symmetric initial polarization from ReEY’? and for B symmetric polari-

. 0,X
zation from a measurement of ImE ’" .

i) For linearly-polarized photons (like those of the SLAC laser beam), and
parity-conserving decay of particle 1, one can measure EO’X’y,. In that
case it is possible using relations (5.10) and (5.13) to deéucé well-defined
naturality exchange contributions and interference terms. The y component
of the initial polarization can also be used to compute interference terms by

rewriting (5.18) in the following way



- 50 -

- T ¥
Im (Ch*+ Copa )= =260 Re By Ly, (5.20)

ii) PFor circularly polarized photons and parity-conserving decay of particle
1, it is not possible to separate the contributions of exchanged naturalities,

but one can still obtain interference terms from Eq. (5.18) as:

Re(C:]g + C,IM)=2 Re E:zi, (5.21)

For two-body or inclusive reactions (class 1), Eas. (5.12), (5.13) and (5.18),
(5.19) vanish identically, as can be checked from the tables of the Appendix,
in agreement with the statements of Section 2 that interferences can never be
deduced in Class 1 reactions from the measurement of the polarization of two

particles related to the same vertex.

5.3 Baryon exchange between the polarized photon and the produced baryon 1

We now consider a baryonic resonance produced via baryonic
exchanges, as for example YtN-AX or ¥®N-Y*X in the backward
direction. Measurement of the decay angular distributions of a resonance
produced by Bohr symmetric initial polarized photon provides an evaluation

of the following quantities

- 0 x
Re D),?ﬁ';. = Re E7\.7\’, b 6()"4) Im OZ.,—?A (5.22)
% 0 x
Im Dy, = Im O, 5 £0(3%) Re E,, .a, (5.23)
I o o
T T ° ' ‘2 x
T DMR’A = An E242'4 + €(4) e Oh -y (5.25)
+

where, as previously defined by Eq. (4.30), the D and DI quantities refer
to contributions of definite naturality or to interference terms, respectively,

and the naturality-conserving amplitudes are defined by
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Mi 4 sieagM (5.26)
A {Aj}any - vz VIREHEW AR W PR
with
$4-29
( =~ - (5.27)
€ (A1) 7[4 )
Similarly, for Bohr antisymmetric initial polarizations we obtain
* ¥ ' s
= + (5.28)
Re C)p = Re(OF, £ €021 OF )
. . )
+ —_ . ' Y
IW\ Cﬂ|7i’4 = ..LM ( t;‘.?". + &(7‘4) E).-A'4 ) (5.29)

Re C;,v4_-.- Re(Evv— ECAY) En,.-?u) (5.50)

Im C'h Ay = I\M( - 8(2,4) O;?’_a’a)\ (5.31)

the C's being defined by Eq. (4.35).

The main features of the preceding expressions can be summarized

in the following remarks.

i) Measurements with only Bohr-symmetric initial polarization do not allow
a separation of different naturality contributions, unless parity non-conser-
ving quantities are measured in the decay. But, as we stressed earlier in the
analogous situation of Bohr antisymmetric polarizations with meson exchange,
one can isolate interference contributions. Corresponding expressions are

now:
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Im ( D:m,‘ _ DI )= 2 ITm E;‘M (5.32a)

7‘,|2|

Re (D:.z'. - D) = —2e0) Im E;f-z.' (5.32b)

ii) Interferences, being always antisymmetric with respect to reflection in
the production plane, are never available in two-body or inclusive reactions

(see statement 5, Section 2).

iii) For Class 2 reactions use of circularly-polarized photons alone gives

information on interference terms only.

5.4 Particle produced atb_opposite vertex

In the former sections particle 1 was always assumed to be
produced at the same vertex as the photon. We study now the case where this
outgoing particle is emitted at a vertex opposite to the photon one (see Fig. 5).
If the other polarizations involved in the reaction are not observed, as we
assume now, it is clear that separation of exchanged naturalities is not
possible, unless one is considering a quasi-two-body reaction with a spin zero
particle at the same vertex as the photon (e.g., YPN-> 3 A in the forward

direction).

We now show that for this type of process, naturality inter-
ferences may be obtained from Bohr antisymmetric initial polarizations (cir-
cularly or linearly-polarized photons) without any information required on the
other produced particles than particle 1. Limiting our discussion to Class 1
reactions it is easy to show that final density matrix elements will be given

by expressions of the type

e x Z M*m ¥

if the initial polarized state is described by a matrix which is a linear

combination of the Giy and G; Pauli matrices.
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This corresponds to initial photon polarization of Bohr-anti-

symmetric type, and therefore to experiments with circularly (giving the =z

component) or linearly-polarized photons (giving the y component). Thus

z v . Z ¥y . .
ob bles E E d O built h
serva A4 )%, Aq )5 an A );, 0 Aq )% are bui up wit

naturality interferences. In contrast with the situations studied previously,

where the resonance, particle 1, is associated with the same vertex as the

photon, the crucial point is that now the quantities

W%
24

Y
Im E
" A4 7\4

Re OFY = Re €7

nm

Im €5,

are non-vanishing (cf., Tables 4 and 5) and remain measurable for Class 1
reactions. In other words, Bohr antisymmetric initial polarization of the
photon and observation of the spin of a particle at the other vertex allow

measurement of naturality interferences even in Class 1 reactions.

This is illustrated by the following formulae:

Y% . [ + - % - +¥ ] (5.33a)
ez.]ll -z—-:-r‘ Eb M}lﬁ_’ﬁ 25 M}‘zll"lb + M}‘)—l"ak M}‘)!'~_1 25

¥ o4 [ + - % - ‘]
CN"" - -?:I-\-F % M)‘“ﬂ‘”\k M_}""~s4ab+ M)‘7‘4" A, M}“" 42, (5 2

In contrast to an experiment with a polarized proton target

(see Section 4.4), real and imaginary parts of interferences are available now

from even or odd polarization measurements. However, linearly and circularly

polarized photons are both required.

Let us consider, for example, the reaction Y N-JTA. In the

forward direction the pseudoscalar character of the J allows the disentangle-

ment of contributions of opposite naturalities from B polarized photons.
But, in addition, the [} density matrix elements give information on inter-

ferences for initial BA polarized photons.
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Turning now to the more complicated reaction KTN—-)K*Y*
and without entering into fastidious details, we remark that
i) In the forward direction the K* decay measurement allows separation

of exchanged naturalities from B polarized photons, whereas the Y* density
matrix elements give interferences for BA polarized photons.

ii) In the backward direction, the Y* density matrix elements measure now
different naturality components, and K* density matrix elements (with BA

photon polarization) give information on interference contributions between

the various baryonic exchanged states.

The most interesting and widely used result for forward photo-

produced mesons, is the extension of a theorem obtained long ago by Stichel 3)
for j’N—»R N, which states that natural or unnatural parity contributions
are just given respectively by the perpendicular or parallel cross-sections.
Such a result is contained in Egq. (5.10) and (5.8):
de * £° X\ s (5.34)
= ( oo *t EOO) = )
at dr -
L
= do
ar
- Pe) L% o
ds” = (Ego — Eo) 2 (5.35)
At ot

%ﬁz

(For a photoproduced scalar meson, such as  Yp—=> G + «+ey the + and -

signs in the preceding relations should be exchangsd.)

For Class 2 reactions, both the longitudinal component of the

polarization

m
o

n

S

s¥/ 4d6° (5.36)
/ &

%]
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and the perpendicular one:
E'o:f = Qﬁ%ydf (5.37)
ot ¢/ dt

are non-vanishing. Thus experiments with linearly polarized photons provide
in this case a measure of the imaginary parts of opposite naturality inter-
ferences, whereas circularly polarized beams allow one to obtain real parts
of these interferences. More precisely formulae (5.18), (5{19) can be re-

written as

d§?= 4 Re(lﬂ+ M-¥) (5.38)
at N
a5V, _4 Tm (Mt M~ %) (5.39)
ar N

For Class 1 reactions these quantities vanish and no inter-
ference terms can be obtained without additional information on another
produced particle. This possibility was emphasized in the last section.
To illustrate it, let us consider in some detail the two photoproduction
reactions YN-KA and KN—U‘{ A, at high energy and near the forward

direction.

Whereas Stichel's theorem gives the natural and unnatural parity
components of the cross-sections from linearly polarized photons without any
spin measurement in the final states, the observation of the produced baryon
disintegration allows one to determine a certain amount of naturality inter-

ferences from linearly or circularly polarized photons.

Avplying our former results, Egs. (5.33a), (5.33b) to the
above mentioned reactions and, using a shorthand notation where the photon

helicity is fixed to one, we obtain the following:

i) For Y N-KA

For linearly polarized photons:

+ -
eV?Vz,: - Im Z ( Mvﬂ/z My:‘) (5.40)
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e}'z iy = - IM Z( M""/l M:k-* (5.41)

and for circularly polarized photons:

L4 = Re Z ( M;:. M—yz*) ' (5.42)

€

Y —
e'/z."yl = Re' Z ( Mj;z M_J: (5.43)

( e%% and e; % are respectively proportional to the =z and x components
5-

of the /\ polarization, Table A.3.)

ii) For Y N-TA

One can measure only the even parts of the polarization.
From Table A.4 one immediately deduces that the only non-vanishing measurable

density matrix elements, for Bohr-antisymmetric initial polarization are

Im 631 and Im e3_1, given by

+ - ¥ - + *
Im 62'/1*4/1= ;’i Re Z(Msk M:—yz"' Ms,/z M*»v/z (5.44)

for linearly polarized photons, and by

k.t T + - ¥ - + *
IW\ 63/21"/). - ;—_ Lem Z(Msﬁ M*"/’- + M"/z + 42 ) (5.45)

for circularly polarized photons.
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5.5.2 Photoproduction of spin § baryon: fPrb-(sping)+2+...

We now turn to a discussion of polarized photoproduction
reactions of a spin % baryon (With intrinsic parity "_). For small momentum
transfer between the produced baryon and the photon beam, the interesting
combinations of observables quantities can be found in Section 5.5. Those
which, in the present case; allow a separation between the two exchanged
baryonic naturalities are given in Table 11. It should be noticed that-
all relevant quantities involve measurement of the polarization of the final
baryon. Thus separation into the natural and unnatural parity contributions
is only possible when density matrix elements, of the final baryon, are
measured in a parity-violating decay or obviously in a rescattering expe-
riment because then one can obtain :mleg_% and Ikafgf% (see Tables 11 and
A.3) . Therefore, processes like { - A (2:) + +¢. are particularly
valuable for separating naturality contributions in the backward direction.
In fact from the definitions (4.30) as well as from the observable properties
(4.15) it is easily seen that formula (5.29) gives a non-zero result only

1

for half-integer spins greater than 5. The situation is analogous to the

a+pt—%+... case.

A particularly relevant quantity is obtained from the second

iR

line of Table 11. Using the normalization condition, Eii =% (as7at)/(asC/dt),
2

it is easy to show that

4 I'W\ D.:/E_.t/z = 2 an,\(z)p_{go 'I?l ( ,d_gt. @”)
¢ dk db

Observe that this quantity can be measured from two independent experiments,

one measurement of the decay of the final baryon produced off an unpolarized

beam and one measurement of cross-section with linearly polarized photons.

Thus valuable information on the relative phases of the same naturality

conserving amplitudes can be obtained without spin correlation measurements

between the produced baryon and the photon beamn.

Moreover, we must emphasize that information on interferences,
for Class 2 reactions, can be obtained from experiments with linearly polarized
photon beams and measurement only of the even part of the final polarization.
In that case relations (5.32a), (5.32b) are trivially zero, but from (5.30)

we deduce
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% + - ¥ + - *
E"/'z*/z = é‘}i‘; "l Re( M'/z M-Vz - lV’-'/z, M'/; ) (5.46)

Circularly polarized photon beams provide other information on these inter-

ference contributions. Using Eq. (5.30) again we obtain
Y + S + —
Re E'/z'/zz .z-dh—l-‘Z(Myz Mt/z + M_ﬁ M—Yz ) (5.47)

5.5.3 Photoproduction of spin 1 meson: ¥ 4 +b—-(spin 1) +2 + ...

The particular, but important, case of vector meson photo-
production of nucleons, K N—- VN, has been studied in detail by Schilling,
Seyboth and Wolf 2 . Our notation is quite similar to that used in this
_paper (except that their parallel and perpendicular cross-sections ars defined
with respect to the normal to the scattering plane) and all their results
concerning the separation of measurable quantities ianto naturality components
are contained in our relations (5.10), (5.11), (5.16) and (5.17). More generally
we give in Table 12 the explicit observable combinations isolating a given
naturality § =7F 1\1 (111 being the intrinsic parity of the spin 1 final
particle) exchanged in the cross-channel 1’?-+T-+E-+... Only those quantities
which are above the dashed line in Table 12 can be measured in a parity-
conserving decay of the spin particle. Explicit expressions in terms of
naturality-conserving amplitudes can be easily obtained in the s channel

N
).

5

AN

reference frame from Egs. (4.30) and (&.

As discussed in Sections 5.2 and 5.4 interference contributions
between mesonic exchanged states can be obtained for forward production in
Class 2 reactions from parity-coaserving decay and linearly polarized photons,
and between baryonic exchanged states for backward productiorn.

5.5.4 Photoproduction of spin 3 baryon: x;f-kb-e(spin 2) 4 eus

From Egs. (5.22) to {5.31) one can easily deduce the 16 com-
binations of observable quantities which allow a separation between nabural
and unnatural parity exchanges between the polarized photon and the spin %
particle. They all involve measurement of odd polarizations except the two

following ones:



— % — g
T (:34 + "(4 Im E's-q
_ %

Im E::, F oim Eaq (5.48)

(411 = parity of the spin $ particle)

which in any case require circularly and linearly polarized photons. This
means that very little can be said in a model-independent way for backward
[&uphotoproduction. On the other hand, there are eight combinations of
observable quantities obtained with linearly-polarized photons which give
a separation of naturality contributions when the odd part of the spih g
particle polarization can be measured. As in the previous cases it is,

however, possible to obtain, via the trace condition:

2(Ep + Exa) = ds'/as

and Eq. (5.23) a naturality separation which does not require spin correlation

measurements:

+ * °o T ° o L V]
Iwm(D . -D ):25 Im (O —Os_)I"l i(ﬁ—iﬁ?)
41 -3 dt 1-1 3 4 4'\at At
Iu that case one needs two different experiments measuring the polarization of
one particle only (oad polarization of the baryon produced off an unpolarized

photon beanm, and cross-sections with a linearly polarized initial photon beam),

thus avoiding the difficulties of spin correlation measurement.

Finally interferences can be obtained from linearly polarized
photons and parity-conserving decay, for Class 2 reactlions, by measuring

ImE31 and ImE3 K

POLARIZED BEAM AND TARGET REACTIONS: af+b8f-1+...

We consider in this section polarization measurement of a final
state particle when both the initial beam and target are polarized. We shall
not pursue a detailed study of this case and shall restrict ourselves to a
straightforward extension of the results obtained in the preceding sectioms.

The main change in our formulation, when a second initial particle is polarized,

occurs in new symmetry properties of observable quantities. ILet us define
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new density matrix elements (113), where the two upper indices i and j
mm

refer, respectively, to the polarization direction of the beam and the target.

As before the two lower indices characterize the spin state of the final

particle (particle 1).

N . . .
Similarly, we define observable E\l:J) and 0(113) quan-
mm mm
tities, which enjoy exactly the' properties given by Egs. (3.4) ana (3.5)
of thg E's and O's. FPFurthermore, their symmetry properties with respect to

reflection in the scattering plane are given by Bgs. (4.23) to (4.25) when
the second initial particle polarizatioan is Bohr symmetric (i.e., E<B’B),
E(BA’B) transform as EB, EBA respectively) and an over-all minus sign

should be introduceg when the,second particle polarization is Bohr anti-
{

EKB’BA), E\BA’BA) EBA, E°). From this

simple rule it is quite easy to deduce the symmetry propert%es displayed

(B,B

symmetric (i.e., transform as

in Table 5 of these new observables. For instance ImE is anti-
symmetric with respect to reflection in the scattering plane and vanishes in

Class 1 reactions. hnE(B’BA)

is symmetric and therefore can be measured in
two-body or inclusive reactions. More generally all formal observable quan-
tities which were antisymmetric, and therefore vanished by parity comnservation
in Class 1 reactions when the second initial particle was unpolarized, become
now measurable and non-vanishing when the polarization of the second particle
is BA. One readily understands what new information can be deduced from these
triple correlations, in particular with respect to the measurenent of inter-
ference contributions. On the other hand, separation into naturality
components being a vertex property, all combinations of observables given in
this paper which separate the natural and unnatural parity exchanges are
independent of the polarization state of one particle at the other vertex, and
in this respect are unchanged. Of course, they are related to new subsets

of naturality-conserving amplitudes.

Tet us consider as an illustration the reaction
PP L

assuming that particle 1 is a baryon produced with small momentum transfer
to the proton beam. We give in Table 13 the proverties of observable quan-
tities in that case, as well as their dependence on exchanged naturalities.
By comparing this taBle with Table 6, one observes for instance that the

combinations Eot‘tTZtOZI:t' always separate naturaliity contributions for

T -T' even and interferences for T -T' odd. However, the symmetry
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properties with respect to reflection depend on the polarization character
of the target and for two-body scattering (for Class 1) only the symmetric
quantities survive which allow one, in any case, to compute both inter-

ference contrlbutlons using (E(O BA) O(ZéBA )
(0,8) , o(2,8)}" 3
TvT! TT

and contributions of given

naturality using (E

These results cah be applied as well to the reaction pp—> N\ /\ 19

with now unpolarized initial state but measurement of the A and /\ polari-

zation. The final density matrix can be expanded as follows:

= _ —> -
i_(‘l@ﬂ +P &1+ Pzwthc & ® z) (6.1)
Polarizations of final state /\ 's are given by

P'ﬁ. = ';T-T?(qu@’n)

(6.2)
PizgT(e105)

and polarization correlations by

C,LJ 4Tr(fsf ® §; ) (6.3)

The reaction pp— /\/ being a Class 1 reaction only symmetric
quantities with respect to reflection in the scattering plane are non-vanishing,
which means that they are of the (B,B) or (BA,BA) type. In transversity

quantization, it is easy to see that the only symmetric quantities are

B}) P%%l C{;Y y CIX) C'J‘&) C‘(}x

The density matrix e takes the following structure:

)
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A+ Py + Pp 4 Gy 0 0~ Gua-Cyy-iCy =i c',\
0 1+ Ejs" .sz - C" Cll+ Crt *e C)‘a"l:cs,‘ 0
e- %
4 0 Cou+Cyu-1C  HC A-%z 4Pz -C 0
LR R Tt T 43 4 fa3 = Cp3
Cxx“ C%‘ +e C!'a H C‘»)l 0 v 0 ' 4- P.'% - Px‘s. + C%%

=P
Z

which simplifies by charge conjugation invariance (P1

2z ny yx
Finally using Table 13 it is easy to be convinced that all

elements of the principal diagonal can be expressed in terms of incoherent

sums over both exchanged naturalities, though all elements of the other

diagonal measure interference contributions only.

As a second example consider forward meson photoproduction on

a polarized target with a linearly polarized proton beam 20):

11‘+P‘P — M+...

The relevant expressions in that case are given by Egs. (5.9) to (5.12) and
(5.14) to (5.18). Despite the fact that ImE A vanishes for two-body

reactions, the interference term:

(o,x) (v,x))

Im D, = Im (E v - € E,

' (6.4)

is measurable in two-body reactions due to the Bohr antisymmetric character
of the proton polarization along the x direction which makes Eq. (6.4)

finally symmetric with respect to reflection in the scattering plane.
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As a final comment, let us remark that when no polarization

is measured in the final state, there are four different types of polarized

cross-sections which can be measured: G(B’B), O‘(BA’BA), O’(B’BA) and

CABA’B). It can be shown that c‘B’B) can be expressed in terms of in-

coherent sums over both naturalities, through G'CBA’BA) is given by inter-
(B,BA) (Ba,B)

ference terms only. Of course O and O

vanish for Class 1

reactions.

G__ PARITY RELATIONS

Constraints due to G parity conservation at a vertex with
two identical particles have already been investigated in the general case

),8)

by a number of authors ! For completeness we just very briefly give

some general results and some specific applications.

i). G parity symmetry implies for s channel helicity amplitudes the fol-

lowing relation:

e (T ol
mhq{):}'halb - %n = e Mlq{l.‘};\,{ Ay (7.1)

if particles a and 1 are of the same species or belong to the same baryonic
SU(3) multiplet. In that case the relation is only true in the SU(3) limit,
that is ma—m1—eo. We recall that equality (7.1) is not exact because crossing

introduces an unavoidable approximation at the order 1/s.

ii) In the transversity system, from relation (2.11) and the property

A 2 A-T n
D((R*) ¢ = & D”(R) - (7.2)

one can derive for transversity amplitudes, relations strictly analogous to

(7.1):

r'rl I Ta~T, rT'l

Ta {Ti} Ta—tb ¥ % 1‘ € ) Ta {Ti} T, TI, ‘(7.3)

If particles a and 1 belong to the %+ baryon octet, combining Eq. (7.3)
with (2.15) we obtain the well-known result that only three types of meson
trajectories can be exchanged at a particle-antiparticle vertex, following

the values of the naturality & = (-)J and the natural charge parity:
n P

€-c(-)?
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i) Natural parity @ and na‘ural charge parity ) [C= 1 = (-)? ]
. ) ; _+ 1
contribute only to amplitudes T T it} T T, with T =% 3.

ii) Unnatural parity and natural charge parity G =1 [C= - = (-)J]
correspond to the following combinations:

T{t.}-T T - |~‘C {T.YT Ty
whereas unnatural parity, unnatural charge parity \€= -1 fg—_= 'rL = -(-)J j

dominate the other combination:

T +

{i-Tt T -T{TLIT Ty

Thus further interesting dynamical information may be collected in reactions
where G joarity symmetry applies or is believed to approximatively work
from the SU(B) symmetry classification. Again it is simpler to work in thne

transversity frame.

In order to understand what type of analysis may be performed
in such cases we examine now three examples: JC N?—> VN (with a polarized
target and measurement of the V decay), NRN-K**AL (or KN-VEAL,
observation of the decay angular correlations of the particles produced by
unpolarized initial particles) and J'(Nf—>/\X (inclusive reactions on pola-
rized targets with a wmeasure of the non-conserving parity decay in the final

state).
a) nN$-VN

This process is described by a set of six independent trans-

T T The V decay conserving

versity amplitudes <To++’ To—-’ 420 :i:1-+)'

parity allows the measurement of ten independent real quantities when the
target proton is polarized perpendicularly and along the bean (cf., Table A.1);

they are easily calculated from Egs. (4.32) to (4.35) for instance:

0+3

om—

..

(¢ )

oxy

E,

.

(’Tl:;:': (2"' ,T1;i lzJ

1
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4-1 1% -1F
xii" * o *
E4o = i’(r-’jlxi r,;:: B ,ozt ‘—[’11'1)

Their properties with respect to naturality and charge naturality are

presented in Table 14.
D) wy-xtat

The observation of the decay correlations allows the determina-
tion of ten out of the twelve independent parameters necessary to describe

these reactions. These parameters have been analyzed by Abramovich et al. 21)

and by Field et al. 22). Our purpose is not to discuss their detailed ampli-
tude analysis, but we want only to recall in this example what type of in-

formation may be easily deduced from correlation experiments.

In transversity frame, the twelve measurable elements are the

four quantities zi, e.J 1), the complex elements ;11 and
the complex combinations ( e - e;& ). We see from Eq. (2.15) that

eii measures the contribution of the natural parity component exchanged in
the crossed channel fl K¥X->NA, whereas ( eii ;l 1) and ;11 are

- *
the unnatural components and that e 10 610 gives interferences of

these components.

Considering now properties with respect to charge parity

exchanges, it is easy to conclude from relation (7.3) that the linear combi-

11 -1- 11 -1- =11 -11
nations 61 + e -1 e - e -1 and - e measure charge parity
++ ++ -z - ++ --
. (N -1-1 11 =1-1_ 11 -1-1
interferences, whereas e + e + e + e = e + e and
-11 11 11 SR " -
et e_"_ = e incoherent sums.
) wat-Ax
The generalization of the Wolfenstein parameters 23), to in-
clusive reactions of the type spin %-kunpolarized—+spin %-Fanything, have
been discussed by Doncel and Mendez 24). Their seven parameters which con-

stitute, with the differential cross-section, the whole experimental in-
formation on these reactions, are related to our density matrix elements

(cf., Table A.3) in the transversity system by
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14»5%»
g\:: 2 Fle C)1Q -4

)l+€3/

2 Im O-«/,__

>
]

o ¥
P Opp+ Enp

! _ x-ig,
R'= 2 Re O%__.,z

(7.4)

' u-i*
A’-—- -2 IW\ O'/'L"'/l.

l

P=

0

Oyy - Enp

D = "’O/;YL

In the crossed channel T\N*—»J‘( X, it is straightforward to deduce from
Table 8 that R, A, P, receive contributions from natural parity exchanges
only, R', A', P' from unnatural parity exchanges and D 1s an incoherent
sum upon both naturalities. Moreover, to leading order in 1/s and in the
SU(B) limit (merm ), it is easy to demonstrate from Eg. (7 3) that R!
and D are incoherent sums of charge parity, whereas A' and P! are inter-
ferences of natural and unnatural charge parity contributions. Finally,

R, A, P correspond both to natural parity exchanges and to natural charge

parity contributions. These results are summed up in Table 15.

It is well known tha® positivity of the transition matrix
implies severe restrictions on observables. The positivity domain of these
parameters is explicitly discussed in Ref. 24). For convenience we translate

their results on our parameters

o

. ¥ o ¥
O/z,'/z"'E'/'/z —iélo%y \<4 —lo}'z'/z+EVz/1

l*- 4.1 c)zét?-t <

Oh‘/z + Em
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APPENDIX

PROPERTIES OF OBSERVABLE QUANTITIES IN POLARIZATION MEASUREMENTS
OF SPIN 1, 2, = AND 3 PARTICLES

Tor the sake of completeness and clarity we give in this
Appendix a resumé of some general properties of observable quantities in
polarization measurements of spin 1, 2, % and % particles. 'For each spin
case these properties are collected in a Table (Tables A.1, A.2, A.3, and
A.4, respectively). The first celumn in these tables gives a list of all
mm'
for odd pqlarization. The second and third columns give, respectively,

independent measurable quantities Emm' for even polarization and O

the relation between the E's and O's and the density matrix elements
@,y o©r the multipolar parameters tﬁ according to definitions (3.2),

(3.3) and relation (3.1).

Other non-independent quantities can be easily obtained from
properties (3.4)\and (3.5). Our- conventions and definitions are those of
Doncel, Michel and Minnaert 14 and actually part of the properties displayed
in the following tables overlaps with results which can be found in that work

which we strongly recommend to the reader.

The remaining columns of our tables give the reality properties
of observables, real, pure imaginary, complex or null, and their symmetry
character with respect to reflection in the scattering plane, S for symmetric,
AS for antisymmetric. When two symbols are enclosed in brackets, the first

one refers to the real part and the second to the imaginary part.

We have given separately the properties in the most general case
and in the special two-body or inclusive case (class 1), this former case being
deduced from the previous one by retaining only the symmetric elements with
respect to reflection. Purthermore one must also consider separately the two
possible choices of quantization system, helicity (H) or transversity (T), and
finally when the initial state is polarized (or more generally when another
particle polarization is measured) one should determine whether the polarization
is Bohr symmetric (B) or Bohr antisymmetric (BA). TFor unpolarized initial
state (or more generally for single polarization measurement) only columns

labelled HB or TB have to be considered.
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TABLE 1
Transversity quantization Helicity quantization
- Bxchanged Class 2 Class 1 Class 2 Class 1
naturality
T T H H H H
=M. Boo € oo By +Re By €+ €y
T T T a H
E11 €11+ €_1_1 Eoo eoo
T H q H H
§ =-MaMy | Re By Re €4, Epy -Re By - €1
T T H H
Im By, fm €1 Be By Re €10
Experimental quantities which allow a separation of natural (g = +1)
and unnatural parity (6 =-1) in the a+71-b+2+ ... channel,

when particle a

is spinless and particle 1

has

spin

1.
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TABLE 3
. l Transversity - . .
Exchanged quantization Helicity quantization
naturality Class 2 Class 1 Class 2 Class 1
| T H H H H
B33+ 033 €55 ReBsz+ By 4 €35+ 12 €55
T 7 T i H H H
& =", Bz 1+035.0| €54 Be Byq - In0y 4 Crq -1m €
T m H H H . pH
By -0 € | BeByy - moy €51+1 €5,
H
In Oy, + Re EI;_,,
T T T H i H H
B33 -033 €.5-5 | ReBs5- In0y 4 €55 -1n @55
T T H H H H
& =-MN1", B39 7031 | €15 | BeByy+ ImOy Cra+Im €y
T T H H H . ,H
Ey, + 07, CH ReE31+ 111103_1 631-163_1
H H
Im 031 - Re E3_1

Experimental quantities which allow a separation of natural (@=+1) and
unnatural parity (® =-1) in the a+7T-b5+2+... channel, when particle

a 1s spinless and particle 1 has spin —g—
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TABLE 6
Symmetry proper- Dependence on
Observable T-t' ties by reflection exchanged natu-
quantities in the scattering ralities
plane
T -1
Even Symmetric =1 (-)" "
E° |, x0? ' 1
Tt Tt 0dd Antisymmetric Interference
T 1
Even Symmetric §==7(-) =
oo + g2 1
1 1
Tt Tt Odd Antisymmetric Interference
— — Even Antisymmetric Interference
» 0dd Symmetric F=x7,(-)" 7%

Properties of the observable quantities related to the pola-

rization measurement of a final baryon produced off a polarized

proton target (transversity quantization).
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TABLE 7
Symmetry pro- Dependence on
Observable € -t perties by re- exchanged natu-
quantities flection in the ralities
scattering plane
. . -
Even Symmetric g = e | (-)
Eo:I:z otz !
t <"’ ! . )
Tt 0dd - Antisymmetric Interferences
Even Antisymmetric Interferences
X LAY
E +i0
1 TT'
Tt 0dd Symmetric & = i’h(—)t
Even MAntisymmetric Interferences
pd -
0 , T1E
T -
Tt s 0dd Symmetric o = ¢n1(_)-‘

Properties of the observable quantities related to the

polarization measurement of a final boson produced off

a polarized proton target (transversity quantization)

for baryon exchange reactions.
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TABLE 8
Transversity Helicity
quantization | Quantization

. 1 Z 1 J

Bohr symmetric 5+011 +Im01 1

2 2-%
initial
. . o) Z o
polarization 0i1 +xE11 Tm O1 1 +E{q
: 22 3 5-2 2
~
Bohr antisymme- Of 1 :!:iOZ 1 Oi; FRe Oi 1
2-% 2-2 ) -2
tric initial
polarization Re 0 1% 011
3-2 )

Combination of observable quantities which

allow a separation of natural (G’=1)
parity exchange contri-

unnatural

(& =-1)

and

butions for a spin % particle produced off a

polarized proton target.




TABLE 9
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Transversity Helicity
quantization quantization
o Z o) ¥
By TN E Re By g = M By
Bohr symmetric
o z o e Y
Boo TN oo By £ e By 4
initial
o) z 0 Y
ReE1_1='EV‘ReE1_1 Re E10:F7R6E1O
polarization

(0]

ImE,,_,l

=F‘lIm E?_

1

o y
Boo T n Eoo

Combinations of

even observable quantities which

allow a separation of natural (upper sign) and un-

natural parity exchange (lower sign) contributions

between a polarized proton and a final spin 1

meson with parity Vl .
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TABLE 10
Proton Transversity Helicity
polarization "quantization quantization

Bj; 035 BS5 FIn0f
E§_1 F o§_1 Re E31' ﬂmog ]
_ E), 07, Re E3 FIn 031
i 035 ¥ Eys By, #moy
02_1 F E§_1 Im 021 FRe E%’ ]
ofy *E In 05 _; #Re B,
Im 0‘1’_1 8y
| moss TR
0%, =Flo33’1 0y, FRe 0] _,
oy_4 ¥oy_ | Re Ol i:'o’f1
5 055 103 035 *Re03
Re o§1 F Re 0’3‘_1
Re og ;1 * Re 0’3‘1
Re 05 ;¥ 035
E’;1 ¥ 1E‘§1 Im E§1 F ImE’;_1
Im E§_1 + ImE;{,I

Combinations of observable quantities allow-

ing a separation of naturality G == 111

exchanged between a polarized proton and a

spin % baryon of parity '111

(quantities

under the dashed line need only an even po-

larization measurement ) .
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Photon polarization Class 2 reactions| Class 1 reactions
o) X 0 X
FM ImO FN Im
By TU™M%op | TR0
B .
(o] X o} X
ImO + B Im ¥
0337 " €137 1Ey
0fs FqReo 1 I1F M Re @l o
22 2~ 2 22 2 TR
BA
2 J Z N
90 Re +
0Lz %% €+ 1C%

Combinations of observable quantities which allow a sepa-

ration of natural (upper sign) and unnatural parity ex-

change (lower sign) contributions between a polarized

photon and a final spin % baryon with parity 1. .
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TABLE 12

Photon polarization Observables

o) X
E“:l:ReE1_1

o]
lReE“):FReE};o

o X
ReE1_1:I:E,]1

E° FES
00 oo

o o> o> e eee e o o

(o] X
Im(O1O:F 010)

b y
O11 =FImE1 1

Z N
Re O .+ ImE
BA 10 10

z y
ImBy 4% 0%,

Z y
ImE1O=F ReO10

Combinations of observable quantities which allow a separation
of naturality G =7F 111 exchanged between a polarized photon
and a spin 1 meson with parity m,, in *‘f b- (spin 1) + ...
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TABLE 13
[ Symmetry
properties by
Observable t-t' reflection in Dependence on
quantities parity | scatter. plane exchanged naturalities
T L
g(0,B) 4 ,(2,B) Bven S ¢ == ()"
Tt Tt
odd AS Interferences
T 1
5(0,B8) _ ,(z,B4) Even AS & =% M, ()77
1 1
TT TT 0da S Interferences
1
Even S o == (_)7: 2
(0,B) , -(z,B) K
O ’ 1 :tE ’ 1 1
TT TT 0dd AS Interferences
R S P
0(0s4B) , ;(z,AB) Bren AS & o=x ()7
Tt Tt 0dd
S Interferences
E(Xiiy,B). o(xiiy,B) Even AS Interferences
1 ’ ' 1
TT T 0ad S G =% oh(_-)r T2
E(Xiiy,BA).O(xiiy,BA) Even S {fterffrfchg
' ’ 1 o = -
tT T 0dd LS n

Properties of the observable quantities related to the pola-

rization measurement of a final baryon produced from polarized

proton beam and target in transversity frame (compare with

Table 6).
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TABLE 14

oosorvasies | Faturaiiiy | avurel noces
Eg:Z Natural Natural
2, %7 | interterences| Iaterferemces +
E2_1 Unnatural Incoherent Sum
E?_1 Unnatural Interferences
E?i Unnatural Incoherent Sum
E?1 Unnatural Interferences

AR S -

Relations between observable quantities and

exchanged naturality or natural charge parity

in M +N$->Ve 4N

(V = vector meson).
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TABLE 1

Parameters R A P R! A P! D

Naturality + + + - - - Incoherent
Sum

Natgra}l charge + + + Incoherent Interference Interference Incoherent

Parity Sum Sum

Relations between observable quantities and exchanged naturality

or natural charge parity in yw + N4 - A 4 + X.
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FIGURE CAPTION

Pigure 1 :
Kinematics of the production process ab—-71+...+n in
the over-all c.m. system.
Figure 2 :
Classification of various types of experiments. See
text.
Pigure 3
Schematic representation of reaction a+-bf—>1?4—2+... +n.
Figure 4 :
Photoproduction reactions: definition of the scattering
plane and electric polarization vector.
FPigure 5 :

Schematic representation of reaction jf +b-1 1+ 24 eee +1Ne
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