PROGRAMMING DISCIPLINE

0.J. Dahl
Institute of Mathematics, Univ. Oslo, Norway

Abstract.

Good programming discipline is to produce programs which are:

‘easy to use and to understand, reliable and easy to debug (if not
already correct), and easy to adapt to changes in the environment.

In order to fulfill these requirements programs must well structured
and well documented. Research on techniques for program correctness
proofs has shed some light on what good structure and adequat documen-
tation is. Indeed a program easily proved correct is easy to under-
stand, and vice versa.

Programming language features and certain mental techniques are aides
to produce well structured programs. Discipline is required to cbtain
good documentation. The latter is even more impcrtant.

Sho S of . Proof Technigues.

Tne idea of program correctness snd program proofs used here are
those introduced by R.W. Floyd and C.A.R. Hoare. Thus conditional
correctness means that a program benhaves as specified provided
that it terminates properly. The notation

{p} s {a}
where P and Q are logical assertions about program variables (and
possibly auxiliary variables), and S is a program statement or
statement sequence, means that Q is true immediately after an
execution of S, provided P is true immediately before, given
that tne execution terminates.

{P} is called a precondition of S and {Q} a postassertion. “hen
embedded in a larger program text an assertion {R} specifies tne
trutn of R at that particular program point, in general provided
that tne precordition of tne program was valid on program entry.
The following are rules valid for proving the validity of program
assertions,

Simple assignment. {Pz} x:= e{P}

holds for arbitrary P, vinere Pz is obtained from P by texrtual
substitution of e for every free occurrence of x.

- 427 -

Concatenation.

{p} s,{al and {q} S,{R} gives {P} S,; SZ{R}

Logical Consequence.
P> Qand {Q} 5 {R} gives {P} S {R},
Qo R and {P} s {Q} gives {P} S {R}.

Conditional.
{pAB} S;{Rl and {Pa B} S,{R} gives {P} if B tnen S, else
S,fi iR}

alternatively
{EH}S1{R} and {PZ}SZ{R} gives {P1 ABV Py A -B}if B then S, else

S, fi {R}.

Free loop.
{p} S1{Q} and {QAB}szip} gives {P} loop: S, wnile B: S, repeat{Qa —B}

Note: This rule must in general be supplemented with additional
reasoning in order to prove termination. A sufficient proof might be
that a specified integer valued function f of program variables
decreases during each execution of S1 followed by SZ’ and

QB © £ 2 0. Note also that P or Q (the "loop invariant') cannot in general be
constructed from the program text alone, but must be provided as additional in-
formation.

Exanmple.

{real ¥ = 1 A meal y = a A integer & = b > O}

loop: {x*y* = al A a > O}

if odd (@) then x := xxy fi ;
d := d-2 j
while @ # O: {d decreases}

v o= yT2

%

- 428 -

for-loop.
Assume that S does not change any of k,a,b. Then

{a<ks b/\R. } S {R} gives {R } for k:= a to b: S repeat {RE},

where ¢ = max(a-1,b).

This rule follows by applying the free loop rule to the program
k:=a; loop while k < b: S; k:=k+1 repeat

&Hioosing R§_1 A k<c+l for P and Q of the free loop rule.

Termination is proved by considering the function c + 1 - k.

Subscripted assignment.

Given {type) array a [m:n]; m, n constant, then
a
fim<k<na Pa(kle)} a[k]:= e{P}

nolds for arbitrary P, wnere a(k|e) stands for thé’array valuoe
obtained by the assignment

Vi (m < i<no>a(kle)[i] = if i=k then e else a[i]).

The alternative notation (a[m:k-1],e, a[k+1:n]) is sometimes
useful,

Aggrezation of operations.

Let tne statement (-list) S contain assignments to the variables
Vis Vos eeesVy (only). Thnen functions £75 £55...,f, of progran
variables w accessed in S exist, such that

13Vose sV,
tp} s fa} gives iQf W), 25 (), .2, ()} S 19

vyoV v
. 2’000’ n
where Yw(P o Qf1(w) fz(w)""f (w)) holds. The latter formula

expresses wnat is known about the functlons f (apart from tue
fact thnat tney exist).

This 1mnortant rule allows us to view the total effect of a section
of program as a simultaneous assignment of new values to tne
variables which are (or may be) altered.

Example.

Given the operation swap(x,y) which satisfies {R?’i}swap(x,y) {Rl
Y |

for arbitrary R. Consider the statement

S = if x <y then swap(x,y) fi

- 429 -

which is equivalent to the concurrent assignment (X,y>: = (£ (x,y),8(x, 3

‘for definable functions f and g. Choose the postassertion

X =a Ay = b,,where a and b are arbitrary numbers. TUsing the

swap rule and the second Conditional rule (with 82 empty) we prove
{y=aAx=bAX<yVvx=aAy=bAx>y}S {x=any="D}

and conclude

I
W

Vx,y(F=aAx=bAX<yVx=aAy=>bAx>yo> f(x,5)

b) .

I}

A g(x,7)

This gives

v A g(x,y) = x, and

x <y > £f(x,y)

x>y 2 £(xy) =xAgxy) =7,
which defines f and g for all values of x and Yo These
functions are usually called max and min, thus S is equivalent to

(x,y) : = (max (x,y), min (x,y)) .

Procedure call.

The general substitution rule above is valid for arbitrary postassertion R.

A'2 V. .o gV
12 Voo 9 -
n } S {n} 9

Lf1(w),f2(w),...fn(w)

whicn is useful if S is invoked at several places in the program.
This leads to the following rule for procedurecs.

Given proc p(v1,v2,...,vh); Name Vise.sVy;
{specification of v1,...,vn) S;

where S does not defer directly to nonlocal variables, and k <€ n.

Then
a ’az,o..,ak

{P} s {qQ} gives {Rf:(A),fZ(A),...fP(A)}p(a1’a2""ak""’an){R}’

provided that Bqseee,8 - are different variables, and where A
is the list Bq9eeesdy and f1,...,fk are as above. The rule is
easily extended to procedures with nonlocal variables. It is
valid for recursive procedures.

Blocks.
{p} s {a} gives {P} begin (declare VysVpseeesVpd; S end {o},

provided that P and Q contain no free occurrences of VisVosaees Ve

- 430 -

Abstraction.

Aggregating operations and data, botn at the same time, provide
a mecianism of abstraction. Let p be a procedure updating nonlocal

variables V4sVosesesVy and whose parameters x are called by value.

proc p(x); (specify x); S;
v 90ec0y V.

Then {P} S {a} gives {Rf1(a,vd,..?,vn),...,fn(a,v1,...,vh)}p(a){R}

for arbitrary R, where f1,f2,...,fn satisfy
' v V. bid
1202 n?
o o0 P o
¥X,Vq, ’Vh(> Qf1(x,v1,...,vh),...,fn(x,v4,...vn),g(x,v1,...,vn))

We collect the procedure p and tne variables VisVoseeesVy by a
class declaration.

class C;

begin (declare v1,v2,...,vh>;

proc p(x); (specify x); S;

end of C;
Given C var V; which declares an instance named V of the class body,
we may take V to be a variable of an abstract type C, represented by
the variables v1,v2,...,vh,and whose abstract value is a function
of tne latter, the "abstraction function", [3].

V = F(v1,v2,...,vh)

The procedure p, local to V, is an abstract operator updating the abstract value
of V. We use the notation Vep(a) for invoking the operator. Then the rule

\% _
(*) {Rf(V,a)} v.p(a) {R}
holds for arbitrary R, where
£f(v,a) = F(f1(v1,...,vn,a),...,fn(v1,...,vn,a))
and f1,...,fh are as above.

Often the abstraction function F is meaningful only if a certain
invariant relation I holds for the arguments VyseeosVye The
invarient I may be establisned initially by statements S' in tne
block tail of C, and I must be preserved by p.
Then the:rule (*) is establisned by proving
{PAT} s {oAT} and {P_} S' {QAT).

Furthermore {Po} C var V {V:Vo} is true provided

Q, AI> F(v1,...,vn) =Vo. It is assumed that the variables
ViseessV, are not updated textually outside C, except tnrougn
invoking the local procedure p.

- 431 -

Informal examples of abstraction are given in [4], pp. 205-208, and in the
following section.

References.

[1] C.A.R. Hoare: An axiomatic basic for computer programming.
CACM 1970.

[2] Cc.A.R. Hoare, N. Wirth: An axiomatic definition of Pascal,
ETH 1972.

[3] C.A.R. Hoaref Proof of correctriess of data representation,
Acta Informatica 1972.

[4] 0.-J. Dahl, E.Q. Dijkstra, C.A.R. Hoare: Structured Programming. Academic
Press, 1972.

Bottom-Up Construction, an Illustration.

Problem: Process sequence of telegrams for accounting purposes.

(Cf. Henderson and Snowdon: An experiment in structured programming,
BIT 12,1 (1972) pp. 38-53.) LBach telegram should be printed out

and in addition its number of words should be counted and
printed, and a warning message snould be given if any of its

words is longer tnan KX characters. Eacn telegram ends witn tne
word ZZZZ. The words STOP and ZZZZ do not count. The sequence
ends with a telegram containing no countable words. A

The telegrams are stored on an input medium as a record sequence,
Eacn record contains N cnaracters. No word is divided across
records, and blanks are used for filling up. The same rules apply
to tne output medium. Output records have length I,

Given: the type char (character value) with the operators =, # ,
and tne following I/O-mechanisms.

proc read (A); char array A;
wvhich reads the next input record into the first N positions
of A , vwhere the length of A 1is N or more.

proc print (A); char array B;
whicn outputs an output record from the -first M locations oF &A,possibly
padded with blanks if the length of A is less than M.

- 432 -

A string notation is available for char array constants. Also the equality
operator is assumed to apply to character arrays.

class incharseq;

{An input character sequence is formed by "concatenating" tne
records of the input file, eacn extended by a blank character.]

begin cnar array buf [1:N+1]; int i; |
{i points to tne current character of buf, which contains
tne current record.}

char proc c; c:=buf[i]; {the current character}

proc adv; {advance to tne next character}

if i < N then i:=i+1

else read(buf); i:=1 fi;
{The initial character is a simulated blank considered the last
cnaracter of a mytnical record preceding tne input sequence. }

i:=N+1;.buf[i]:=b1ank
end of incharseq;

class string(n); int n;

begin cnar array w1:n]; int lg;
{A string of lengtn lg is contained in w[1:1g], where
0 g lg < n}

proc clear;lg:=

proc add(x); char x;
if 1g =z n then error ('string overflow!)
else lg:=1g+1; w[lg]:=x fi;
clear {a string is empty initially}
end of string;

class inwordseq(n); {time sequence of words from input}
begin string(n) var word; incharseq var incj;
{word contains the current word read from inc}

proc adv; {advance to next word}

begin word.clear;

loop while inc.c=blank: inc. adv repeat-

loop: {collect letters,including trailing blank}
word.add(inc.c);

- 433 -

wnile inc.c # blank: inc.adv; repeat
end of adv;
end of inwordseq;

class outwordseq; {sequence of words for output}
begin char array buf[1:M+1]; int i;
{pbuf[1:i] has been filled. buf[M+1] can only be filled witn

a redundant trailing blank}
proc throw; {output buffer, unless empty}

if 1> 0 then
for j:= i+1 to M: buf[j]:=blank repeat;
print [buf]; i:=
£i;
proc out(s); string val s;
begin if i+s.lg > M then throw fi;
for j:= 1to s.lg:
i:= i+1; buf[i]:=s.word.w[J]
repeat
end;
1:=0 {empty buffer initially}
ggg of outwordseq;

Main program:
begin inwordseq(50) var Wi; outwordseq var Wo;
int weount; Bool longw;
{wcount
loop: {zero or more telegrams nave been processed}
wecount:=0; longw:=false;
{start processing another}
loop:{zero or more words have been read of the current
telegram. wcount of them were countable. longw
means one or more were too long}
Wi.adv;
while Wi.word.# 'ZZZZ': Wo.out(Wi.word);
if Wwi.word # 'STOP' then wcount:=wcount+1 fi;
if wWi.word.lg > K tnen longw:= true fi;
repeat; {another telegram has been processed}
wnile wcount # O:
wo.throw; printnum(wcount);
if longw tnen print ('warning message') fi;

regeat

end of main program

- 434 -

Reading List.

Books.
0.-J. Dahl, E.W.Dijkstra, C.A.R.Hoare:
Structured Programming. Academic Press, 1972.

G.Birtwistle, O.-J. Dahl, B.Myhrhaug, K.Nygaard:
SIMULA BEGIN. Studentlitteratur & Auerbach 1973.

0.-J. Dahl, D.Belsnes:
Algoritmer og Datastruktur. Studentlitteratur, 1973. (In Norwegian).

P.Brinch-Hansen:
Operating System Principies. Frentice-Hall, 1973.

Short Selection of Articles:

E.W. Dijkstra:

The Structure of The Multiprogramming System. CACM 11,5,pp341-346,
(May 1968).

E.W. Dijkstra:
Goto statement considered harmful. CACM 8,9,pp147-147 (Sept.1968).

R.W. Floyd:
Assigning meanings to programs. FProc. of Symposia in Applied
Mathematics, vol.19, pp 19-32 (1967).

P.Hendersen and R.Snowdon:
An experiment in structured programming. BIT 12, pp. 38-53 (1972).

~C.A.R.Hoare: An axiomatic approach to computer programming. CACM 12,
10, pp.576-580, 583 (Oct. 1969).

C.A.R. Hoare: _
Proof of a program: FIND. CACM 14,1, 39-45 (Jan.1971).

C.A.R. Hoare:
Proof of the correctness of data representations, Acta Informatica 1,
pp. 271-281 (1972).

- 435 -

C.A.R. Hoare and N.Wirth: A _
An axiomatic definition of the programming language PASCAL. Acta
Informatics 2, pp.335-355 (1973).

D.E. Knuth:
A review of "Structured Programming". Stanford Computer Science
Department report STAN-CS-73-731 (June, 1973).

Miller:
The magical number 7 plus or minus two: Some linits to our capacity
for information processing. FPsychol. Rev. 63, pp.81-87.

P.Naur:
Programming by action clusters. BIT 9, pp.250-258 (1969).

P.Naur: An experiment on program development. BIT 12, pp.347-3%65
(1972).

A.Wang and 0.-J. Dahl:
Corontine sequencing in a block structured environment BIT 11, pp.
425-449 (1971).

