at $p_{\perp}^2 = 0.5(\text{GeV/c})^2$. They find that $D_{NN} = 0.81 \pm 0.06$ and $K_{NN} = 0.14 \pm 0.06$. Theoretical papers on polarized beam cross sections submitted to this conference include no. 965 by F Halzen and no. 966 by Halzen and Thomas.

Fig. 3 Differential cross sections for each spin state. $(\mu_{L,b}(\sigma_l))$

K \bar{p} AND $\bar{p}p$ ELASTIC SCATTERING AND TWO-BODY ANNIHILATIONS AT 6.2 GeV/c

CERN-Ecole Polytechnique-Stockholm-Orsay-Genova-INFN Collaboration

Presented by T Buran

In an experiment using spark chambers and proportional chambers at the CERN Synchrotron(PS), we have measured the differential cross-sections for the elastic channels $\overline{K}p$, and $\overline{p}p$ and the annihilation channels of $\overline{p}p$ into $\pi^-\pi^+$ and $\overline{K}\overline{K}^+$ at 6.2 Ge V/c. Most of the c.m. angular range was covered.

The differential cross-sections at 5.0 Ge V/c⁽¹⁾ and at 6.2 Ge V/c for $\overline{pp} \rightarrow \overline{pp}$ as a function of the cosine of the c.m. scattering angle, are shown in the review talk of Didden's.

We made the following observations:

The dip at about t = -0.5 (Ge V/c)² seems to move towards larger t-values as energy increases. The dip remains equally pronounced at 6.2 Ge V/c. This behaviour is characteristic of a diffractive dip. However, data at 8.0 Ge V/c and 16.0 Ge V/c 2 suggest a weakening of the dip structure.

A further dip at about t = 2.2 (GeV/c), observed first at 5.0 GeV/c⁽¹⁾, also retains its significance at 6.2 GeV/c and stays constant in t.

The most surprising feature of the data is the apparent constancy of the cross section for cos $\theta_{\rm cm}$ between -0.5 and 0.0 from 5.0 GeV/c to 6.2 GeV/c, whereas the cross section in the backward direction (u = 0) decreases with energy as s⁻¹⁰, as shown in Fig. 1.

According to the parton interchange model of Blankenbecler, Brodsky and Gunion⁽³⁾ one should expect the cross-section at 90° c.m. to decrease as s⁻¹⁰, as it does at 180° .

This model gives roughly the correct ratio for the \overline{pp} and pp elastic scattering cross sections at 90° c.m. However, we are in an energy region where one could expect the 90° c.m. ratio to be influenced by other incoherent effects in the form of Ericson fluctuations, or coherent effects due to tails of peripheral processes.

Fig. 1 Differential cross-sections at u = 0 for \overline{pp} elastic scattering as a function of log s. For further reference to these points, see Ref. 1. (*RL* 14530)

In the annihilation channel $\bar{p}p \rightarrow \pi^-\pi^+$ we noticed a dip in the forward direction. This dip could be connected to the one observed at u ~ -0.18 (GeV/c)² in π^+p backward scattering.

The annihilation cross-sections $\pi^-\pi^+$ and K^-K^+ , show a decrease in the forward direction consistent with baryon exchange, while the wide-angle crosssections are decreasing like s⁻¹⁰. In the backward direction the $\pi^-\pi^+$ channel shows a decrease consistent with baryon exchange. No events were observed for the channel K^-K^+ .

The K p elastic cross-sections as a function of $\cos \theta_{\rm cm}$, at different energies [3.59 GeV/v⁴), 5.0 GeV/c¹), 6.2 GeV/c and 10.1 GeV/c⁵] are shown in the report from the plenary session.

Unlike the pp elastic cross-section, the K p crosssection around 90° c.m. shows a rapid decrease with energy. In the last bin of the backward region two events are observed after background subtraction.

Using the slope observed at 5.0 GeV/c for the backward peak, the cross-section at u = 0 is estimated to be 11 ± 10 nb/GeV/c². As shown in Fig. 2, this estimate is consistent with a decrease of about s⁻¹⁰ for this backward exotic channel.

Fig. 2 Differential cross-section at u = 0 for K p elastic scattering as a function of log s. For further reference to the points, see Ref. 1. (RL 16529)

References

I. A Eide, P Lehmann, A Lundby; C Baglin, P Briandet,
P Fleury; P J Carlson, E Johansson; M Davier,
VGracco, R Morand, D Treille., Nucl. Phys. B60,
173 (1973).