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ABSTRACT

The nuclear magnetic moment of the nucleus 59Cu, with one proton and two neu-
trons outside the closed N = Z = 28 shells, was measured in an on-line experiment
combining β-NMR with low temperature nuclear orientation and with particle de-
tectors operating at a temperature of about 10 K. From the data the center fre-
quency ν(Bext = 0) = 209.51(22) MHz was derived. Using the hyperfine field of
Cu in host iron from literature the result for the moment is µ[59Cu] = +1.891(9)
µN , which reveals a large deviation from the proton p3/2 single-particle value. This
provides strong experimental evidence for a massive shell breaking at 56Ni.
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1 Introduction
Close to neutron and proton shell closures the structure of odd-A nuclei may be

well approximated by the single-particle behavior of the particle (hole) outside (inside)
the closed shell. The most basic single-particle shell model then predicts the so-called
Schmidt values for the nuclear magnetic dipole moments. It is well known that for nuclei
farther away from closed shells the magnetic moment differs from the Schmidt value
[1]. These deviations are caused by configuration mixing (Core Polarization) and meson
exchange currents (MEC) [2]. The first is related to the fact that the wavefunctions of
the basic shell model assume that the odd nucleon is in a single particle state, while even
small configuration admixtures can already appreciably change the magnetic moment. The
second correction takes into account the effects of interaction with the electromagnetic
field when two nucleons are interacting.

In case of the odd-A Cu isotopes the 29th proton is in the p3/2 orbital with a Schmidt
moment µSchmidt = 3.79µN . Below N = 40, the neutrons occupy the p3/2, f5/2 and p1/2

orbitals. Recently, the development of the RILIS resonance ionization laser ion source
[3, 4] has allowed the measurement of several new magnetic moments for copper isotopes
[5, 6, 7] with the ISOLDE facility at CERN . With experimental magnetic moments being
available for the odd-A isotopes from 61Cu up to 69Cu one can now investigate the neutron
number dependence of the moments of the odd-A Cu nuclei below N = 40 and especially
towards the N = 28 shell closure. In this respect the magnetic moment of 59Cu, with 30
neutrons, is of special interest as it paves the way for the measurement of the moment of
the N = 28 isotope 57Cu (56Ni core plus one proton) and at the same time indicates how
the systematic trend of odd-Cu moments develops as N = 28 is approached.

We therefore have measured the magnetic moment of 59Cu at the ISOLDE facility. In
addition, shell model calculations were performed using perturbation theory to correct for
core polarization and meson exchange currents. Finally, since 59Cu is the mirror nucleus of
59Zn, the decay of which is known, our result can also be compared to the prediction from
the correlation between the ground state gyromagnetic ratios and superallowed β-decay
transition strengths of the mirror nuclei that was established in Ref. [8].

2 Experiment
The magnetic moment of 59Cu was measured with the technique of Low Temper-

ature Nuclear Orientation (LTNO) [9] combined with Nuclear Magnetic Resonance on
Oriented Nuclei where the destruction of the β-asymmetry by the radio frequency signal
(β-NMR/ON) was observed with beta particle detectors operating at a temperature of
about 10 K inside the NICOLE 3He-4He dilution refrigerator. The combination of these
techniques has several advantages for measuring nuclear magnetic moments. Firstly, beta
asymmetries are significantly larger then gamma asymmetries at relatively small values
of µB/T , with µ the nuclear magnetic moment, B the total magnetic field the nuclei feel
and T the sample temperature. Therefore, with β-detection even for isotopes with rather
small magnetic moments a measurable resonance signal can be obtained at the tempera-
tures accessible with an on-line refrigerator. Secondly, since one can in principle integrate
the complete beta spectrum the energy resolution of the beta detectors is less important.
Furthermore, in this experiment the particle (β)-detectors were placed inside the 4 K
radiation shield of the dilution refrigerator, thereby minimizing scattering or absorption
of the β-particles on their way to the detectors.

Detailed information on the EC/β+-decay of 59Cu (t1/2 = 81.5 s, Jπ = 3/2−) can
be found in [10]. The strongest β+-branch of 59Cu is an allowed Jπ = 3/2− → Jπ = 3/2−
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ground state to ground state Gamow-Teller transition with endpoint energy E0 = 3778
keV and an intensity of 57.5%. The rest of the β+-intensity is spread over ten other
branches.

The magnitude of the hyperfine magnetic field of Cu in an iron host lattice is known,
but unfortunately not with very high precision: Bhf = −21.8(1) T [5]. In fact, the error
of the hyperfine magnetic field will turn out to give the largest contribution to the total
error of the nuclear magnetic moment of 59Cu, as will become clear later.

The radioactive 59Cu was produced at ISOLDE (CERN) with a 1.4 GeV proton
beam from the Proton Synchrotron Booster, bombarding a ZrO2 felt target (6.3 g Zr/cm2)
[11] connected to the RILIS [4, 7] which provided the required element selectivity for the
separation of 59Cu. After ionization and acceleration to 60 keV, the 59Cu beam with an
intensity of about 3× 106 ions/s was mass-separated by the General Purpose Separator,
transported through the beam distribution system, and implanted into a polished and
annealed 99.99% pure Fe foil (thickness 250 µm) soldered onto the cold finger of the
NICOLE 3He-4He dilution refrigerator. The implantation depth of 59Cu-ions with an
energy of 60 keV is around 200 Å. The corresponding energy loss for the β-particles
leaving the sample is then of the order of 100 eV, which is negligible in comparison to the
β-endpoint energy of 59Cu. The iron foil in which the radioactive 59Cu ions were implanted
was magnetized by an external magnetic field generated by a superconducting split-coil
magnet. During the measurements a horizontal external magnetic field Bapplied = 0.10(2)
T, produced by the superconducting magnet, was used. Firstly, a field of 0.5 T was applied,
in order to magnetically saturate the iron foil. Thereafter, the field was reduced to 0.1
T so as to minimize its influence on the trajectories of the β-particles. For the 250 µm
thick Fe foil that was used a demagnetization field Bdem = 0.0249 T was calculated. The
temperature of the sample was maintained in the region between 10 and 100 mK and
measured by a 57CoFe nuclear orientation thermometer [9].

The angular distribution of the positrons emitted during the β+-decay of 59Cu was
observed with three high purity Ge (HPGe) particle detectors that were installed inside the
4 K thermal shield of the dilution refrigerator. These detectors with a sensitive diameter of
about 12 mm and a thickness of 5 mm were positioned at angles of 15◦, 75◦ and 165◦ with
respect to the orientation axis defined by the magnetization of the iron foil in the external
magnetic field. The thickness of the detectors was chosen such that the endpoint of the β
spectrum could be observed with maximal efficiency while at the same time minimizing
the sensitivity to γ-rays. Installing these detectors inside the thermal shields means that
they have to be able to operate at temperatures close to the temperature of liquid He
(i.e. around 10 K). The detectors used were produced and tested in the Nuclear Physics
Institute in Řež [12]. Apart from these particle detectors large-volume HPGe detectors
for detection of the γ radiation were installed outside the refrigerator.

3 Data collection and Analysis
In order to reduce the search region for the β-NMR/ON measurement, the 59Cu

magnetic moment was first determined by scanning the first of the two lasers used to
selectively ionize Cu atoms in the RILIS ion source. The on-line analysis of this measure-
ment yielded |µ[59Cu]| = 1.90(7), corresponding to a resonance frequency νres = 209 ± 8
MHz which determined the search region for the β-NMR/ON experiment. About 200
spectra of 150 s each were recorded. The RF signal was generated by a Marconi generator
with a range from 10 kHz to 3.3 GHz. The RF power level was tuned in order to see its
effect on the sublevel populations by a small but clear change in the β-anisotropy. This
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anisotropy was defined as the double ratio of the 15◦ and 165◦ β-detector count rates at
millikelvin temperatures (polarized sample) and at 1 K (unpolarized sample):

Wβ(15◦)
Wβ(165◦)

=

[
N(15◦)
N(165◦)

]

mK

/

[
N(15◦)
N(165◦)

]

1K

(1)

The resonance experiment was performed at a sample temperature of about 10 mK.
Since in a β-NMR/ON experiment one is observing just the destruction of asymmetry
in the angular distribution of the beta particles through magnetic resonance we used the
complete energy region from 550 keV to 3778 keV in order to increase statistics (Fig. 1).
The energy region below 550 keV was not used as it suffered from background of Compton
scattered 511 keV gamma rays.
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Figure 1: Typical β-spectrum for 59Cu recorded within one 150 s measurement cycle. The
511 keV positron annihilation line and the pulser peak are indicated. For the β-NMR/ON
experiment discussed here the spectrum was integrated between 550 keV and 3778 keV
(endpoint).

At first the frequency was varied from 200 to 220 MHz, both in upward and in
downward directions, in 1 MHz steps with 1 MHz modulation amplitude and 0.1 kHz
modulation frequency, and sent to the NMR coil that was installed around the cold fin-
ger. In these two scans a clear resonance signal was immediately found. Statistics was
subsequently improved by three frequency sweeps in upward direction and two sweeps
downwards in the region from 203 to 213 MHz. In addition a scan was carried out in
the frequency region from 204 to 215 MHz in 0.5 MHz steps with 0.5 MHz modulation
amplitude and 0.1 kHz modulation frequency.

The data were corrected for the ”dead-time” of the data acquisition system using a
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Figure 2: On-line nuclear magnetic resonance on oriented nuclei curve for 59Cu (sum of five
scans: three in upward and two in downward direction). Plotted is the ratio of the pulser
normalized count rates for the 15◦ (L) and 165◦ (R) β-particle detectors as a function of RF
frequency. The integrated destruction of anisotropy is 46%. At the bottom the anisotropy
at 0◦ for the 136 keV γ-ray of the 57CoFe thermometer (Wγ(0

◦), corresponding to a
sample temperature of about 10 mK) is displayed for the same frequency region, showing
no resonant effect at the position of the 59Cu resonance. The slope in the anisotropy versus
frequency that is visible for both isotopes is caused by a small heating due to an increase
in the power absorption by the system with increasing rf frequency. The amplitude of the
signal observed by the pick-up coil that was installed around the sample holder indeed
increased from 49 mV at 200 MHz to 95 mV at 210 MHz and 210 mV at 220 MHz.
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precision pulse generator. All scans were separately analyzed in order to check for possible
systematic errors. No hints for such errors were found. An evaluation of all available data
with due regard to relaxation time effects gave for the center frequency the final result
ν = 208.79(4) MHz. To illustrate the quality of the data the resonance curve obtained after
summing all scans in the frequency region from 203 to 213 MHz in 1 MHz steps is shown
in Fig. 2. The data points were fitted with a straight line in addition to the resonance
function to account for the slope in the on-line data. From the resonance frequency, the
spin (J) of the ground state of 59Cu , the Plank constant h, and the total magnetic field
(Btot = Bhf + Bapplied −Bdem), the nuclear magnetic moment of 59Cu is obtained as:

µ =

∣∣∣∣
J νres h

Btot

∣∣∣∣ (2)

yielding

µ[59Cu] = +1.891(9)µN (3)

where most of the error is due to the uncertainty of the hyperfine field. The center fre-
quency at hyperfine field value is ν(Bext = 0) = 209.51(22) MHz. The sign of µ was
obtained from the observed β-asymmetry and agrees with the systematics for the odd-A
p3/2 copper isotopes. The difference between our experimental result and the Schmidt
value is ∆µ(59Cu) = -1.90(1).

4 Shell-model results with perturbation theory
The copper-isotopes ground-state wave functions are characterised by having 28

protons occupying closed-shell orbitals and the 29th proton occupying the πp3/2 orbital. To
start, we consider just 57Cu and 69Cu. In the first case, the neutron number is N = 28; in
the second it is N = 40. In both these instances the neutrons also may be considered to be
occupying closed-shell orbitals. Thus for 57Cu and 69Cu our zeroth-order approximation is
to write the ground-state wave function as that of fully occupied closed shells plus a single
proton in the πp3/2 orbital. This zeroth approximation is then corrected in perturbation
theory.

Let the Hamiltonian be divided into a one-body Hamiltonian and a residual inter-
action: H = H0 +V , where H0 = T +U , the sum of kinetic and one-body potential energy
operators, and the residual interaction V = Vbare−U , where Vbare is the two-body poten-
tial energy operator. The eigenfunctions of H0 form the basis of the calculation. For this
purpose we will use the harmonic oscillator Hamiltonian. However, one can always add
constants to this Hamiltonian that will shift the energy eigenvalues but not change the
radial wave functions. Thus we will use the oscillator radial functions in calculating ma-
trix elements, but will use the experimental single-particle energies in calculating energy
denominators. For the residual interaction we will use the one-boson exchange potential
with a short-range cut-off; more details are given in ref. [2].

Our requirement is to calculate matrix elements of the one-body magnetic moment
operator, to be denoted F . In the zeroth-order approximation, we compute 〈b|F |a〉, where
a and b are single-particle valence states of orbits not in the closed-shell cores. For magnetic
moments we need the diagonal matrix element, a = b, and for the copper isotopes in
particular, a = b = πp3/2. However for clarity of displaying the formulae, we will write
the initial single-particle state as |a〉 and the final as 〈b|, but take a = b = πp3/2 when
computing the magnetic moment. The correction to the zeroth-order approximation to

5



second order in V is given by [2]:

〈ψb|F |ψa〉 = 〈b|F |a〉+
∑

α

〈b|F |α〉〈α|V |a〉
Ea − Eα

+
∑

α

〈b|V |α〉〈α|F |a〉
Eb − Eα

+
∑

α,β

〈b|F |α〉 〈α|V |β〉〈β|V |a〉
(Ea − Eα)(Ea − Eβ)

−
∑

α

〈b|F |α〉〈α|V |a〉〈a|V |a〉
(Ea − Eα)2

+
∑

α,β

〈b|V |β〉〈β|V |α〉
(Eb − Eβ)(Eb − Eα)

〈α|F |a〉 −
∑

α

〈b|V |b〉〈b|V |α〉
(Eb − Eα)2

〈α|F |a〉

+
∑

β,γ

〈b|V |β〉
(Eb − Eβ)

〈β|F |γ〉 〈γ|V |a〉
(Ea − Eγ)

−1

2

∑

β

〈b|F |a〉〈a|V |β〉〈β|V |a〉
(Ea − Eβ)2

− 1

2

∑

β

〈b|V |β〉〈β|V |b〉
(Eb − Eβ)2

〈b|F |a〉. (4)

Here α stands for a small, finite number of two-particle one-hole, p1h, intermediate
states, while β and γ stand for, in principle, an infinite number of p1h or p2h states. When
F is the magnetic moment operator there are selection rules on 〈α|F |a〉 that severely
limit the number of intermediate states of type α. In particular, they have to be of
the structure |(j<, j−1

> )1+
, a〉 where j< is a valence orbital with j = l − 12, while j>

is its spin-orbit partner orbital j = l + 12 that is occupied in the closed shells. These
orbitals are coupled to angular momentum and parity of 1+, the multipolarity of the
magnetic moment operator. Finally this particle-hole pair is coupled to the valence orbital,
a. For the copper isotope, 57Cu, with closed shells at N = 28, Z = 28 there are two
states of type α: |ν(f5/2, f

−1
7/2), πp3/2〉 and |π(f5/2, f

−1
7/2), πp3/2〉. For 69Cu with closed shells

N = 40, Z = 28 the neutron particle-hole state is no longer available so there is only one
state of type α, namely |π(f5/2, f

−1
7/2), πp3/2〉. For the states of type β and γ the magnetic

moment operator does not provide any restriction on their number, so these summations
are in principle infinite. Second-order calculations are therefore computationally quite time
consuming even for the magnetic moment operator. For the high-lying intermediate states
we approximate their energy by the appropriate multiple of the characteristic oscillator
energy, ~ω. We explicitly perform the intermediate-state summations up to 12~ω, and
geometrically extrapolate beyond that.

The terms in Eq. (4) that only involve intermediate states of type α – these include
the second and third terms contributing in first order and part of the fourth and sixth
terms contributing in second order – represent a start of a sequence that can be summed
to all orders in perturbation theory. These terms, in fact, yield the random phase approxi-
mation (RPA). In Table 1 we separately identify the results obtained from the RPA terms
alone, summed to all orders, as CP(RPA). All the other core-polarisation terms summed
only to second order are labelled in the table as CP(2nd).

It is convenient to discuss the calculated results in terms of an effective one-body
magnetic moment operator:

µeff = gl,eff l + gs,effs + gp,eff [Y2, s], (5)

where gx,eff = gx + δgx, with x = l, s, or p. Here gx is the single-particle g-factor and δgx

the correction to it. For a proton, gl = 1.0, gs = 5.587 and gp = 0.0. Note the presence
of an additional term in the effective magnetic moment operator involving a spherical
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harmonic of rank 2 coupled to the spin operator to give a tensor of multipolarity 1, which
is absent in the bare operator. From this decomposition it is evident that the principal
impact of the core-polarisation terms is to quench the spin gs factor significantly. This
is the major reason for the measured magnetic moments in closed-shell-plus-one nuclei
differing from the Schmidt estimates.

Another class of corrections are meson-exchange currents (MEC). We include con-
tributions from π-, ρ-, ω- and σ-meson exchanges, where σ is a scalar, isoscalar meson,
as described in detail in ref. [2]. In the shell model, MEC are represented by two-body
operators denoted here as G. Then the correction to the magnetic moment is given by the
expression

〈ψb|G|ψa〉 = 〈b|G|a〉+
∑

β

〈b|G|β〉〈β|V |a〉
Ea − Eβ

+
∑

β

〈b|V |β〉〈β|G|a〉
Eb − Eβ

, (6)

where as before β stands for, in principle, an infinite number of p1h or p2h states. The
first term in Eq. (6) we will call the MEC correction and involves the calculation of the
matrix element of a two-body operator in single-particle valence states. More explicitly,
it is

〈b|G|a〉 =
∑

h

〈bh|G|ah〉, (7)

showing that it includes a sum over all the orbitals, h, occupied in the closed-shell cores.
The main impact of the MEC correction is to enhance the orbital gl factor.

The second and third terms in Eq. (6) represent a core-polarisation correction to the
MEC calculation. It corrects the single valence nucleon description of the copper isotopes
to include p1h and p2h configurations. Again there are no selection rules to limit the
intermediate-state summations, so as with CP(2nd) we compute the intermediate-state
summations up to 12~ω and geometrically extrapolate beyond that. We have labelled this
contribution as CP-MEC in Table 1. Observe that this core-polarisation correction has
only been calculated to first order in the residual interaction, V . However since the MEC
operator, G, contains meson-nucleon coupling constants to the second power, as does the
residual interaction V , this term can be said to be fourth order in meson-nucleon cou-
plings. Similarly the CP(2nd) correction is also fourth order in meson-nucleon couplings.
Thus there are many similarities between the CP(2nd) and CP-MEC contributions, but
there is one very important difference. The CP-MEC contribution is only first order in
perturbation theory and contains only one energy denominator, while CP(2nd) is second
order and contains two energy denominators. Since the energy denominator is a negative
quantity, this leads to a sign difference between these two contributions. In many ways
this is fortunate, since the CP(2nd) contribution is probably the least reliable component
in Table 1 and to have it ameliorated by the CP-MEC contribution is beneficial. In fact,
we believe that the sum CP(2nd) + CP-MEC probably cannot be calculated with an
accuracy better than, say, 20%. This would be our, somewhat arbitrary, error estimate
on the calculated correction to the Schmidt magnetic moment. The other ingredients in
Table 1 can probably be calculated more reliably than this.

Another contribution has been labelled ‘Isobars’ in Table 1. This represents the
process in which the spin-dependent, isovector component of the residual interaction,
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Table 1: Contributions to the calculated effective magnetic moment operator for a p3/2

proton in 57Cu and 69Cu. ∆µ is the corresponding change in the magnetic moment with
respect to the Schmidt value µSch = 3.79µN .

57Cu 69Cu

δgl δgs δgp ∆µ δgl δgs δgp ∆µ

CP(RPA) 0.007 −1.231 0.344 −0.60 −0.002 −0.981 0.648 −0.471)

CP(2nd) −0.152 −2.034 0.549 −1.15 −0.225 −1.448 0.334 −0.94
MEC 0.116 0.293 −0.058 0.26 0.183 0.368 −0.295 0.36
CP-MEC 0.100 0.259 0.372 0.24 0.103 0.355 0.393 0.30
Isobars −0.005 −0.142 0.735 −0.05 −0.002 −0.178 0.558 −0.07
Relativistic −0.024 −0.151 −0.040 −0.10 −0.023 −0.143 −0.038 −0.10

Sum 0.041 −3.004 1.900 −1.39 0.035 −2.027 1.600 −0.92

µth = µSch+Sum 2.40 2.87

principally π- and ρ-exchange, can excite the nucleon to the ∆-isobar excited state, which
then decays in the electromagnetic field. The impact this process has on the magnetic
moment can also be represented by a two-body operator, G, so we use Eq. (6) to evaluate
its contribution. Since the isobar contribution is quite small, we have not separated the
isobar contribution of the first term from its core-polarisation correction in the second
and third terms. The main impact of the isobars is again to quench the spin gs factor.

Last, there is a relativistic correction to the single-particle magnetic moment oper-
ator. The usually written operator, gll+ gss, is the lowest order term in a non-relativistic
reduction of the electromagnetic current. If the next order in p2/M2, where p is a typical
nucleon momentum and M its mass, is retained the magnetic moment operator is [2]

gl

{
l

(
1− p2

2M2

)
−

(
p2

2M2

)
(s− (s.p̂) p̂)

}

+gss

(
1− p2

2M2

)
. (8)

In terms of the effective magnetic moment operator defined in Eq. (5), we identify

δgl = −12gl〈 p2

2M2
〉 δgs = (−13gl − 12gs) 〈 p2

2M2
〉

δgp = −16(8π)1/2gl〈 p2

2M2
〉 (9)

It remains to estimate the expectation value 〈 p2

2M2 〉 ≡ 〈a| p2

2M2 |a〉 for which we use harmonic
oscillator wave functions. Although this correction is sensitive to the choice of the radial
wave function, because it depends on its second derivative, the correction is quite small,
about 3% of the Schmidt value, so the choice of the radial function ultimately is not
critical.

All the calculated corrections are collated in Table 1. For the p3/2 proton in 69Cu, the
calculated correction to the single-particle magnetic moment is ∆µ(69Cu) = −0.91 µN in
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good agreement with the experimental value [5] of −0.95(1) µN . For 57Cu, the calculated
correction is ∆µ(57Cu) = −1.39 µN , where the error on the calculation, as mentioned,
has been arbitrarily set at 20% of the CP(2nd) + CP-MEC value. There is no experimen-
tal measurement for 57Cu, but it is clear from Fig. 3 that any reasonable extrapolation
from the known data on the odd-mass copper isotopes will produce a result significantly
different from this calculated value.

The isotope 59Cu has two valence neutrons outside the N = 28 closed shells as well
as the p3/2 proton. So we have to estimate the impact of these two extra valence neutrons
on the calculation of the magnetic moment. The difference between the two calculations
given in Table 1 is that in 57Cu the neutron orbits 1p3/2, 0f5/2, 1p1/2 are empty, while at
69Cu they are taken to be full. This impacts on the calculation of the core-polarisation
and meson-exchange corrections in that in the sums over intermediate states α, β, γ in
Eqs. (4) and (6) these neutron orbits are part of the sum over particle orbits for 57Cu, but
part of the sum over hole orbits for 69Cu. This effect alone is responsible for most of the
difference between ∆µ(57Cu) and ∆µ(69Cu). If we make the reasonable assumption that
the contribution of these neutron orbitals for the odd-mass copper isotopes lying between
these two extremes is proportional to the neutron population, then we can get an estimate
for the change ∆µ(59Cu) of the magnetic moment with respect to the Schmidt value as

∆µ(59Cu) = ∆µ(57Cu) + 212
(
∆µ(69Cu)−∆µ(57Cu)

)

= −1.31 µN , (10)

corresponding to µth(
59Cu) = 2.48 µN .

5 Discussion and conclusion
Table 2 and Fig. 3 summarize all presently available experimental magnetic moments

for the odd-A copper isotopes, as well as the results from the shell model calculations
described in the previous section and predictions for the moments of 57,59Cu deduced from
the correlation between the ground state gyromagnetic ratios and superallowed β-decay
transition strengths of the mirror nuclei established in Ref. [8]. Also listed are extrapolated
values obtained from fitting either a straight line or a second order polynomial to the
available experimental data for 61−69Cu.

The estimate µ(59Cu) = 2.48 µN that is obtained from the shell model calculations
stands at considerable distance from the experimental value of +1.891(9) µN . It is doubt-
ful, however, that a shell-model calculation based on a N = 28 closed-shells core will
produce a result significantly different from Eqn. 10. The real problem is that the calcu-
lated magnetic moment in the closed-shell-plus-one nucleus 57Cu stands so far from the
extrapolation of known data on odd-mass copper isotopes shown in Fig. 3. Indeed, fitting
a straight line through the experimental magnetic moment values for the 3/2− odd-mass
61Cu to 69Cu isotopes yields µ(59Cu) = +1.91 µN .

In the calculation described in the previous section, it is implicitly assumed that
56Ni is principally a doubly closed-shell nucleus and any departure from this can be
estimated in perturbation theory. In this scheme, the breaking of the closed shells is
quite modest. On the other hand, there is significant evidence mainly from large-scale
shell-model calculations [14, 15, 16] that there is a massive amount of shell breaking at
56Ni. If this is the case, then the starting hypothesis of our calculations is poor, and
hence the poor result in the comparison of theory with experiment for the 59Cu magnetic
moment. Indeed, we could reverse this argument saying the measured magnetic moment
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Table 2: Experimental and theoretically calculated magnetic moments (in units of nuclear
magneton µN) for odd-A copper-isotopes in the N ≈ Z region.

A N µth
1) µmir

2) µfit µexp
3)

57 28 2.40 2.49(3)
59 30 2.48 2.24(11) 1.914) +1.891(9)5)

61 32 +2.14(4)
63 34 +2.22329(18)

2.2272057(31)
2.2273456(14)

65 36 +2.38167(25)
2.38161(19)

67 38 +2.54(2)7)

69 40 2.87 +2.84(1)8)

for 59Cu provides further evidence of the massive shell-breaking at 56Ni. Further, since the
measured and calculated magnetic moments for 69Cu are in good agreement with each
other, one could even argue that 68Ni, with N=40, is a better doubly-magic closed-shell
nucleus than 56Ni. In view of this a measurement of the magnetic moment of the ”closed-
shell-plus-one” nucleus 57Cu now becomes even more important. Such a measurement is
actually being planned [17].

Of note is a recent study of f7/2 valence states in nuclei with A < 56 by Speidel
et al [18]. These authors carry out both perturbation-theory calculations and shell-model
diagonalisations in examining the systematic behaviour of the magnetic moment g-factor
over a sequence of nuclei. Their results showed a surprising sensitivity to the choice of
effective interaction. This is traced to the key matrix element 〈f7/2f7/2|V |f7/2f5/2〉I=2,T=1

being ill determined. For example, in the Kuo-Brown interaction [19] this matrix element
is obtained from a bare G-matrix and a core-polarisation correction as G + G3p−1h =
−0.124 + 0.124 = 0 MeV. This strong cancellation, therefore, explains why this matrix
element is ill determined. In our study of p3/2 valence states in copper isotopes, our key
matrix elements contributing to the CP(RPA) correction are 〈πp−1

3/2πp3/2|V |νf−1
7/2νf5/2〉J=1

and 〈πp−1
3/2πp3/2|V |πf−1

7/2πf5/2〉J=1. Both contribute to the calculation of 57Cu, but only the

latter to 69Cu. With the Kuo-Brown interaction, these matrix elements are G + G3p−1h =
−0.421+0.070 = −0.352, and G+G3p−1h = −0.904−0.061 = −0.965 MeV respectively. In
these cases the G3p−1h terms give only a modest correction, so we expect the dependence
on the effective interaction to be less dramatic in our study. Nevertheless, if an effective
interaction can be found that strengthens the first particle-hole matrix element, while
leaving the second unaltered, then this would lead to an improvement in the theoretical
understanding of the magnetic moment data.

Finally, our result can also be compared to the prediction which Buck et al. [8]
recently obtained from the linear relation they deduced between the ground state g-factors
and the superallowed β-decay strength of mirror nuclei

µmir(
59Cu) = 2.24(11)µN (11)

Clearly, this prediction is not in very good agreement with the experimental value either.
It is based on the experimental logft=3.69(2) for the mirror isotope 59Zn. Inserting our
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Figure 3: Experimental magnetic moments for the odd-A 59−69Cu isotopes (black dots)
(Refs. [13, 5, 6] and this work), shell model predictions for 57,59Cu (open stars) (see
section 4) and predictions for 57,59Cu based on systematics of the mirror nuclei [8] (black
stars). The prediction for 59Cu from a linear fit (full line) to the experimental values for
61−69Cu is shown as well.

experimental value for the magnetic moment of 59Cu in the relations deduced in Ref. [8]
yields logft(59Zn)=3.75(1), which differs slightly from the experimental value, and in
addition provides a new prediction for the magnetic moment of the mirror isotope 59Zn,
i.e. µmir(

59Zn) = −0.28(2)µN .
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