A PROGRAMME FOR HIGH-RESOLUTION RESEARCH WITH THE EUROPEAN HYBRID SPECTROMETER IN 1982-1983: A SUMMARY

L. Montanet

CERN, Geneva, Switzerland.

1. OUR AIM

- To determine accurately the properties of the short-lived (\sim 10⁻¹³ s) particles (c, b, ...,
 - τ ...):
 - lifetimes,
 - branching ratios (Cabibbo-allowed or not),
 - spectroscopy: D^* , Σ_C^* , Λ_C^* , ...
- To study production mechanisms (hadronic and photonic):
 - cross-sections (SPS/ISR),
 - correlations (short-range, flavour flow, \ldots),
 - diffraction/fragmentation/central production,
 - dependence upon E_{inc}, quark_{inc}, A,

2. WHAT DO WE NEED?

- Resolution of the vertex detector:

```
50 \mu m for \tau \approx 8 \times 10^{-13} s,
```

20
$$\mu m$$
 for $\tau \approx 2 \times 10^{-13}$ s,

10
$$\mu m$$
 for $\tau \approx 10^{-13}$ s.

These numbers (the first two at least) are based on experience, scanning efficiencies, etc., for bubble-chamber film with good contrast, hadronic production at SPS energies, etc.

- Rates, i.e. not necessarily 10^4 events badly reconstructed, but a few hundreds of well-constrained, well-identified events.

Two factors can be considered:

- a) The intrinsic rate of data acquisition given by rapid-cycling bubble chambers, including scanning-analysis rates (not useful to produce 10⁶ events if we can digest 10⁴/year!).
- b) Acceptance of downstream spectrometer, gamma detectors, particle identifiers, which are essential for the identification of rare events.

With HOLEBC + EHS, classical optics, and hadron beams, we can expect:

20 tracks/expansion, duty cycle \sim 2%, 30 Hz,

10 cm of H_2 , interaction trigger of \sim 20 mb

 \rightarrow 1 evt/µb/day

(at least the same rate with RCBC, and probably more).

With HOLEBC holography, these rates may be increased by 20 to 50 but a more sophisticated trigger will then be necessary.

3. ACCOMPLISHED IN 1979-1981

1979 - NA13 - "bare" LEBC - 50 μm, 13 'candidates' → cross-section.

1980 - NA16 - LEBC + EHS \rightarrow D⁰, D^{\pm} lifetimes and production characteristics.

1981 - NA26 - HOLEBC + EHS \rightarrow 20 μm with classical optics.

4. PLANS FOR 1982

- To accumulate a few hundreds of D^0 , D^{\pm} , and a few tens of F^{\pm} , Λ_C^{\pm} , with HOLEBC (classical optics) and EHS.

15 days of 360 GeV π^- p and 15 days of 360 GeV/c proton-proton, giving 10⁶ pictures.

The total of completely reconstructed c's could be of the order of 30 F $^{\pm}$, 150 D $^{\pm}$, 150 D 0 , 100 Λ_{C}^{\pm} .

- To test RCBC with three normal views plus one high-resolution channel giving \sim 35 μm over 40 cm (and only used for scanning).

 10^6 pictures taken with RCBC could provide > 150 D^{\pm} completely reconstructed, the associated charm being searched for by effective mass and kinematics.

5. PHOTOPRODUCTION IN 1983

Using HOLEBC in the holographic mode (R \leq 10 μ m) triggering on hard photons and hadronic final states, a sensitivity of 10 evt/nb could be reached. Many technical questions need to be solved (holography, tagged photon beam, trigger, electromagnetic background, upgrading of spectrometer for \sim 70 GeV incident particles, etc.).

If technically feasible, this experiment could provide several thousands of c's and several tens of b's.

I believe that such a major step should be taken in the best possible conditions, by adding to the spectrometer a good streamer chamber in the vertex magnet of EHS (see E. Johansson's talk). This streamer chamber would increase significantly the acceptance and efficiency for low-momentum tracks, would allow the detection of a sizeable fraction of strange particles associated with c's and b's, and could provide particle identification.

6. MORE PROPOSALS

With the advent of high-resolution bubble chambers and the completion of EHS (more particle identification, gamma detection, calorimetry), we have a beautiful tool to study heavy flavours. There are many other possibilities than those discussed above (see Niels Doble's talk on beam possibilities). We need more proposals.