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PREFACE TO VOLUME 1II

The 1967 CERN School at Réttvik was the sixth in a series that began
in 1962. The lectures of the 1967 School started on the moring of 22 May and
were attended by 84 students from 21 countries in Western Europe, Eastern
Europe, the Middle East, and India. The School closed on 2 June with the

traditional banquet.

The purpose of the School was to familiarize young post-graduate stu-
dents of experimental physics with the current theoretical and experimental
situation in elementary particle studies. Eleven lecturers contributed to this

end by giving a total of 34 seminars, lectures, or after-dinner talks.

This volume contains the lectures given by Dr. B. E.Y. Svensson on
""High-Energy Phenomenology and Regge Poles'. In the interests of speed
we have photographed the typescripts given to us by the authors and used the
photo-offset reproduction process to produce the four volumes of the
Proceedings. We trust that what has been lost in beauty of presentation will
be compensated by the fact that the Proceedings will be available to the
scientific community in a much shorter time than previously after the end of
the School. We would be pleased to receive comments from readers on this

change in our publishing policy.

Our thanks are due to the authors who have worked very hard to provide
us with their manuscripts either at the School itself or a very few weeks after-
wards, and to the Scientific Information Service for their careful and rapid work

of publication.

Editorial Board.
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CHAPTER 1 - INTRODUCTION AND SURVEY. UNITS

The aim of these lecture notes on "High-Energy Phenomenology and Regge
Poles" is to present the basic theoretical arguments underlying the Regge
pole model, as well as its applications to particle (= stable particle or
resonance) classification and to high-energy reactions. My point of view
has been to try to explain the basic theoretical concepts and the general
assumptions that underlie the model in as simple a language as possible, rather
than to treat the most tricky aspects of the model or its most recent
developments. In this attempt, I have tried always to remain close to the
experimental findings. This seems to me almost indispensable, since the
success of the Regge pole approach lies on the phenomenological level.

Only experiment can decide whether a certain hypothesis of the model is

correct or not.

In order to understand the current phenomenological treatments of high-
energy hadronic reactions (hadron = strongly interacting particle) at all,
whether they are discussed in terms of the Regge pole model or within any
other framework, a certain amount of basic theory is necessary. In Part I
of these notes an attempt is made to present this theoretical background.

The presentation is kept as simple as possible; these chapters could just be
glanced through and only used for ref'erence by those who already have a
working knowledge of relativistic kinematics, connection between amplitudes,
cross~sections and polarization, partial wave and impact parameter expansions,
etc. To give one example of the simple discussion, let me mention that the
S-matrix is never used but the whole presentation is carried through in the
wave function description. Such a procedure has certainly some drawbacks.
For instance, the optical theorem in the gencral form can be justified only
by plausibility arguments. iforeover, the treatment might seem unnecessarily
cumbersome to those having a good knowledge of the S-matrix language. Never-
theless, I thought it pedagogically advantageous to use the wave description,
since it is nearest to the conventional treatment of gquantum mechanics in
elementary text-books. To elucidate some mathematical topics encountered
three Appendices at the end of the notes treat analytic functions, Bessel

functions and Legendre functions, respectively.
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In a phenomenological discussion, knowledge of the present experimental
situation at high energy is needed. Part II is devoted to a survey of
experimental results on total cross-sections, most aspects of elastic scatter-
ing, and some representative inelastic two-body processes. Among things not
treated are large-angle (Gcms ~ 90°) elastic scattering, and collisions

leading to genuine many-body final states.

By high energy we mean throughout this text an incident laboratory
momentum Plab greater than 5 GeV/c. There is no fundamental reason for
choosing this particular energy as the limit. But it is necessary to have
some definition of the concept "high energy", and the one chosen is connected
with the fact that most experimental quantities seem to have a smooth energy-
dependence for Piab 2 5 GeV/c. The reason is, presumably, the almost
negligible contribution from resonance formation at these energies. More-
over, so many diffeerent channels are already open that it should not matter
very much if a few more channels become kinematically accessible. Both
these phenomena, resonance formation and passing the threshold for an
inelastic channel, are known to have important influence on cross-sections,
etc., at lower energies. It should be noted, though, that they do not seem

to be completely out of the picture even at rather high energies.

'While the high-energy region thus extends from Piab ™ 5 GeV/c to the
highest momenta within reach with the present day accelerators, the asymptotic
energy region starts much further away. It is defined as those energies
where the data satisfy general theoretical high-energy expectations, like the
Pomeranchuk theorem, the vanishing of the real part of the forward scattering
amplitude, and maybe spin independence. Based on extrapolation of the
present findings, it seems as if at least a 4000 GeV accelerator, or a
45 GeV storage rings arrangement, would be needed in order to perform

experiments in this asymptotic energy region.

Parts III and IV are devoted to the Regge pole model. The presentation
is rather standard. It makes no claims whatsoever to be rigorous even at a
rather modest physical level. For example, the results obtained in potential
theory are merely stated, although a few of the important points are discussed
at some length. The results are then taken over to hadronic interactions
without much further motivation. The signature concept, for instance, is
introduced by considering an exchange potential, not from a dispersion rela-

tion.
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The basis for classification of hadrons on Regge trajectories is
discussed, and illustrated by the non-strange mesons and fermions. At this
School, these topics have been thoroughly discussed in the lectures by
Professor G. Goldhaber and by Professor G. Giacomelli. Their lectures notes
(report CERN 67-24, Vol. III, 1967) should therefore be consulted for more

details.

The application of the Regge pole model to high-energy reactions is
rather extensively illustrated for pion-nucleon elastic and, in particular,
charge=-exchange scattering. Nucleon-nucleon and kaon-nucleon reactions are
on the other hand treated much more briefly. Some more or less disconnected
theoretical topics, not discussed in the previous treatment, are collected in

the last chapter.

It should be remarked that the contents of Chapters 2-7 and Appendices
1-3 of these notes are in fact extended versions of the corresponding
lectures given at the School. On the other hand Chapters 8-16 are more or
less the same wording as in the actual lectures, only slightly re-arranged at
some places. During the last lecture an attempt was made to estimate the
present status of the Regge pole model, which in these notes is put at the

appropriate places.

There is very little reference to the literature in the text. In
lecture notes like these I think this is an advantage, since it means that
one may read them without having to look into the list of references
continuously. Instead, I have appended a bibliography of the Regge pole
literature. It is not complete, despite the fact that it contains some
300 different entries, but is hopefully at least a representative selection.
It was completed on June 30, 1967.

We close this introductory chapter by specifying the conventions
concerning units. They are, as usual in elementary-particle physics, such
that h, the Planck's constant divided by 2w, and c, the velocity of 1light,

equals unity
h=c=1. (1'1)
Energy and mass are measured in MeV or GeV, but momentum in units of GeV/c

merely to distinguish it from an energy. The unit of length is fermi

(or femtometer), denoted fm, with
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1 fm =10 m. (1.2)

The unit of time is sec. Cross=-sections are measured in mb with

1mb =10 " m?=0.1(fm)? . (1.3)
Some useful conversion factors are

16eV  x5fm (1.4)

1(GeV) ' x 0.2 fm , (1.5)

1(GevV)™ ~ 0.389 mb , (1.6)

1(MeV) ™' % 7x107%% sec . (1.7)

—— e = wn w» w- - - w - - L e L et e Ll L T L ———

Bxercise 1.1: Derive these conversion factors.

[Hint: K = 6.582x 107°% Mev sec, ¢ = 2.998x 10° m/sec.]

..... D En S - P G - - - - - . — - —— — - - —— - G > - - > =

My way to iry to remember the f'irst two relations is to observe that the pion

Compton wavelength m”-1 approximately equals V2 fm:

1 1

10 -1
a_ 0NV T3 (GeV) =~ V2 fm . (1.8)



PART I

(Chapters 2-4)

SOME BASIC THEORETICAL TOOLS

In this part we shall introduce the fundamental theoretical concepts
used in analysing scattering experiments, particularly at high energies.
Most of what will be treated here should be well known to you. Never-
theless, we thought it worthwhile to repeat these things, since they will
be used over and over again in the subsequent chapters. Thus a firm
knowledge of the basic facts is indispensable, and this part will, we
hope, at least serve as a reminder. Furthermore, it gives us the possi-

bility to specify the conventions and the notation to be used.
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CHAPTER 2 - KINEMATICS OF TWO-BODY REACTIONS

We shall almost exclusively consider two-body reactions. That is,
in the collision of two particles, say a pion and a nucleon, we shall be
particularly interested in those final states which also contain two
particles. In the case of negative pions incident on protons, examples

of such reactions are

ﬂ-p - w-p elastic scattering,
7 p » #°n  charge-exchange scattering,
7 p > K°A associated production (or

strangeness—-exchange reaction).

Single production processes like

7 p ~» n(550)n,
or even more like
7 p~p°(760)n,

Ly a*a”

and double production reactions like

7 p > p°(760)+ N*°(1240) ,

L—) o I-—> w-p
in which either or both final particles have very short lifetimes (of the
order of 10-1gsec for n, 102> sec for p and N*), are commonly called
quasi-two-body reactions, in order to distinguish them from ordinary two-
bddy processes and from genuine many-particle reactions like

- + - -

mTp->TWAUDP,
in which by definition no formation of resonances OCcCurs.

The reason for considering only two-body (and quasi-two-body) reac-
tions is a purely pragmatic one: they are by far the least difficult to
" analyse theoretically, if for no other reason than because the kinematical
considerations are much simpler than for other processes. As we shall

see, though, one is forced to take all inelastic reactions into account,
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including genuine many-particle reactions, when discussing elastic
scattering. This is due to the conservation of probability or, to use a
more fancy name, to ™unitarity", which links together all possible final

states.

Since we shall consider high-energy reactions, it is better to use rela-
tivistic kinematics. In particular, we must be able to transform relevant
physical quantities, like momenta, cross-sections, etc., from the laboratory
system (to be called "the lab.") to the centre-of-momentum system (c.m.s.),
which is appropriate for theoretical considerations. The lab. is, by
definition, the Lorentz frame where the nucleon is at rest; it is usually
but not always (e.g. intersecting storage rings!) the system where experi-
ments are performed. The theorist's preference for the c.m.s., in which
the total momentum of the particles is zero, originates in tﬁe simple fact
that only the relative motion of the particles is of interest in discussing

their interaction, not the over-all motion of them.

2.1 wN scattering

To be more precise, let us first consider the kinematics of pion=-
nucleon elastic scattering; it goes without saying that what we really
require is a two-body process where the masses of the particles in the
initial state [let them be m for the one (pion) and M for the other
(nucleon)] are the same as the masses in the final state. The notation

for the four-momenta, energies and three-momenta are shown in Table 2.1,

Table 2.1

Notation for kinematical quantities

. Arbitrary
Particle (mass) Lab.  Cel.S. Lorents frame
- >
Tin (m) o= (wldb’plab) ky = (o, -k) qs
Non (¥) p2 = (¥,0) ke = (€, k) Q2
' ’ 2. = D ‘
"out (m) Py = (wlab’ pl&b) k( (w ’ k ) q1
/ ' 2y ) - r 2 /
Nout (M) P2 = (‘lab’ P2 ) k2 (( ’ k ) g2




Tin k' © Tin

Eiﬁb

| T,

: Nln A \\k ! Tout
Nout 1 \
/I \\

: TC out \\ ©

: EDl<1b Nin

lab. c.ms

Fig. 2.1

The momentum configuration in the laboratory (lab.)
and the centre-of-momentum (c.m.s.) systems.

and the kinematical situation in the leb. and in the c.m.s. is illustrated
in Fig. 2.1.

The four-momenta are not independent, since conservation of energy

and momentum requires

Q1+ g2 =qi + g . (2.1)

Consider first the c.m.s. OQur notation for the three-momenta
already conforms with momentum conservation. The conservation of energy

gives the relation
w+e€ =w +€¢ =E =Vs, (2.2)
which also serves to define the total c.m.s. energy, E, and its square s;

. these two related variables will be used repeatedly. Finally, one defines,

as in Fig. 2.1, a c.m.s. scattering angle ® by the relation

> -

kKek' = |k|l*|k'|*cos® . (2.3)
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It is now easy to prove that all kinematical quantities in the c.m.s.
(to be more exact all those which are independent of the orientation of the
particular three-dimensional coordinate system used) can be expressed in
terms of the c.m.s. energy E and the scattering angle ®. Namely, the
direction of k’/ with respect to K is given by O, Moreover, the absolute
values Iﬁl = k and IE’I = k’, as obtained from the energy-conservation

relation

E = w/(-fc))a +m® o+ VEZ 42 = w/(-ﬁ’)z +m® + VK2 4 M, (2.4)
are given by

k = k' = ZLEVA(EZ, M, o?) . ' (2.5)
Here, we have introduced the convenient notation
Ax,y,3) = (x=y=-2)% =Lyz = x* +y® +2® =2xy -2yz -22x ; (2.6)

it represents a function symmetric in all its three arguments.

Exercise 2.1: Prove Eq. (2.5). Furthermore, expresé the energies w, w’,

€ and € in terms of E and the masses, and show that w=w’,

€ = €',

One could thus be satisfied with, say, the variables E and cos ©.
However, some combinations of these variables are often more convenient.

For instance, defining the three-momentum transfer by the equation

3 =k -k (2.7)

(see also Fig. 2.1), one finds for its square

8% = (K’ -K)? = k? +k’? - 2kk’ cos © = -t . (2.8)
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This relation also defines "minus the momentum transfer squared", t.
Consequently, the variables s and t could be used as well in specifyying the
kinematical configuration. In particular, the relation between t and

cos © reads

t 2ts
toE =1+ e ) (2.9)

cos @ = 1
Why use s and t? Simply because these are relativistic -variables;

this can be seen as follows (note Exercise 2.1):
s = (€+w)? = (e+0)* - [K+ (-K))* =0 +ka) = (@1 +a2)®,  (2.10)
t =-(R-KP=(e'-€? - (k' -K)* = (kd-k2)® = (a - q2)* . (2.11)

The last equalities in these two equations are due to the relativistic

-p -»
invariance of the square a® = ad - a° of a four vector a = (a0,a).

It follows that the invariant variables s and t, or "Mandelstam
variables" as they are often called, are particularly convenient in
transforming kinematical quantities from the c.m.s. to the lab., or vice

versa. For example

s = M +m® + Mwy (2.12)
which at high energy, Pigp > M, m, gives

This expresses the well-known fact that the square of the c.m.s. energy
grows linearly with the laboratory momentum at high energies. For the

variable t one finds

t = -2M(€iab -M) , (2.14)

which shows that the momentum transfer squared is proportional to the

kinetic energy of the recoil nucleon in the lab.

Exercise 2.2: Prove relations (2.12=2.14).
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What is the range of variation of the variables s and t? Obviously

s 2 (M+m)* , (2.15)

while for a given value of s one has

0< -t < Lk? =-l-x(s,M‘,m‘)zs , (2.16)

the last approximate equality being valid at high energy. The possible
values for s and t are conveniently illustrated in the s-t plane, or
"Mandelstam plane", of Fig. 2.2. Here the shaded region corresponds to s
and t fulfilling the restrictions (2.15), (2.16); it is called the physical
region for the process in question. We shall later be interegted also in

velues of s and t outside this physical region.

t \S+t=2m2+2M2
N\

RS

AN
N\

N\ — S

s=(m+MY 5

Ns,m2,M?)=-ts

Fig. 2.2

An illustration of the domain of variation
for s and t in the "Mandelstam plane".



2.2 General masses

It only remains to generalize the relations obtained for an elastic
scattering process to an arbitrary process

(2.17)
m m, m, Dy masses
€ i € 4 c.m.s. energies
K -k k! -k’ C.MeSe three-momenta .

Very of'ten one represents such a process by the diagram in Fig. 2.3, which

at his stage has no deeper significance but merely serves as a convenient
way to keep track of the notation

- Fig. 2.3

An illustration of the reaction (2.17)
and the notation for the four-momenta.

In analogy with elastic scattering, one defines

(7]
U

= (gy+9,)% = (g, +q5)" 5 (2.18)

ot
[}

]

- 2 - 2
(q, =90 = (g =q9)*» (2.19)
where again s is the total c.m.s. energy squared and t is the square of the

four-momentum transfer from particle a to ¢, or from particle b to 4.
Then one finds



k =&l = 5= Vs, m8ml) (2.20)
K = k] = E}-.-gh(s,m:,m;) , (2.21)
ea=V§-%=;%(sﬂg-m;), : (2.22)
e =v§-<d=$ (s+m2-m?) . (2.23)

Exercise 2.3: Derive the relations (2.20) to (2.23).

Furthermore, one introduces the c.m.s. scattering angle © by the

definition
K *kK’ = kk’ cos © ; (2.24)

cos © can of course be expressed in terms of s and te We give this rela-

tion in the form

t = 2kk’ cos O + m: + m: - 2€.€ . (2.25)

Exercise 2.4: Derive Eq. (2.25) and use it to give cos © as function of s
and t.

Let us note one more thing before we are through with the kinematics.
For symmetry reasons, one often introduces a third invariant, or Mandelstam

variable u defined by

u = (g, =q5)* = (g -a,)?. (2.26)
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Since all kinematical quantities are functions of s and t, so is u. In

fact, one has

s+t+u

]

(g, +9)" + (g,-a,)" + (g=qy)"

a 2 2 2
g +qb + qc + qd

+ 29,9 -29,9,+ 9 * 95 = 29594
(2.27)

2 2 2 2
me + +m° +m
a mb c d

+ 2q,(q+ 9, =9, " 94)

4a
)

i=a

which is the desired relation. The interpretation of u is similar to that
of t, viz., as a four-momentum transfer squared, now between particles a and

d, or between particles b and c.

Exercise 2.5: If the masses of all four particles are equal, prove that

u=-2k*(1 + cos ©) .

What is the result if m,=m, =W, m =oy = M, particularly

at high energy?

CHAPTER 3 - SCATTERING AMPLITUDES AND CROSS=-SECTIONS

Consider once more the particular example of v-p collisions. At
first, we shall assume that p, . 18 below the (effective) threshold for
pion production; this requires p, . < 350 MeV/c, and is not a high energy
in our terminologye. However, we shall later generalize the results at
the appropriate places. By assumption, then, the only reactions possible

are



3=15

Tp - w-p elastic scattering

w-p -+ 7°n charge-exchange scattering .

The last process is included merely to have an explicit example of an

inelastic reaction.

3.1 The spinless case

We treat the process in the c.m.s., and choose the coordinate system
such that the incoming nucleon has its momentum Kk along the positive z axis

as indicated in Fig. 3.1. The collision is assumed to take place at the

Fig. 3.1

The choice of the coordinate system
used for the wave function (3.1).
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origin. The scattering angle © is then the polar angle of the outgoing

nucleon momentum k’. We shall furthermore assume that the problem has

complete cylindrical symmetry around the direction of the incoming particles,

i.e., the z axis. Then, no measurable quantities should depend on the

azimuthal angle ¢ for E’, and we may, as in Fig. 3.1., choose the x axis so

that &’ lies in the x-z plane, i.e., such that ¢ = O. Finally, we shall

assume that the interaction is of finite range, i.e., the particles can be

treated as free ones outside the radius R of interaction.

Under these assumptions, the asymptotic wave function consists of three

parts (here, asymptotic means for a distance r from the origin much bigger

than the interaction radius):

i)

ii)

iii)

An incoming plane wave exp (ikz) in the z direction describing the
initial state. To avoid misconceptions, note that this wave also
represents an outgoing wave along the positive z axis, i.e., a wave
that passes the scattering centre unchanged.

A wave Fel(cos ®,E)r-‘exp (ikr), describing the elastically scattered
m p system. Here, the radial dependence is characteristic of an out-
going spherical wave. Observe that the absolute value of the out-
going nucleon momentum is the same as in the initial state, since it is
an elastic scattering process. The factor Fel multiplying the
spherical wave is called the elastic scattering amplitude. It is, in
general, a function of both cos © and the total c.m.s. energy E, but
not of the azimuth angle ¢, from the cylinder symmetry argument.

An outgoing spherical wave Fc.e.(cos @,E)r-'1 exp (ik“r) describing the
emerging 7°n system. Here, the r dependent factor differs from the
corresponding factor in the elastic wave with respect to the momentum
k” of the outgoing neutron; since m - # m o and mP £ mn one has indeed
k = |K| £k = lﬁ”l. Although the difference becomes negligibly small
at high energy, for pedagogical reasons it is convenient to keep k £ k.
The factor Fc.e. in front is the charge-exchange scattering amplitude,

again a function of angle and energy.

Summarizing, the asymptotic form of the wave function reads

¢(F) ~ exp (ikz)+ Fel(cos 8, E) -:: exp (ikr)

(3.1)

1 -
+ Fc.e.(cos @,E) < exp (ix*r) .
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We next derive the differential cross-section do/dQ, defined by
(cf+ Fige 3.1)

_ outgoing flux through the area r:gg
incoming flux perpendicular to k

Bl

(3.2)

Here, the fluxes may be calculated knowing the probability current density
J(¥). For a wave function satisfying the Klein-Gordon equation, appropriate

for scalar particle scattering at relativistic energies, 3 may be taken as

3 =2 [(yr-yny) = m [ywy] . (3.3)

N

Indeed, what fixes 3 is the requirement that it should satisfy é continuity

equation

3+ -0, (3.0

where p is the probability density; this relation follows from conserva-
tion of probability, but it determines 3 only up to a (constant) multipli-

cative factor, which is, however, of no physical importance.

Exercise 3.1: Assume that ¢ satisfies a Klein-Gordon equation

@ - ‘)w-(vz -Qi--m’>¢=o
ot2 '

Then, prove that J of Eq. (3.3) satisfies the continuity
equation (3.4) with

p=Im|_¢*%%

Using Eq. (3.3), the incoming flux through unit area normal to the

momentum k is

¢ -t [ exp (-3k0) S loxp ()] =k (3:5)

.
z Jinc
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To calculate the outgoing flux through the area rzdﬂ, one needs the
radial part of the current density for the outgoing spherical wave. Since

in polar coordinates

5]

0 e)
ron t é

v=28 e 100 T 8¢ r sin @ J¢ (5.6)

where the unit vectors ér, 8@, é¢ are specified in Fige. 3.1, it follows
that

& 3

k
r out; el 2

~ IFel(cos 9,E)|? o (3.7)

Here, we have neglected terms tending to zero like r when r » . This

implies an elastic cross-section given by

dgél
a0

= lFel(cos e,E)|%. (3.8)
Analogously, one obtains for large r

8§ °J

~ 21i
r “out;c.e. IFc.e.(cos @’E)l re ’ (3.9)

which gives the cross=section for charge=-exchange

wc.eo k” 2
—55 = i |7, (c0s 8, E)) (5.10)

k

Note the difference between the expressions for the elastic and the charge-
exchange cross-section: the ratio of the momenta in the final and initial

states multiplies the square of the amplitude in the case of charge-exchange.

The scattering amplitudes, both the elastic and the charge=-exchange ones,

can thus be measured (up to a phase) by measuring the differential cross-

sections. As we shall see below, this will no longer be true when one treats

the spin of the nucleon consistently.

We note a few trivial consequences of the formulae (3.8) and (3.10).
First, since the scattering amplitude does not depend on the azimuth angle ¢,
we may integrate over that angle to obtain



Te1 ?ﬂd Lo _ 2w|F_.(cos 6, E)|? (3.11)
d(cos ©) j 3 ° el ’ ’ 3.
[o]

with a similar result for the charge-exchange cross-section. Going one

step further, the total elastic cross-section is given by

do +1
el ‘
o, =[m =l . zﬂf a(cos @)|_, (cos 8, E)|* (3.12)

-1

Again, there is a corresponding formula for OE e.? the total charge-

exchange cross=-section.

The derivation of the formulae for the cross-sections might look as if
it were only applicable in the low-energy limit, i.e., for non-relativistic
kinematics. However, this is not true. In fact, we have referred all
quantities to the c.m.s., so there is so far no question of transforming
from one reference frame to another. But one is indeed interested in
transforming the c.m.s. cross-section to, say, the lab. or vice versa. The
simplest way to accomplish this is to write it in terms of relativistic
variables. This may be done as follows. From the definition (2.8) of t,
the negative of the momentum transfer squared, we find for elastic scatter-
ing

t = -2k%(1 - cos 8) » dt = 2k*d(cos @) , (3.13)

which immediately gives

_ on? el
I(oos 8) - % T (3.14)

Consequently

—5 = 5 |F (cos 0, E)|* . (3.15)
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This is the differential elastic cross-section per interval in the momentum
transfer squared. Since t may be expressed in terms of quantities measured
in the lab. system [see Eq. (2.14)] this formula gives directly the scatter-

ing amplitude as a function of lab. quantities.

To derive the corresponding formula for the charge-exchange reaction,
we must observe that the connection between t and cos © for an inelastic

reaction as given by Eq. (2.25) reads

t = 2kk” cos © + (terms independent of cos ©) , (3.16)
so that
dt = 2kk” d(cos 9) , (3.17)

and, consequently,

do
Ce€ o 1 CeCo m
it 2kk” d(cose@) = E;IFc.e.(cos o, B)I* . (5.18)

Note the similarity between the elastic and the charge=-exchange cross-
sections if do/dt is considered instead of do/dq.

From the point of view of kinematical variables, the formulae for do/dt
are a sort of hybrid: they involve both c.m.s. variables © and E, and the
relativistic variable t. It would be more consistent to have a scattering
amplitude which is also a function of the Mandelstam variables s and t. of
course, this is no problem, since we know the relation between these variables
and cos © and E. However, one usﬁally changes the normalization somewhat,
defining a relativistic scattering amplitude, or T matrix element, by the

relations

Tel(s, t) = 8aVs Fel(cos e,E), (3.19)
Tc.e.(s, t) = 8nVs Fc.e’(cos ®,E) . (3.20)
Here, we shall not enter into a discussion on why to use such a normalization.

Let us only remerk that several other conventions concerning factors of 2's

and 7's, and even of the momenta, are used in the literature. Thus, one must



3-21

be careful and check the conventions used by each particular author. This
is most easily done by looking at the expression for the cross-section.

With the conventions we use one f'inds

oy 1 2

dt ~ bhusk? lTel(S’ t)]*, (3.21)
dljc e 1 2

dt  _ 6hmsk? ITc.e.(s’ t)|* . (3.22)

These expressions will be used as alternatives to the forms (3.18) in
our subsequent discussions of high-energy reactions. We observe that at
those energies where the masses of the incoming particles may be neglected

compared to the total c.m.s. energy, we have k = Vs so that

d.(y ~ 1 I
3T~ TE;E;IT\S, t)|? for s >>m?, M . (3.23)

For instance, in pion=-nucleon collisions at Piap = 10 GeV/c, the approxima=-
tion k = % Vs is good to about 5%; in nucleon-nucleon collisions at the

same momentum to about 10%.

3,2 The optical theorem

In deriving the cross-sections above in terms of the scattering
amplitudes we were really not quite consistent. Actually, we should cal-
culate the probability current density 3 using the full asymptotic wave
function, not merely the separate contributions tf'rom the incoming and the
outgoing waves. In other words, since 3 is quadratic in ¥, there could be
interference terms between the dif'f'erent waves. As we shall now show, such
an intert'erence term between the incoming plane wave and the elastically
scattered wave does indeed occur. Moreover, this term has a def'inite
physical interpretation. In fact, it gives the attenuation of the
incoming wave due to the reactions taking place and is thus related to the
total cross-section. The relation which expresses this ract is known as
the optical theorem. Our derivation of' this relation follows closely the
treatment by K. Gottfried in his book "Quantum Mechanics. Vol. I:
Fundamentals" (W.A. Benjamin, Inc., New York and Amsterdam, 1966), p. 106-108.
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To derive this relation within the wave function description, let us
first simplify the problem to the extent that we neglect the charge-exchange
reaction, i.e., we assume that only elastic scattering takes place; this
would actually be the case if, instead of ﬂ-p collisions, we considered 1r+p
collisions below the threshold for pion production. Then, the radial part

of the current density is

”

6§ 3

) In [{exp (- ikr cos 8) + P (cos 8, E) % exp (-ikr)}

x 56; {exp (ikr cos ©) + Fel(cos o, E) % exp ( ikr)}:l (3.24)

+ +
6r[']im:.\ * gout;el"' Jint] *

Here, 3 and 3 are those current densities already calculated [see
inc

out;el
Eqs. (3.5) and (3.7)], while

- ~ .1. _
6.0y = Im l:ikFel(cos o, E) = oXp {ikr(1 - cos 8)}

(3.25)
+ ik cos © F;l(cos G,E)-:: exp {-ikr(1-cos®)}:‘ .

This interference term has an angular dependence which is drastically
different from the other two terms in the current; while jinc and Jout;el
are smooth functions, Jint oscillates wildly as a function of the distance r
when I -+ « in all directions other than the very forward one, cos 0 =1,

If, instead of waves with sharp momentum we had considered wave packets,
j.e., superposition of waves with momenta in a certain interval 4K around

E, such oscillating terms would have disappeared in the k integration.

For example
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Ok if cos 8 =1
k+dk
[ dk exp {ikr(1 - cos )} =
1 k+bk
. T O [exp {ikr(1 - cos G)I]k -

»0 as r +w if cos ® £ 1.

(3.26)

With this in mind, terms oscillating in r with a frequency proportional to

k may always be neglected when r » «.

What happens then in the forward direction? Let us consider the flux
through a small area r?8Q, corresponding to a cone around the z axis in
Fig. 3.1, with a small opening angle 88, We integrate the expression for
the interference current over this angular interval. All smoothly varying
factors can be taken out of the integral and put equal to their value at
® = 0. The integral to be evaluated is thus

1

f d(cos 8) exp [ikr(1 -cos ©)] =

cos 80

exp (ikr) == [exp (- ikr) - exp (-ikr cos 80)) = (3.27)

i
ke + oscillating terms .

Consequently, as r - w,
a . 3 ~ 3 Jk- -i-'— Py
f [ SN P Im[ r{kr Fel(cose-1,E)
&0

- L p%(cos 6 = 1,3)}] _ (3.28)

-4 Im Fel(cos ® =1,E) .
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To relate this to something measurable, we note that the conservation
of probability in the stationary case under consideration may be expressed
by requiring the net flux out of a sufficiently big sphere around the
origin to be zero; the probability that particles enter into the sphere
equals the probability that something comes out of it. Mathematically,

this is expressed by the relation

r? fdﬂér' 3>0; (3.29)

it may also be derived from the continuity equation (3.4) by noting that

ap/at vanishes for a stationary process.

Of the three terms that compose the current, ginc gives itself a
vanishing contribution to the integral (3.29). What remains can be

written

- 47 Im Fel(cos ®@ = 1,E) + fdﬁ kIFel(cos e,E)|* =0, (3.30)

or, from the definition (3.12) of the elastic cross-section,

O'el(E) = '-I—C’i Im Fel(cos ®@ =1,E) . (3.31)

This is (a special case of ) the optical theorem, valid in the absence of
inelastic reactions. It relates the total (elastic) cross-section to the

imaginary part of the forward elastic scattering amplitude.

The essence of this result is the following. Due to the fact that
scattering takes place, the outgoing wave along the positive z axis is not
merely the incoming one. On the contrary, it is attenuated by an amount
corresponding to the scattering that occurs; what has been taken away
from the incident beam due to the collision appears as an outgoing
scattered wave. Or in still other words: the scattering centre casts a

shadow behind 1it.

Next we have to generalize the optical theorem to the case when
inelastic reactions also occur. Let us at first include only the charge-

exchange reaction. It is then easy to see that the interference terms
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in the probability current between the outgoing #°n wave and any

of the parts describing the w-p system are oscillating as r + «; remember
that k" # k. Thus, the only effect of including charge-exchange is to add
to the total current J the term J of Eq. (3.9). This modifies
Eq. (3.30) to read

out; c.e.

- 47 Im Fel(cos ® = 1,E) + /dﬂ leel(cos e,E)|?
(3.32)

+ /dn K|F, .. (cos e,E)|2=0,

so that, remembering Eq. (3.10),

AT 1 P (cos © = 1,E) =0 _(E) +o__(E) =0, (E).(3.33)

Consequently the imaginary part of the forward elastic scattering ampli-
tude is in this case directly related to the sum of the elastic and the

charge-exchange cross-sections, i.e., to the total cross-sections okot'

In view of the fact that the optical theorem is a way of expressing
the attenuation of the incoming beam in the forward direction as given
by everything that is taken out of it, it is natural that the optical
theorem generalizes to processes where several inelastic channels are
open., To discuss this problem, involving as it does two-body, quasi-two-
body and many-body final states, it is indiépensable to use the S-matrix
formulation instead of the wave-function language. In fact, from the

unitarity of the S-matrix one may prove the general relation

o, (B) = ‘;—" In F_ (cos © = 1,E), (3.34)

where o}ot(E) is the total cross-section, i.e., the sum of all cross-
sections for every possible reaction occurring in the collision of the two
incident particles at the c.m.s. energy E. This is the form of the

optical theorem which we shall use frequently.
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Let us finally note that in terms of the relativistic amplitude (3.19),
the optical theorem reads

- =
o‘tot(s) =T Tel(s, t=0), (3.35)
from which one obtains the high-energy form

1
O'tot(s) g Im Tel(s, t=0), s >>m?, & . (3.36)

3.3 A consistent treatment of the spin

Using the same picture as before, Fig. 3.1, the spin of the nucleon is

described by the usual (Pauli) spinors

1 1
<0> for m, =+ YA

(mg) = (3.37)

(°> for n A
1 s

on which act the conventional spin matrices

/0 1 /0 =i _/1 o
GX'<1 o)’ %y (i o> %2 <o -1)’(3'38)

o =g *+ icy . (3.39)

-

These conventions assume that the z axis is chosen as the spin quantiza-

tion axis.

The incoming wave is now the product of the usual plane wave
exp (ikz) and a spin wave function {, in general a linear combination of
£(t+%). The outgoing spherical wave has one part where the spinor is the
same as for the incoming wave (spin-non-flip part) and another where the
‘spin is reversed (spin-flip part). Neglecting, for simplicity, a
possible charge-exchange reaction, the asymptotic wave-function for

m, =% ', may thus be written
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dng (F) = €(mg) exp (ikz)
(3.40)
+ [Gms(cos 0, E)é(mg) + Hms(cos G,E)f(-ma)]% exp (ikr) .

We now anticipate a result which we shall prove when we discuss the
partial wave expansion: the spin-non-flip and spin-flip parts for the

two possible mg values are related by

G+1/a(cos 8,E) = G_yz(cos 8,E) =G(cos 6,E) , (3.41)
H+1A(coa 8, E) = -H_yz(oos' 8,E) = H(cos 6,E) . (3.42)
Since
¢(-n,) = 2m 30 ¢(m,) , (3.43)
we may write
tn (F) = €(m,) exp (ikz) + F(cos 0,E)é(m,) L oxp (1kr) ,  (3.44)

where the scattering amplitude F(cos 8, E) now is a 2 x 2 matrix,

F(cos ©,E) = G(cos 8, E) + ic + fi H(oos e, E), (3.45)
> o,
ﬁ = _’ka_’ = 6 . ‘ (3046)
&l - 1kl Y

Here, G should be thought of as multiplied by the 2 x 2 unit matrix.
Moreover, we have written o fi instead of cry, with f the unit normal to
the scattering plane, which in Fig. 3,1 is the x-z plane. The fact that
only o’y enters into F, and not o, and o, may be seen to follow from parity
conservation. We also note that the form (3.45) is applicable to elastic

as well as to charge-exchange scattering.

Now let us consider cross-sections. Since both the initial and
final nucleon has two spin degrees of freedom, there are several different

cross-sections to be considered, depending on the spin direction of the
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target and the outgoing nucleon. Let us as a particularly important
example consider the case of a target nucleon polarized in the direction fi.
We describe this situation by introducing the eigenvectors x(t)ﬁ) to
G'h=0

7/

o fx(tVe) =2x(t %), (3.47)

and by writing the incoming wave as

(F) = [ax(+ %) + Bx(- Y2)) exp (ikz) , (3.48)

U
“inc

normalized so that

la|?+ 8% =1 . (3.49)

Here, one conventionally introduces the degree of polarization Pn of' the

target along the normal fi by the def'inition
Po=laf® - fgl* . (3.50)

The corresponding outgoing wave is

1"

ot (F) T [6+ioe AH) x [ax(+%) + ﬁxk-‘/z)]% exp (ikr) =

(3.51)

[a{G+iH]x(+V2) + ﬁz‘G-iHix(-'/z)]% exp (ikr) .

We could now proceed by calculating the cross=-section using the current
density in the same way as above. However, we shall take f'or granted that
those results derived for the spin-zero case also apply here. Moreover,
we shall only be interested in the differential cross-section when the spin
of the final nucleon is not observed. Since the outgoing wave (3.51) is
expanded in eigenvectors to g fi, the usual quantum mechanical procedure to

obtain probabilities immediately yields the result

8 - Ja(e+1H)|? + |(e-1m)]% = |6]2+ |H|* + (la|? - |5]%)2 In [GH*].(3.52)

S
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If the target is unpolarized we have Pn = 0, and the cross-section reads

/do\ 2 2

| — = |G H .

& unpo1 = | 1+ 8%, - (3.53)
while with P_ # 0 it reads

o _/do

a0 - '\d())unpol[1 +PP] . (3.54)

Here, conventionally, the polarization parameter P is defined by

. ,
P -&_.Ml " (3.55)

REENTE

Note that P is really a quantity characterizing the interaction, in contrast

to Pn’ which specifies the experimental arrangement.

To summarize, with an unpolarized target one measures the combination
IGlz+ Ile of the f'lip and non-f'lip amplitudes; with a polarized target,
it is also possible to measure Im (GH*). However, these two measurements
are not sufficient to derive the amplitudes themselves, since these cons-
titute rour real functions (or, if an over-all phase is disregarded, three
real functions). On the other hand, there are other experimental set-ups.
For example, one may have the target polarized in the scattering plane and
analyse the polarization of the outgoing nucleon in the scattering plane.
More detailed considerations, into which we shall not enter, show that such
experiments measure two other polarization parameters known as the R and
the A parameters. They are expressed in terms of the combinations Re (GH¥)
and IGIZ-IHla. The exact relations may be found, f'or example, in
R.J.N. Phillips and W. Rarita, UCRL 16185 (unpublished). It is not dif'ficult
to see that a complete determination of G and H, up to a common phase,
requires measurements of all three polarization parameters P, R and A as well

as of the unpolarized cross-sections.

Finally, we note that the results derived so far apply equally well to
elastic and to charge-exchange scattering, with the usual exception of the
ratio between the momenta multiplying the charge-exchange cross-section

[ef., Eq. (3.10)]. Moreover, the optical theorem now reads
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Lr

E):T(-

"tot( Im Gel(cos 8 =1,E) . (3.56)

It relates the imaginary part of the forward non-flip elastic amplitude
to the total cross-section; in fact, one may as well write the full
amplitude F_, , in Eq. (3.56), since the spin-flip amplitude
vanishes for © = 0, as we shall see when making the partial-wave

analysis [cf. Eq. (4439)].

instead of Ge

3,4 Potential scattering

So far, we have not discussed any dynamical question, i.e., problems
related to the details of the interaction. The only thing required in
order that the formalism presented should be correct is that the inter-
action between elementary particles, whatever its nature, is of finite
range. In fact, this is necessary in order that the asymptotic form
of the wave function should have the simple appearance (3.1). The pro-
blem of the underlying dynamics for strong interaction at high energy is
very far from a solution; we shall later on see at what preliminary stage
it is. In the case of low-energy scattering, however, one has at least
a framework in which to formulate the dynamical questions, viz., the

Schrédinger equation with a potential, which reads
1 ad >
- 55 V@) +VEW(E) = E(E) (3.57)

Here V(r) is a spherical symmetric potential and p is the (reduced) mass.

By requiring the asymptotic form

¢(F) = exp (ikz) + F(cos @,E)% exp (ikr) (3.58)

for the solution to the Schrddinger equation, one is in principle able to
express the scattering amplitude F(cos ®,E) in terms of the potential.
In practice, needless to say, this may be difficult. However, if the
potential is weak, one may use the Born approximation to arrive at an

approximate expression for the scattering amplitude. This reads
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FBorn(cos Q,E) = - -2“?]' x[exp (-ik'X)]V(r) [exp (1kx)] =

(3.59)

-]

=-—L—_,2_’ r dr V(r) sin (rlk-%']) ;
|k - k|
the momenta K and k' are those defined in Fig. 3.1.

In the particular case of a Coulomb interaction between two particles

of charge Zie and Z;e, the potential is

2422 -
V(r) = ’rz ’ (5060)
where a = (e?/4w) X 1/137 is the fine structure constant (the units are such
that € = 1). One then finds

5 o~ HZiZ2a . 2uZ4Z2a
(cos ©,E) = (1= 008 8) = t . (3.61)

FCoulomb ; Born

In fact, the Coulomb potential is not of finite range, and the treatment
above is, in a strict sense, not valid for it. However, by modifying the r
dependence of the potential by a factor exp (=Br), B > 0, i.e., by trans-
forming the Coulomb potential into a Yukawa one, it is possible to circumvent
this problem. The result (3.61) must indeed be derived by keeping f > O in
the calculations and in the very last step let f tend to zero.

The result for the Coulomb scattering amplitude is definitely applicable
only in the non-relativistic limit. However, in the high-energy and low
momentum transfer limit, one obtains almost the same result assuming that the
Coulomb interaction takes place via one-photon exchange (o.ph.e.). The
only modification is that the (reduced) mass u should be replaced by the

particle's c.m.s. energy ~ % Vs. Thus

(cos 8, E) = Z4Zaa Vs s (Vs >> m, M, |t| small). (3.62)

F t

Coulomb; o.ph.e.
We note that elementary particles accessible f or experiment have

|Z4| = |22] = 1, and that FCoulomb;o.ph.e. is negative (positive) if the
particles electrically repel (attract) each other.
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CHAPTER L4 - PARTIAL WAVE ANALYSIS

By combining the law of probability conservation, as expressed, for
example, by the optical theorem, with that of angular momentum conservation,

one obtains more information on the structure of the scattering amplitude.

4«1 The spinless case

Since the incoming wave satisfies

. 9 3
L, exp (ikz) = -1<x 5 ~ 7 5;) exp (ikz) = 0, (4e1)

conservation of Lz implies that the outgoing waves are also eigenstates of

Lz with eigenvalue zero. Consequently, they can be expanded in terms of
the Legendre polynomials P t(cos @), which also are eigenfunctions to L?

with eigenvalue £(£+ 1); they are normalized so that

+1
1 1
3 f d(cos @)Pl(cos @)P!,(cos Q) = T Syt * (4e2)

-1

Thus one writes, extracting for convenience some momentum-dependent

factors explicitly

\\//18

(2t + 1)f_, (£, E)P (cos @) , (4+3)

Ll B

Fe]gcos ®,E) =

[

)
1]
)

(28+1)f‘c.e.(£, E)Pl(cos 9) . (Loly)

|-
|~"8

e
1]

F,o. (cos ©,E) =

(o]

By using the orthogonality relation (4.2), one may conversely express the
partial-wave amplitudes f(£,E) as angle integrals over the full amplitude

F(cos ©,E).
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In terms of the amplitudes f(£,E), the different cross-sections read

o, = l‘;—l’ Y(zu Nl (4B, (4.5)
.!=o
K 2
Gc.e. = &kf# r \/ (21+ 1)Ifc-eo(z’E)‘z ’ (b‘.6)
£=0
Cpuy = EL*!;-> (2£+1) Im£_ (£, E) . . (4e7)
£=0

Exercise 4.1: Prove the relations (4.5) to (4.7). [Hint: Remember
Eq. (4.2) and, to prove Eq. (4.7), that Pl(cos @ =1) =1.]

If for the time being we assume that no other reactions occur, the

equals the sum of o . and o implies
el c.e

fact that Gfot

;:—Z> (2¢+1)[In fel-lfellz-lfc,e,la] =0. (1.8)

£=o0

Now, the conservation of angular momentum means that each term in the sum
(4+8) can be treated separately. In other words, there can be no cancella-

tions between the different terms in the sum. Thus each term must vanish
In £, (2,E) = If'el(!.E)lz sle, (LE)NR , 2=0,1,2,00 L (4e9)

Although the result (4.9) is absolutely correct, the argument leading to
it may not be completely convincing. We shall postpone that problem and
proceed immediately to draw conclusions from the "partial-wave unitarity

condition" (4.9).
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To this end, we observe that

i 1
lfellz_Im fel = lf‘el - _2_|z Tk (4.10)
so that Eq. (4.9) may be written
i 1
lfel-'% f e Ifc.e.l2 =y (4. 11)

This is the form of the partial wave unitarity condition which will be

used subsequently.

From (4.10) it follows that

iz 1
It - 31% s ¢, (4.12)

implying a parametrization of the elastic partial-wave amplitude given by

£,,(£,E) - & = 2= n,(B) exp [215,(8)] , (413)
or
£,(8,E) = 57 [ny(E) exp [218,(8)]-1] . (tee 10)

Here, the "phase shift" & l(E) and the "inelasticity" or "absorption
coefficient™ n t(E) are real functions of the energy E. Moreover, the
inelasticity is positive by definition; a possible ambiguity of sign can
be absorbed into the phase shift. It thus satisfies

0<n, $1 ' (4.15)

in order that Eq. (4.12) should be fulfilled. It is related to the

occurrence of inelastic reactions, as may be seen by calculating

(2£+1)(1-nE) . (416)

q
]
|=|
i~

Exercise 4.2: Prove the relation (4.16)-
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We may now see the reason for introducing 81 and n, as was done in

Eq. (4.13). In the case of no inelastic scattering, n, equals unity for
all £ values. This is for instance the case in potential scattering with
a real potential. In fact, it is the requirement that the general form
(4.13) should reduce to the more well-known one from potential theory that
lies behind the definition of the phase shif't. We shall consider a few
questions related to partial waves in potential scattering towards the end
of this chapter. '

On the other hand, if n, # 0, the inelastic cross-section does not
vanish. In a very direct sense the inelasticity measures the amount of
jnelastic scattering, or "absorption", that occurs. To get some more
insight into this problem, we have to consider the partial-wave expansion
of the whole asymptotic wave function (3.1), not only the outgoing parts
as up till now.

To this end, one expands

o
exp (ikz) .—.§ (2t+1)i£jl(kr)Pl(cos e) , (4.17)
£=o
where, from the orthonormality relation (4.2),

+1

iljl(kr) = % f d(cos @)Pl(cos ©) exp (ikr cos @) . (4418)

-1

Since we are only interested in the expansion at large distances, we may

use partial integrations to obtain

1, 6) = | gy o () - () oy o (-1k0) |+ o)+ (w19)

Exercise 4.3: Prove Eq. (4+18). [Hint. Perform one partial integration
using P (-1) = (-1) P, (1) = (-1)" then make another
partial integration to prove that the remaining integral

behaves as r—.]
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In this way we see that the incoming plane wave exp (ikz) is a superposition
of all possible angular momenta, and that each partial wave asymptotically

is a linear combination of one incoming spherical wave ! exp (-ikr) and
one outgoing spherical wave r exp (ikr). This is not quite as astonishing
as it sounds, if one keeps in mind that the incoming plane wave exp (ikz)

in reality, despite the name we have given to it, also describes an outgoing

plane wave representing that part of the incident beam that is not scattered.

Observing the expansions (4.3) and (4.4), we may now write the total
asymptotic wave function as a superposition of angular momentum eigen-
functions

g TL Y (2t 1)e,(r)P,(cos 9) , (4.20)

Ti~Te

where each partial wave ¢t(r) is a sum of one incoming 7 p spherical wave

- (=)} 5z exp (-ikr) (4.21)

and outgoing spherical waves

1 .
7 £ (£,E) = exp (ik’r) , (4.22)
k Ce€o r

i1 .
[fel(l’E) - 2]1' exp (ikr) + \
one part of which is the elastic wave; the other describes the outgoing

7°n system.

We are now able to give a more rigorous proof of the partial wave
unitarity cordition (4.9) or, equivalently, (4.11). It is as follows.
The square of the coefficient for the incoming spherical wave (4.21) is
proportional to the probability of f'inding an incoming particle system with
angular momentum £. In the same way, the square of the coef'ficient in
front of each of the outgoing waves in expression (4.22) gives the proba-
bility of t'inding the outgoing ﬂ-p and 7°n system, respectively. Con-
servation of probability and angular momentum tells that the total proba-
‘bility of finding a particle system with angular momentum ¢ in the f'inal

state should equal the probability of finding a particle system with the same
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angular momentum in the initial state. This gives immediately the condi-
tion (4.11), if one observes that it is in reality the probability current
that matters, not merely the probability, and that this always [cr'. Eu. (3.7)
and #q. (3.9)] gives the momentum as a ractor in front of the coefficient

squared.

There is now an alternative way to look upon the parametrization of the
elastic partial wave amplitude in terms of a real phase shif't and an inelas-
ticity. Compare the incoming part of ¢£(r) to the outgoing elastic wave,
Eqse (4.20)=(4.22). The coet'ficient for the latter is proportional to
n, exp (2i8e), from Eq. (4.13). Consequently, the incoming spherical wave
is modit'ied by the interaction and appears as an outgoing spherical wave
having in general both another phase (as represented by the phase shift)
and a smaller absolute value (as given by the absorption coef'ficient);
this remark will be of importance f'or our derivation of the partial wave
exransion below treating the spin of the nucleon consistently. In parti-
cular, if n, = 1, there is so to speak, no probability left for any inelas-
tic reactions, On the other hand, if Ny < 1 probability conservation
requires that part of the initial wave is transformed into inelastic final
states. Maximum absorption obviously occurs f'or N, = 0, in which case the

whole initial probability goes into inelastic channels.

What happens when several other inelastic reactions also occur? It
should be clear from the preceding discussion that the only change needed is
to include terms in the partial wave unitarity conditior (4.11) representing
those other inelastic reactions. We shall not enter into any detailed
consideration of' this point, since the only thing we subsequently need is
the :orm Ege. (4e14) of the elastic partial wave amplitude, and the interpreta-
tion ui' the absorption coefficient just presented. These items are not

int'luenced by the presence of several open channels.

- > S - G - - > W T > W P > G G T D D W W S T > D o S T WD T S D G D D T D W . D D D W W D = - - - - -

Exercise 4.4: How do you reconcile the t'ollowing two statements:

a) there is complete absorption, n, = 0, in the £th partial
wave, so there is no outgoing elastic £ wave;
b) if n, = 0, the elastic partial wave amplitude equals

i/2 # 0, so there is scattering in the fth partial wave.
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I,.2 Consistent treatment of nucleon sgin

For the incoming plane wave we now write, in analogy with the spinless

case,
by (#) = € exp (1ks) T
- (4.23)
~ 2—111- l(zu 1) [— (-)’% exp (-ikr) + % exp (ikr)] P,(cos 8)¢ .
t=o

In applying angular momentum conservation, we must keep in mind that the
total angular momentum 3, which is the quantity conserved, is the sum of the

orbital angular momentum T and the spin angular momentum 7&3
1
3:3‘0'5&.. (14-.2&-)

In particular, for each eigenvalue j(3+1) of F* there exist two values
t = jt% of the orbital angular momentum. These two values correspond to
different parities of the pion-nucleon system, given by - (= ) the extra
minus sign is due to the negative intrinsic parity of the pion. Consequently,
for interactions that conserve parity, £ is also conserved. In other
words, if one expands the wave function in terms of eigenfunctions both of
the total angular momentum and of the orbita. angular momentum, then each
partial wave corresponding to definite j and £ can be treated separately
in the same way as each partial wave was treated separately in the case of

no nucleon spin considered previously.

We may then arrive at the partial wave expansion in two steps. The
first step is to expand winc in terms of eigenfunctions of definite J and
L. The next step is to conclude that each incoming partial wave is
modified by the interaction both in respect of the phase (represented by a
phase shift) and, if inelastic reactions occur, also in respect of the

-absolute value (represented by an inelasticity).
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One could use conventional Clebsch-Gordan gymnastics for the first
step. For our purpose, however, it is easier to use a projection operator
technique (cf. N. Nishijima "Fundamental Particles", W.A. Benjamin, New York
and Amsterdam, 1963). To this end, consider the two operators

l+1+ﬁ°5”

Ty = “2ETT (-25)
t-L.c
My,- = 27+7 ° (4.26)
related by
“z,+ + nz,_ =1 . : (4.27)

Applying ﬂt’+ to an eigenstate Ij, L> of J? and -I:Z, gives

l+‘/2’ L> ’

m, J3=t+%, 0> =13
(4.28)

!
o

s _ g _
Ilt,+|3 =t=-"%,1>

This means that II L.+ projects out of any mixture of j=1L% Y2 that part
’
which has j = £+ %. In the same way, since 11, and Il ‘- add up to unity,
’

the operator Il f,- projects out that part which corresponds to j =2£-Y%.

Summarizing, Ilz,t are projection operators onto the states I,j L /z, L>.

Exercise 4.5: Prove the relation (4.28). [Hint: Obtain g I vy
squaring Eqe (4.24).]

Now, we proceed as follows. The incoming spherical £ wave is written

-( ) -z-i-i- [exp ( ikl’.‘)][ﬂt ++ nz _]PI(OOS @)e ()-0-029)
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The outgoing elastic spherical £ wave produced by this incoming wave is then
of the form

o= 2 [exp (ikr)] x
(4430)
x [ny,,lexp (218, )0y 4+ np, ~lexp (218, )]0, _]P;(cos ©)¢ ,

where the phase shifts 8! + and the inelasticities nl,t’ 0 < nl,t <1,

9 -

are real functions of the energy. Indeed, this form merely expresses the
fact that probability is conserved for each value of £ and j = £t% 74,

taking into account possible inelastic reactions.

For the outgoing wave (4.30), we may write

5t 7 [ox (1er)]P,(cos 0)¢ +

(4.31)
+ 1 [exp (ikr)] g [£o1(2,+ BNy, o+ £o1(2, - E)Ip, _]Py(c0s ©)¢
where
£,.(2,t E) = 51; [ng,s exp (218;,4)=1] . (4+32)

That is, the total outgoing elastic spherical wave consists of two parts.
The first term in (4.31) gives‘the outgding spherical wave of ¢inc’

Eq. (4¢23). The second part represents the elastically scattered wave.
In faot, by summing over £ and comparing with Egqs. (3.44) and (3.45), one
identifies

F,(cos ©,E) = ¢, +15 *AH =
(4.33)
4 o
=5 y (22 +1)[fer (2, + ,B)Ip o+ fo1(2 - ’E)ﬂl’_]Pl(cos @) .

Lo

2=0
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This is the partial wave expansion of the elastic scattering amplitude in
the present case. It only remains to split the sum into two terms, the

one independent of o and the other proportional to o fi; in so doing, we
also establish Eqs. (3.41)=(3.42) needed in deriving Eq. (3.45).

To this end, one rewrites the expression (4.33), collecting together

those terms involving oo f, to get

-8

1
Fel(cos 8,E) = K [(£+1)fe1(L, + E)+ tre1(L, - ,E)]Pl(cos Q) +

l

™
1]
o

(Lo 34)

[fe1(2, + E)-f_ (£, - JE)IS+ Lp)(cos ) .

<+
L B
L\/i!a

o
il
o

From this, using

> > 0 a a
L= -irxV =-irx[§r ar"serae* 6<pr 3in © 3:9] sy (4e35)
we find

> > A O ” d
I.Pl(cos Q) = -irx €535 Pl(cos Q) = -iey(- sin ©) TR Pl(oos Q) =
(4.36)

ifi sin © Pl’ (cos ©) .

Here, use was made of the particular coordinate system chosen (see Fig. 3.1),

.

to conclude that

& . & = étp ==& sing + éy cos ¢ = Gy , for @ = 0. (4437)

Inserting the result Eq. (4.36) into Eq. (4.34) yields the following
partial wave expansion of the non-flip and the flip amplitudes

~i8

‘Gel(cos 8,E) = % [(£+ 1)f‘el(£, + ,E)+ zfel(l’ - ,E)]P,(cos 8), (4.38)

N

0
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e
]
- L

Hel(cos 8,E) =

[fer(2, + B) -fer(, -

,E)] sin® Pg(cos 8) . (4.39)

This is the result wanted. Similar results apply to the charge-exchange

amplitudes with the usual replacement of k

by (kk*)~ - [see Eq. (L4al)].

The cross-sections in terms of the partial wave amplitudes read

OEI(E) =

%iE
[\/‘g

e
n
)

Gtot(E)

an
e

.
(1]
(-]

w
%ine1(E) = i

I} P/“’

[(z+1)lfel(z + E)|*+tlfer(s, - E)I*],  (4.40)

[(z+1) In fe1(£,+ E)+2 Im fe1(£ ,=HEN,  (Les)

[(l+1)(1-nl’ HDee(1=nf ] . (4o42)

Exercise 4.6: Derive the results in Egs. (4.40) to (4.42). [Hint (if

you do not find another way):

Consider G first. Then,

specialize to Ny s = 1 to get o1 ]
%1

4e3 Impact parameter representation

As is well known, the partial wave analysis is a powerful tool at low
energy, due to the small number of terms that contribute. At high energy,
on the other hand, many partial waves must be considered and the slow

convergence of the sum causes difficulties.

In fact, one may estimate the

maximum angular momentum lmax required from a semi-classical argument as
follows. If the wavelength 1/k (recall that h = 1 in our units) of the
incident wave is much smaller than the range R of the forces responsible
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for the scattering, the path of the incoming particle may be specified with
an accuracy ~ 1/k << R without violating the uncertainty principle; this
would correspond to the limit of geometrical optics if the waves had
represented light. Consequently, one may define the impact parameter b

as the distance of the line of flight for the incident particle to the

scattering centre, see Fig. L.1.

—

K
—_—-
}b

—-2Z

R

Fig. 4.1

The impact parameter b and
the range R of interaction.

Classically, the angular momentum of the particle is bk; The condition for
scattering is that the incoming particle hits the interaction region, which
implies

Loy ~ Bk (kel3)
For example, if R ~ 1 fm as is appropriate for hadronic interactions, and
if k ~ 5 GeV/e = 25(fn)-', one needs at least 25 partial waves, very
probably more. In that case it is often more convenient to transform the
partial wave sum into an integral representation of the scattering ampli-
tude, known as the impact parameter expansion. We now proceed to derive

this expansion.

Let us start from the partial wave expansion

F(cos8, E) =

e

(22 + 1)f(t,E)Pl(cos e) . (Lolids)

L B

e
1]
o
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Instead of £, we introduce as a new summation variable the impact parameter

b now defined by

b=g (£+%) . (4eis5)

Then

-]

k-, (cos 9) . (Leti6)

Notice that b increases in steps &b = 1/k as £ increases in unit steps.

Thus, as k grows large, Ob becomes small, and we get, approximately,

[ o]

F(cos 9, E) = 2k ! b db f{bk - ', E)P
J
o

bk"/é(cos J) \c 04‘:&-7)

Besides the def'inition of an integral, this approximation requires

that

i) The Legendre polynomials Pe(cos-U) can be generalized to arbitrary
positive values of £, not only integer ones. In other words we need
functions Pv(cos 9) depending on a parameter v, which interpolate the
Legendre polynomials between integers. Such t'unctions do indeed
exist and are known as'Legend:e f'unctions {of the first kind). In
Appendix 3 we discuss some properties of these functions.

ii) The partial wave amplitudes f' (£, E), which a priori are det'ined only
for non-negétive integers £, could be interpolated to all positive
¢ values. If f(£,E) is a smooth function of ¢ in the sense that it
does not vary too much from one £ value to a subsequent one, this is
possible. Later, when we define partial wave amplitudes also f'or
complex values of £, we.shall consider this interpolation in more

detail (see Chapter 9, in particular fig. 3.1).

Very often one is interested in the impact parameter expansion (4e47)
only for small angles ®. Then one may approximate the Legendre functions

by a Bessel function of order zero

Pv(cos 9) = Jo(2v sin ©/2) , ® small , (4.48)
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a relation which is discussed in Appendix 3. Det'ining the impact para-

meter amplitude by
B(b, E) = f(bk-"%,E), (4e49)

the integral (4..47) assumes the form (we approximate bk - 2 by bk)

o

F(cos ©,E) = 2k | bdbB(b, B)Jo(bd) , 9 small , (.50)
J
(o]

where the momentum transfer, & = 2k sin ©/2 = V=t, is introduced from
Eq. (209).

The representation (4.50) constitutes the impact parameter representa-
tion in the form we shall need it. Remember that our way of deriving it
requires high energy (many partial waves contributing) and small angles.
Mathematically, it constitutes a Fourier-Bessel integral representation of

the scattering amplitude [cf. Appendix 2, in particular Egqs. (42.8-9)].

We note that the inversion formula for Bessel functions, as given in
Appendix 2, may be used to express the impact parameter amplitude B(b,E)

in terms of the scattering amplitude as

B(b,E) == | aan Pl1-2, E) T (ba) (4.51)
’ 2k] \ 2% B ) o ’ *

(o]

Moreover, if f(f,E) is a continuous function of £, so are the phase shift
and the inelasticity. By writing them as functions of b instead, one
obtains from Eq. (4e14)

B(b,E) = 57 [1(b, &) exp [218(b,E)} - 1] . (ie252)

The cross-sections (4.5), (4.7) and (4.16) become in the impact para-

meter representation

o (8) =8 [bavleg (v, )2, (453)

J
0
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oot (B) = 8n / bdb In B (b, E) , (4 50)
oy (B) = 2n /b a1 -n(®)] . (4.55)

(o]

Finally, if the spin of the nucleon is taken into account, the non-
flip amplitude can be treated as above. For the flip amplitude, however,
a slight modification is appropriate since it is an expansion in terms of
the derivatives P;(cos @) of the Legendre polynomials. It is not
difficult to prove that at small angles

P/(cos @) = -2-?1%-@5 Ji(2v sin ©/2) , © small . (4456)

Exercise 4.7: Derive the approximation (4.56). [Hint: Use Eq. (4e48)
and the relation (A2.2) between the Bessel functions of

order zero and_ one.)

Thus, the impact parameter representation for the spin-flip amplitude be=~

comes an integral involving Bessel functions of order one.

4+4 Resonances

Consider first the case of a resonance in a purely elastic partial
wave, i.e., one of unit inelasticity. A resonance is said to occur at
an energy E = Eres if the contribution to the total cross-section from
the partial wave studied has a maximum at that energy; 8ince this contri-
bution is proportional to sin® 8(E), where 8(E) is the phase shift

' (indices j and £ are suppressed), this implies

3(Epgg) = % (+nm) . (4+57)
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Proceeding further, one writes the (elastic) partial wave amplitude as
1
fel(E) = exp (48) sin & = ot 5.1 ° (4458)

and expands cot 8(E) in a Taylor series around the resonance energy

cot 8(E) = cot 8(Epgs) + (E-Eres) [é% [cot S(E)]}EéE P
res

~ (E=Eres) (- %) . (&+59)

where

= - {% [cot S(E)]}EzEres = 8'(E = Epgg) o (4.60)

=Hin

The partial wave amplitude for energies near to the resonance thus reads

AT
£e1(E) ‘Eres-ﬁf-iy,r ’ (4.61)

implying a cross-section in the resonating partial-wave that is proportional
to

1
r* [ -Ereﬁ2 Ve = TBW(E) . (4.62)

This is the Breit-Wigner form of the partial-wave cross-section for a
resonance at E = Eres of full width T. It requires I' to be positive.
Indeed, one may prove that the phase shift must increase through 90° as the

energy increases through Eres in order to give a resonance.

For our purpose, this heuristic treatment of a resonance in an elastic
partial wave suffices. However, we must generalize the results to the case
of a resonance in a partial wave with inelasticity smaller than one. For
a complete treatment, this would require the whole multi-channel formalism.

We shall instead give a crude, phenomenological discussion.
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For an inelastic resonance, there is a certain probability x < 1 for
the resonance to decay into the elastic channel. One calls x the "elas-
ticity" of the resonance. It follows that the resonance has the proba-
bility 1 -x to decay into an inelastic channel. Moreover, from time
reversal invariance, x is also the probability for the resonance to be
formed in the collision of the two incident particles. From this simple-
minded approach, we expect the elastic, total and inelastic cross-sections
to be obtained from the purely elastic form (4.62) through multiplication
by, respectively, x°, x and x(1=x). Adopting the notation

rtot =T = total width,
r, =x = elastic partial width, (4+63)
el = (1=x)T = inelastic partial width,

the contribution to the different cross-sections from the resonating partial

wave is
elastic « r;law(E) ,
total « T T BW(E) , (4ebl)

inelastic « relrinele(E)'

A form for the partial wave amplitude that gives these cross-sections 1is

1
Arel

£ 1(E) = g (4+65)
el E__-E-3i0l’

Exercise 4.8: Prove that the amplitude (4+65) reproduces the cross-sections

(Lobl).
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4.5 Resonances and bound states as poles of the amplitude

Anticipating our future treatment, we state that the partial wave
scattering amplitude may be continued to complex values of the energy E.
If this is so, the simple Breit-Wigner form (4.65) implies that the
amplitude has a pole at the energy E = Eres-iygr. This is of course not
a physical energy. In fact, the procedure involves an extrapolation of
the expression (4.65) fromE =E___ to E = Eres-i);r, which is reliable
only if T is small. Still, it is of great interest from the mathematical
point of view to be able to classify a resonance as a pole of the partial
wave amplitude. Indeed, the concept of a pole for the amplitude as a
function of energy constitutes a unified description of resonances and of
stable particles, i.e., bound states appearing for energies below the
scattering threshold. In a very rough way, one may see how a bound state

also gives poles for the scattering amplitude, as follows.

The asymptotic form of the partial wave ¢l(r) as given by Eqs. (4.20)-
(4¢22) is (we neglect the charge-exchange part)

ro, () 3| £(4,8) - §loxs ()= () Fom (i) . (te)

As it was constructed [cf. Eqe (3.1)], it is only appropriate for energies
where scattering occurs, E 2 M+ m. If the energy goes below this limit,

the momentum k becomes imaginary, k = ilkl (with non-relativistic kinematics
k equals iV=24E). If one still insists on the form (4.66), it now becomes
a linear combination of the two exponentials exp (tlklr). Such an asymp-
totic wave function has, in general, no physical sense, since it is not
normalizable. However, if for a certain energy E = Eb and the corresponding
momentum k = ilkbl it so happens that only the decreasing term exp (-Ikblr)
is present, then the wave function is normalizable and represents,

consequently, a bound state of energy Eb'

In fact, this situation occurs if the partial wave amplitude f£(L,E)
has a pole for E = E , k = ilky|, so that £(£,E) is proportional to
(E--Eb)”1 for E ~ B,. In that case the wave proportional to exp (=ikr)
can be neglected near E = Eb. One might wonder whether the whole wave

function does not become infinite for such an energy where the scattering
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emplitude has a pole. However, since the wave function allows multiplica-
tion by an arbitrary factor [in our previous considerations it is only the

relative normalization between the different terms in ¢(¥), Eq. (3.1), that
matters], one may multiply it by E--Eb before letting the energy tend to Eb'

Summarizing, the partial wave amplitude may, under certain cir-
cumstances, be continued to complex values of the energy E. In fact, one

may show that £(£,E) is an analytic function of E except for:

i) a cut along the positive real axis starting (at least) at E = M+ m;
ii) poles;

there are in general, further singularities, for example, those connected
with the range of the forces (cf. Chapter 2 in the book by Omnés-Froissart
cited in the bibliography).

A pole of the amplitude allows a simple interpretation: if it ocours
at an energy such that the corresponding momentum lies on the positive
imaginary axis, it corresponds to a stable particle, i.e. a bound state.

If it occurs at a value E = Eres-'iygr, Eres > M+m, ' > 0, it corresponds
to a resonance at E = Eres with full width T. It should be noted that
there may exist poles of f(¢,E) which do not have this interpretation.

The situation in the complex E plane is illustrated in Fig. 4.2.

dim E

bound state
M cut
+mM
R ,/ Re E
g > >
b
Y 1
Eres -1 3"
resonance
Fige 4.2

An illustration of the (simplest) singularities
of the partial wave amplitude as function of E.
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L.6 Potential scattering

Potential scattering is one case where these "certain circumstances"
occur under which f(£,E) may be continued to complex E. Writing the
complete wave function

o(F) = ¢

i\/gg

(2£+1) :: u,(r)P (cos ©) , (4.67)

™
1

0

one finds by substitution into the Schr¥dinger equation (3.57) that
ul(r) satisfies the radial Schrddinger equation

- 51-1: P::z - l(lr: 1):‘ u!(r) +V(r)u£(r) = Eul(r) . (4.68)

For a scattering problem, this equation should be solved requiring the

asymptotic form of the partial wave to be
uz(r) P K+(l,E)exp (ikr) +k_(2,E) exp (-ikr) . (4469)

In that case, ul(r) becomes proportional to ¢l(r) of Eq. (4.20) at large r,

if one identifies

£+1 K+(t’E)

2if(L,E) = (=) T E)

-1. (4+70)

Under suitable restrictions on the potential, one may now prove that the
two functions k,(£,E) are analytic functions (except for cuts) of E;

This is essenti;lly due to the simple dependence on E of Eg. (4.68), to be
more precise that the equation involves E analytically. It follows that
£(£,E) is also analytic, except where k_(£,E) vanishes. If this happens
for an energy E, such that k = ilkbl, then ul(r) represents a bound state
of energy E_ and f(2,E) has a pole at that energy.



PART 1I

(Chapters 5-7)

EXPERIMENTAL DATA AND
THEIR PRELIMINARY INTERPRETATION

We now turn to a discussion of thz relsvant experimental data, trying
to systematize them usiag simple vhenomenological approaches.. We keep
in mind that high e2nergy corresponds, t'or our purpose, to laboratory
momenta Py, 25 3eVic. However, in some cas2s where data at higher
energies are lacxing, or when some interesting phenomena only occur at a
lower aneryy, we shall also go below this limit. Let me 2lso confess that
I have taken a rather iLiberal at‘itude towards the experimental data in the
sense that in many diagrams [ :resent only curves drawn freehand through
thz experimental points, all of which are not exht:ibited; typical statistical
errors are, however, shown. Moreover, I have at some places preferred the
exgerinsntal results t'rom one group to otners f'or ths mere reason that the

aats chosen had the least statistical =rrors.

Besides the review talk by L. Van Hove, and the accompanying
experimental survey by A.M. Wetherell from the 1906 Berkeley Cont'erence
(see point I. in the bibliography), I should like to mention two articles
which are particularly relesvant to this chapter. The t'irst is the lecture
notes "Theoretical problems in strong interactions at high energies" by
L. Van Hove given at CERN in 1964 (report CERN 65-22, 1965), the other is
the review article "High-energy strong interactions of elementary
particles" by L. Bertocchi and E. Ferrari in the book "High-energy physics,
Vol. II" (editor E.H.S. Burhop), (Acad. Press, New York/London, 1967).
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CHAPTER 5 - TOTAL CROSS-SECTIONS

This is an experimental quantity which has been measured to very high
accuracy (total absorbing techniques). It is also the simplest one to
discuss theoretically since, from the optical theorem (3.34), it is related
to the imaginary part of the forward elastic amplitude, not to an amplitude
squared.

The experimental results for all reactions measured up till now are
shown in Fig. 5.1. The data seem to indicate a smooth behaviour of the
cross-sections as functions of energy without those large variations which
characterize, for example, low energy ﬂ:p scattering. This fact should not
be over-emphasized, though, since some variafions could have escaped detec-
tion; note in this context the relatively large distance on the energy
scale between adjacent points.

As is seen, all cross-sections lie in the interval ~ 15 mb to ~ 60 mb,

with ;p being the largest and K+p the smallest. The fact that ofot i

bigger for ;p’than.for pp is qualitatively explained by the larger number

s

of inelastic channels open in ;p collisions (annihilation, baryon-antibaryon
final states, etc.). A similar explanation works for 7 p as compared with
u+p, and for Kfp versus Kfp scattering.

The fact that the cross-sections are finite is already an indication
that the range R of the forces responsible for the interaction is finite.
Namely, in the crudest of models one expects a total cross-section of the

order of the geometrical one

Tiot ™ mR? . (5.1)

A value of 40 mb for o implies R ~ 107" m=1 fm, which approximately

tot
equals the pion Compton wavelength, a reasonable number. We shall in a

moment substantiate this remark somewhat.

Let us, however, first note that an extrapolation of the curves, up to
energies above the highest now available, seems not inconsistent with the
‘view that they all tend to constant, non-vanishing values as P1ab tends to
infinity. At least, it seems as if the cross-sections will not become
infinite as the energy inoreases. In other words, the range R of the

interaction seems to stay finite as Prap * = There is also a theoretical
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+
Total cross-sections for 5 < Plab < 25 GeV/ec. The #"p and pp data are from
S.J. Lindenbaum, Invited paper presented at the Coral Gables Conference on
Symme try Principles at High Energies, January 1967. The two points at
lowest energy for pn are from D.V. Bugg et al., Phys.Rev. 146, 980 (1966).
All other results are from W. Galbraith et al., Phys.Rev. 138, B913 (1965).
The curves are freehand fits to the data. Note also the conversion scale
from lab. to c.m.s. quantities, all in units of GeV, at the bottom of the

figure.
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argument supporting this fact, although slightly weaker in its formulation.
By exploiting the conseguences of quantum field theory, one is able to show
that Oiot MBY 8TOW at most as the second power of 1°B(Plab) as energy

increases

oiop < Cllog (P1ab))® »  Plab * = (5.2)

where C is a constant, the value of which is not known. This relation is
called the Froissart bound, and was originally proved by Froissart in 1961
[Phys.Rev. 123, 1053] using unitarity and the Mandelstam representation of
the scattering amplitude. The proof based on the axioms of quantum f'ield
theory was given by Martin in 1966 [Nuovo Cimento 424, 930 (1966); see also
Phys.Reve 129, 1432 (1963)].

There is one more observation to be made: straightforward extrapolation
of the data seems to indicate that the total cross-sections for collision of
a particle and its antiparticle with the same target will eventually become
equal. For example, Giot("+p) and Giot(ﬂ—p) could very well become equal
at higher energies. In fact, this rule has theoretical justification as
well, Namely, if one assumes that the total cross-sections tend to constant
non-vanishing values (logarithmic energy-variations are allowed, though) one
is able to prove, using theorems from f'ield theory of essentially the same
kind as those used in proving the Froissart bound (5.2), that these constant
values must be the same for particle and antiparticle reactions. This
result is known as the Pomeranchuk theorem, originally proved from disper-
sion relations by Pomeranchuk in 1956 [Zhur.Eksp.i Teor.Fiz. 30, 423,

English translation in Soviet Phys. - JETP (USA) 3, 306], and with less
assumptions by Martin [Nuovo Cimento 4k, 704 (1965)].

These two theorems, the Froissart bound and, in particular, the
Pomeranchuk theorem, are restrictions a theorist wants the experimental
data to obey. One even introduces the concept of the "asymptotic region"
for those energies where the assumptions and consequences of the Pomeranchuk
theorem are satisfied. Where would this asymptotic region be? One could
.get a feeling for that from the recent results by Lindenbaum and co-workers
on the total utp cross-sections as given in Fig. 5.1. They assumed a

parametrization
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m,

Ty - Po )\
Gfot(ﬂ p) = a+b, <Plab> s (5.3)

where po = 1 GeV/c and Piab is in units of GeV/c, and fitted the values of
the constants to obtain a = 22.57 mb, m = 1,02, m_ = 0.66k, b+ = 24.51 mb
and b_ = 19.55 mb (no errors quoted). It then follows that the difference
Utot(ﬂ-p)-'afot(ﬂ+p) becomes less than the present errors for each of them
(~ 0.1 mb) at py . of the order of kLx 10° GeV/c, i.es, k-~ U5 GeV/c.
Summarizing, the theorist's wonderful Asymptopia could be within reach with
a L000 GeV/c machine, or with 45 GeV/c intersecting storage rings [cf.
Phys.Rev.Letters 19, 330 (1967)].

In this context it should also be mentioned that there has been put
forward the idea that the total cross-sections should tend to zero at
inf'inite energies. In fact, the data were found to be consistent with a
high-energy decrease of Otot 85 piZL with n = 0.075%* 0.008 [see N. Cabibbo
et al., Nuovo Cimento 4bA, 275 (1906)]. However, if Lindenbaum assumes
that the "constant" a in the parametrization (5.3) has such an energy-
dependence, he gets 0 <n«< 0.03-0.05. A more clear-cut answer will be
obtained with the Serpukhov machine, since if n X 0.07 the cross-sections

will be down by ~ 2 mb from py , = 20 GeV/c to 70 GeV/c.

Above, we introduced a range R of interaction by requiring the total
cross-section to be of the order of the geometrical one. Let us now try to
make this idea somewhat more precise. To do this, let us consider ﬂtp
scattering, neglecting the influence of the nucleon spin, i.e., assuming

that the two partial wave amplitudes (L.32) are (approximately) equal
£(¢,+ ,E)=1£(¢,- ,E)=f(L,E) . (54L)

This means that the spin-flip amplitude H, Eq. (4.39), vanishes, and that
the non-flip one, Eq. (4+38), has the same partial wave expansion as if the
nucleon had no spin. In an impact parameter picture, we could def'ine R as
the maximum impact parameter bmax for which scattering occurs. For the

impact parameter amplitude B(b,E) this assumption takes the form

B(b,E)=0 for b>b _ =R. (5¢5)
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It simply means that all pions that pass the nucleon at a distance larger
than R will not feel any influence from the nucleon and will thus pass
untouched; see also Fig. 4.1.

What would be a reasonable assumption concerning scattering at impact
parameters less than R? At the high energies under considerations it is
an experimental fact that inelastic reactions occur very frequently.
Referring to the discussion in Chapter 4, this means that the absorption
parameter n(b) might be quite smalle The simplest assumption which is in
line with this argument is to assume that n(b) = O for those b-values at
which scattering occurs. From Eq. (4.25) the impact parameter then takes
the f orm

13(1>,E).-.§1;L-(o-1)=-‘;L for b<R. (5.6)

In particular, the value of the (real) phase shift 8(b) does not matter,
since the inelasticity vanishes. The assumptions (5.5, 5.6) define the
"black disc model", so called because all particles hitting the disc

b < R are completely absorbed by it.

The result of the black disc model for the elastic scattering
amplitude (4.50) is then

R
Fo1; black dise (08 ©»B) = ik / b db Jo (bA) (5.7)
[o]

Here, the integfal can be evaluated explicitly. We postpone this,
however, until discussing dcel/dt in the next chaptef. Right now, we
are only interested in the total cross-section, which is most easily
derived directly from the optical theorem in the form (4.54)

R
- _.,‘*r"m[ik/bdﬂ:zm‘. (5.8)
o]}
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In somewhat more precise terms, this is the relation between the range R of
interaction and the total cross-section ofot' In particular, Gtot is
twice the geometrical cross-section. We shall comment on this point later
when considering elastic scattering. In anticipation, we mention that the
black disc model given here will turn out to be too crude to fit the
experimental results on doél/dt; in fact, essentially all its predictions
are violated by the data. It must therefore necessarily be modified in
order to describe, at least approximately, the experimental findings. We

shall consider these problems in the next chapter.
As a summary of this chapter we note that:

. . . : > .
i) Ciot 15 @ slowly varying function of energy for Piap - 5 GeV/c;

ii) o
tot - +
largest (60-50 mb) for pp, smallest (~ 15 mb) for K p;

corresponds to a range of interaction of about 1 fm; it is

iii) all total cross-sections seem to be asymptotically constant; in
particular, they seem to obey the Froissart bound;
iv) Gfot for particle and antiparticle reactions with the same target

seem to approach the same constant limit (Pomeranchuk's theorem).

CHAPTER 6 = ELASTIC SCATTERING

The black disc model introduced in the previous chapter gave the very
definite expression (5.7) for the elastic scattering amplitude. The model
can therefore be compared with the experimentally determined elastic cross-
sections. In fact, one may evaluate the integral over the Bessel flunction

to get

(cos®, E) = ikR? 9—’%}2—‘31: ikR? -;- exp [—%—RzAz] , (6.1)

Fel;black disc

the last approximation being valid at small angles, A % 1/R. In this

Exercise 6.1: Prove Eq. 6.1 using the findings of Appendix 2.

model, the cross-sections then read
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do . A 2 4 v 2 .
el;black disc _ _,a|Ja(RO)|° ~ 7R AN /
=1 = 7R " R = exp szj t | (6.2)
where we introduced t = -'AZ, and
o = mR? = 1 o (6 3)
el; black disc 2 “tot;black disc ' *

The small-angle ajiroximation in Eq. (6.2) is good to < 20% for
|t] € 0.25(GeV/c)® (if R 2 1 fm).

o o - . o - T - - T oy WY S LSS e oo o S em e o S S - . - - -

Exercise 6.2: Prove the relations :.7) and (0.3). [Hint for S

--------—--——_..--——_--——---—---—----—-—_—---——--—----——-—-—---—---—---—-—_—.

The black disc model is invoked essentially to account for the i'inite
range of the interaction and for the large amount of inelastic reactions at

high energies. We may summarize its predictions as rollows:

i) No spin effects.
ii) The scattering amplitude is purely imaginary.

iii) dGel/dt decreases exponentially t'er small |t] with a logarithmic
slope (R/2)?. For larger |t| it should show minima M"dips") and
maxima ("bumps" ; the rirst dip is expected at -t~ 0.7 (3eV/c)®
(for R ~ 1 fm) and the Tirst bump at -t~ 1.0{GeV/c)®, as may be
int'erred trom from Fig. A7.' of Appendix 2.

iv) o ‘should be 0.5.

el/dtot
Let us make two remarks about these results berore we compare them to
the data. First, the pattern of minima and maxima preuicted for the
elastic differential cross-section is well-known both from optics (for
example, the intensity pattern for light passing a sharp edge) and i'rom
low energy nuclear physics. It is in if'act characteristic ['or a wave
" incident on a totally absorbing object with sharp boundaries, having an
extension much larger than the wavelength. It is known in optics as
diffraction; this name is then also used tor the anzlogous phenomena in

nuclear and elementary-particle physics.
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Second, you might be astonished by the fact that there is elastic
scattering at all, since one of the properties of the black disc model,
Eq. (5.6), was that there should be no outgoing elastic wave with
b < bmax = R. This apparent contradiction is solved by carefully
investigating what total absorption, N, = 0, really means. To this end
we note that the outgoing spherical f-wave, from Chapter 4, in particular
Eqs. (4.22) and (4.13), is proportional to 1+ Zifel(l,E) =1, exp (2181).
Here, the first term, the number 1, comes from the expansion of the plane
wave exp (ikz), while the second represents the amount of scattering.
Now, if one requires M, to vanish, this by no means implies the absence of
scattering. Actually, it implies complete destructive interference
between the fth partial wave part of the plane wave exp (ikz) and the
corresponding scattered elastic partial wave. In other words, since the
plane wave must always be there, from the asymptotic form (3.1) of the
total wave function, the absence of an outgoing spherical wave means a
scattered wave completely out of phase compared to the incoming one. Or
in still other terms: a completely absorbing obstacle may be considered
as an emitter of elastic partial waves 180° out of phase compared to the

incoming ones. One calls this "shadow scattering".

These considerations also throw some light on the fact that Gfot is

Ttot 1 and Oine1’

Due to absorption, the inelastic cross-section equals 2. For the same

. . 2 .
twice the geometrical value mR". Namely, comprises cé
reason, as we just saw, the elastic cross-section equals mR? as well.

This explains the factor of two in the total cross-section.

With the predictions from the black disc model in mind, in particular
point (1ii) above, we now turn to the experimental findings. Some typical
elastic differential cross-sections (in this case for ntp scattering) are
shown in the logarithmic plots of Figs. 6.1 and 6.2. They do not follow
the expected behaviour particularly well. Even if at "low" energies
(Plab ~ 245-4 GeV/c) there is a dip at -t~ 0.8 (GeV/c)? and a bump at
-t~ 1.4 (GeV/c)?, this structure seems completely absent at higher momenta
where the black disc model in fact should be more appropriate. Instead,
dcél/dt seem to decrease roughly exponentially with Itl out to at least
~ 1(GeV/c)?, may be even to ~ 2(GeV/c)®. One usually refers to this
exponential peak for near forward elastic scattering as the "diffraction

peak".



3-62

1000 1000
O.F.'{ ®+p Scattering at 25 GeVic oP g .x+p Scattering at 30 GeV/c
e n*p—ex'pl| this [~ em*p+=w*p| this
o X p—== xp experiment on p-=n"p | experiment
10.01 ¥ Sqlid curve x p—=x"n Carroli et al. 100 & solid curve ™ p -=n°n etal.
at 2.46 GeVic at 3.07 GeVic
o B
o 0® e8%8¢ o
) o© ®5
ﬁ|3 5
~ o ]
8l t %
0.0~ 001
0001 1 1 1 1 1 | 0.001 1 1 | | | 1 J
0 04 O08 12 16 20 24 28 0 04 08 12 1.6 20 24 28
100 !
00 T +p Scattering at 3.5 GeV/c 1000 T+p Scattering at 4.0 GeV/c
apr + + . o.P
oM p--T p} this
o 1w p-»T p) experiment ‘ o m'p—n'p
10.0}- & Solid curve w™p-=T°n Sonderegger et al. 100 |- o p-=np
at 3.67GeVc \
°
°
°
o
1.0 1.0~ Cla
o~ ~ o®
ol|R o o
tl§ i Toge
S o Lolf )
3l ? 85 8 2 3?
0.01 0.01 (- i
0.001 1 1 1 1 1 1 J 001 1 1 1 ] | | |
0 06 08 12 16 20 24 28 0 04 08 12 1.6 20 24 28
-t (Gevic)?
Fig. 6.1
+
ddel/dt for #7p in the interval 2 £ pjg < 4 GeV/e. Data from C.T. Coffin
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Actually, a very good parametrization of the data for P1ab 2 5 GeV/e,

is given by

d
dt at ’ ‘

valid for 0.05 < ltl < 1=1.5(GeV/c)?; over this range the cross-section
decreases by four orders of magnitude. The form (6.4) fits all measured
elastic differential cross-sections at high energy with approximately energy-
independent parameters A and B that vary slightly from reaction to reaction
but are always positive.

In more detail, A is in all cases of the order of 10(GeV/c)-2; the
experimental results are given in Figs. 6.4-6.6 (see p. 3-68 to 3-70).
Note that the approximate energy-independence of A is linked to our use
of the variable t in the parametrization (6.4). Had we used, say,
cos © as the variable, the coefficient in the exponent would have shown
a strong dependence on the energy. Moreover, the parameter B is fairly
small, B/A? £ 0.03. Thus the B-term is comparable to the A-term only
for -t 2 10/A ~ 1(GeV/c)?, and may often be completely neglected for
|t| < 0.5(GeV/c)®. Since the cross-section is almost entirely conf'ined
to fhe smallest momentum transfers, one then obtains
(o] [o]

o, = / dtd-;:—l:iga:—l(tzo) /dteprt=A"f:-‘:}(t=o).(6.5)

J

-t . - oo

The parametrization (6.4), with A and B positive, means that the
differential cross-section on a logarithmic plot is like a parabola open up-
wards. Note that the black disc model would indeed in a second approxima-
tion give the form (6.4) but with B negative, since on a logarithmic plot
it gives a convex cross-section (~ parabola open downwards) as may be

inferred from Fig. A2.1.

The prediction of diffraction minima and maxima in the black disc
model is closely related to the sharp edge of the disc, i.e., the fact that
B(b,E) Jjumps from i/2 to O at b = R.  Such a discontinuity is in fact
rather unlikely physically. Actually, still keeping to the spirit of the



3=65

model, the absence of a dip-bump structure indicates that the disc should
have a dit'fuse edge. In other words, one expects a transition region in
b around b = R where B(b, E) drops to zero. The more refined theoretical
framework in which to discuss such a behaviour 1is the optical model. In
fact, the black disc model is a particularly simple case of the optical
model. We shall not discuss that model any more here but only refer to,
for example, the CERN lecture notes by Van Hove (report CERN 65-22,

1965) for a more detailed treatment. '

Instead, we shall take a purely phenomenological standpoint and try
to extract information on the scattering amplitude and its impact parameter
expansion directly from the experimental findings as given by the form (6ols)e
To this end, however, one needs an assumption on the phase of Fel(cos 9,E)
since only its absolute value is determined from the cross-section. As a
first approximation we shall assume that the amplitude is still purely
imaginary. The validity of that assumption will be discussed in a moment.
From Egs. (6.4) and (6.5) one then derives

AD_el 1
Fel(cos ®,E) = ik —= exp <§ At> R (6.6)

where we neglected the B-term in the exponent. This f'orm may be for the

time being regarded as the experimentally determined scattering amplitude.

In passing we note that the form (6.6) gives, via the optical theorem,

a total cross-section that reads

= 4T = 0)=
Teot = E B Fel(t = 0)= w/161rAdel . (6.7)

Here, it is convenient to introduce the parameter a = Gelﬁgtot to relate the
elastic cross-section to the total one. This parameter, or perhaps even

better 1-a = Ginel/bfot’
occuring in the interaction; in fact, 2a is of'ten called the absorptivity

is a direct measure of the amount of absorption

or the opacity of the interaction region. Inserting the definition of a
into Eq. (6.6) yields

. -y -
Fel(cos @, E) = 4ikaA exp L-é AtJ . (6.8)
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Finally, calculation of the impact parameter amplitude from this

elastic amplitude, using the relation (4.51) and the formula (A2.11) of
Appendix 2, gives

2
B(b, E) = 2ia exp | - %K . (6.9)

Exercise 6.3: Prove Eq. (6.9).

4 Im B(b,E)
10
exponential
08} diffraction peak (R?=4A)
05 black disc model
04}
0.2 r
»b/
% 1 R
Figo 603

The impact parameter amplitude B(b, E), assumed purely imaginary,
for the black disc model and for an exponential diffraction peak.
In both cases a = Y.
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We illustrate in Fig. 6.3 the impact parameter amplitude (6.9) and
compare it to the result of the black disc model in the case of a = Ve
It should be clear from the discussion that the result (6.9) is valid only
for b when it is not too different from R. Namely, at very small b,
corresponding to central collisions and therefore to large momentum trans-
fers, as well as for very large b, corresponding to peripheral and there-
fore very small momentum transfer collisions, the parametrization (6.4) is

not necessarily appropriate.
Summarizing, we may conclude that:

i) If the scattering amplitude is purely imaginary, the fact that dgél/at
behaves as exp (At) implies that the impact parameter amplitude
decreases with b as exp (-=b®/2A). Comparing the black disc model
prediction for the elastic amplitude at small |t|, Eq. (6.1), to the

parametrization (6.6) gives

A= (%)2, (6.10)

Thus, the slope A of the exponential diffraction peak may still be

considered as a measure of the extension of the interaction region.
ii) Besides A, there is now one more parameter, viz., a = Gél/bfot’ which

mey be used to characterize the experimental findings. It obeys

a < 1, with equality only for purely elastic scattering, and is a

measure of the amount of absorption, or inelastic reactions. It

equals 0.5 for the black disc model.

Let us then turn to the experimental results as given in terms of the
slope A and the ratio Gel/bfot' They are given in Figs. 6.4, 6.5 and 6.6
for different reactions. Also shown in these figures are the ratios of
the real to the imaginary parts of the forward scattering amplitude; we

shall discuss these data in a moment.

From the figures we note that:

i) The slope A lies between ~ 5(GeV/~::)-'2 and 14 (GeV/e) ™, being smallest
for K+p, which also has the smallest Ttot? and largest for Ep, which

has the largest o In terms of R = 2VA it implies 0.9 S R £ 1.4 fm.

t.
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The slope A of the forward diffraction peak, the ratio 0g]/otot of the
elastic to the total cross-section, and the ratio (Re F/Im F)t=o of the
real to the imaginary part of the forward scattering amplitude as func-
tions of pygy 2 5 GeV/c for m p. The curves are freehand fits to the
data and the error bars only indicate typical statistical errors.
Uel/btot and A are taken from the compilation by M.N. Focacci and

G. Giacomelli (report CERN 66-18, 1966). (Re F/Im F)i.qo is from
Lindenbaum's 1967 Coral Gables paper [see caption to Fig. 5.1; cf.
also Phys.Rev.Letters 19, 193 (1967)].
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Data for pp and Ep analogous to those for 1rtp in Fig. 6.4. The slope A for
pp is from Focacci and Giacomelli (cf. caption to Fig. 6.4); A for pp and
Gel/T4ot &re from K.J. Foley et al. [Phys.Rev.Letters 11, 425, 503 (1963)]
while ?Re #/Im F)t=0 is from Lindenbaum's 1967 Coral Gables paper [see
caption to Fig. 5.1; cf. also Phys.Rev.Letters 19, 857 (1967)].
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Data for K'p analogous to those for # p in Fig. 6.4. The findings for
K™p, and Og1/0tot for K'p, are taken from M. Aderholz et al. [Physics
Letters 24B, 434 (1967)], the slope A for K'p from K.J. Foley et al.
[Phys.Rev.Letters 11, 503 (1963)] and |(Re F/Im F)4-o| from M. Lusignolli
et al. [Nuovo Cimento 454, 792 (1966)].
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ii) For wzp and K-p there is no significant energy variation of A when Piab
varies from ~ 5 GeV/oc to the highest available energies. On the other
hand, A increases for K+p and pp while it decreases for Ep. As is seen
from the definition (6.4) of A (neglecting the B-term), an increasing A
means a steeper decrease of the differential cross-section as a func-
tion of ltl ("shrinking diffraction peak“) while a decrease in A
implies a flatter ltl distribution ("expanding diffraction peak").

iii) The value of °e1/°tot lies between ~ 0.3 and ~ 0.15, i.e., about half
the value predicted by the black disc model. It is larger for u+p
than for ﬂ-p, for K+p than for K-p and for pp than for Ep. This is
connected to the circumstance that more inelastic channels are open for
ﬂ-p scattering compared to n+p, for Kfp compared to K+p, and for Ep

compared to pp.

There are two essential ingredients which go into the analysis presented
so far, viz., that Fel (cos ©,E) is purely imaginary and that spin effects
may be neglected. Do the data support these assumptions? Let us treat

them one at a time to see how they can be tested.

The real part of Fel in the forward direction could be obtained as
follows. Write the forward amplitude

F,=ReF,+ iImPF, = i(1-4p) Im F, (6.11)

where

Re Fel(e = 0)

p = . . (6012)
Im Fel(@ = 0)
Now,/in the very forward direction the optical theorem implies
ImF .(cos ® = 1,E) = =0, , . (6.13)
el ’ Lw “tot

Consequently,

i
'E'{"“’o)’T(“p -G (6.14)
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Tae value (0yg¢)®/16m for the forward differential cross-section is often
referred to as the optical point. Since (dO'el/dt) (t = 0) can be obtained
by extrapolating the measured diffeerential cross-section to zero scattering
angle, and since Tiot is measured separately, the relation (6.14) provides
knowledge of |p|. However, besides leaving the sign of p undetermined,
the extrapolation required is not very accurate. Therefore, the procedure
outlined gives a poor determination of |p|, the more so because |p| is a
small quantity, in general. However, data indicate that the extrapolated
forward cross-section is within 20% of the optical point, implying that

|p| is less than ~ 4L0%.

A better procedure to obtain p, including its sign, is afforded by
measurements of doél/dt at very small but non-zero angles (alab of the order
of milliradians), where interference between the hadronic and the Coulomb
part of the scattering amplitude occurs. The argument is as follows.

So far, we have neglected the electromagnetic interaction between the
particles. Since this is small compared to the strong (= hadronic) inter-
action, one might expect it to be negligible. However, in the very
forward direction, the Coulomb scattering amplitude (3.61) goes to infinity
as t-‘. This is merely a reflection of the long range character of the
electromagnetic forces. Since one expects the hadronic amplitude to

remain finite, it should be possible to detect the Coulomb interaction by

going to very small values of lt . Moreover, since the Coulomb amplitude
is explicitly known, one may be able to measure the relative phase between it

and the hadronic amplitude, in other words to measure p.
More quantitatively, one writes

Fo=F +F, - | (6.15)

Here, for the small t-values of interest

tq Vs R (6.16)

FC = FCoulomb == t

where the positive sign is appropriate for particles of equal charges
(for example, v+p), the negative sign for particles of opposite charges
(for example, 7 p). Furthermore, for the hadronic amplitude Fh(cos ©,E)

at small ltl, one assumes
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F, = 21V5 aA(1 - 1p) exp L-;: AtJ (6.17)

in accordance with BEgs. (6.8) and (6.11); here we also approximated k by
-2
Y,Vs. Now, since a ~ 1/137 and aA ~ 0.2x 10 (GeV/c) , it follows that the

two terms in Eq. (6.15) are comparable in magnitude for

1

1t ~ 7353

x f;(GeV/c)2 ~ 0.002 (GeV/c)? .
In the lab. this corresponds to a recoil nucleon kinetic energy of
1 MeV(!), but it has since 1964 nevertheless been possible to measure

dcel/at at such very small momentum transfers.

Summarizing, at very small scattering angles one expects

o1 m 2~ LT g2 g |2 *
2 = Lirg +7 12 T 5 [lrgl® + [yl * + 2 Re (RFy)] =

(6.18)

1]

.2
L L%a— +4a% A2 (1 +p2) exp (At)* 4ahp % exp @ A1>:l ,

with the same sign conventions as in Eq. (6.16).  Here, for |t] < 0.001 GeV/c)?
the Coulomb term a/t® should dominate, while for |t| 2 0.05(GeV/e)* only
the second term, i.e., the hadronic part, is important. In the region
0.001 < |t| < 0.05(GeV/c)?, however they are comparable in magnitude and

it should thus also be possible to measure the interference term, i.e.,

p = (Re Fp)/(Im Fp).

Two additional remarks may appropriately be added to the preceding
discussion. First, in the actual data analysis, p is usually taken as a
constant. Its t-dependence is not known, and the procedure followed is
adequate only if p does not vary appreciably in the momentum transfer
interval studied. Second, several refinements in the expression (6.18)
can be made to account for deviations of FCoulomb from the simple form

(6.16) and for corrections to the simple assumption (6.15) that the Coulomb
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and the hadronic amplitudes just add to give the total amplitude. We may
refer to Lindenbaum's 1967 Coral Gables talk (see caption to Pig. 5.1) for
a more detailed discussion of these corrections as well as further

references.

What would ddel/dt look like according to Eq. (6.18)7? Ye have in the
schematic diagram of Fig. 6.7 illustrated the situation in #"p scattering
assuming p = O (dashed line), and p < O (full lines) for both processes;
the parameters a and A were here assumed equal for 7 and 7 . Examples of
experimentally determined cross-sections are given in Fig. 6.8. It is seen
that the data show a behaviour expected for p negative in both reactions.

The actual numerical value here is p ~ -0.1 for 7 and ~ =-0.2 for 1r+.

do,,

log —dt

A A i 1 1 -t
0 0 004 [(’G*)z]
Pig. 6.7

The elastic differential cross-section for
very small ltl-values according to Eq. (6.18).
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In this way, one has measured p = (Re F/Im F) (t = 0) as function of
energy for ﬂtp and pp elastic scattering. Very recently, a result for Ep
at one energy was also reported. The experimental results are given in
Figs. 6.4 and 6.5. The p parameter for Kip scattering has not yet been
measured from Coulomb interference experiments, but only through extrapola-
tion of ddél/dt to t = 0, comparing it with the optical point. The results
for Ipl are presented in Fig. 6.6 but should be taken with great caution
since the value is very sensitive even to small systematic errors in the

cross-sections.

As the experimental results show, the assumption of a purely
imaginary (hadronic) scattering amplitude is not correct, except possibly
for pp scattering. On the contrary, (Re F/Im F)(t = 0) is negative and of
the order of 10-30% for both nip and pp, implying a phase of 90° +~ 15°,
The sign of the ratio corresponds, in the Born approximation (3.48), to a
repulsive interaction, V(r) > 0; in fact, this argument generalizes beyond
the Born approximation. It seems as if the ratio could tend to zero for
Pip = = though. Actually, as we shall see later, the phase of the
scattering amplitude is closely related to its energy dependence. More
precisely, if the ﬂ+p and W-p elastic amplitudes become equal at high
energies and if they imply a constant total cross-section then they must both
be purely imaginary. This means roughly that the Pomeranchuk theorem has as

a consequence that (Re F/Im F) (t = 0) should vanish in the asymptotic region.

Now, we turn to the question whether spin effects can be neglected at
high energies. We remember that in the analysis so far we have assumed
that the spin flip amplitude H(cos ©, E) vanishes, so that the total
elastic amplitude F(cos 9,E) equals the non-flip one G(cos ©,E). An
ob&ious way to test this assumption is to measure the polarization parameter
P, which from Eq. (3.55) is proportional to Im (GH*). Thus, P should
vanish if H = 0 (the opposite conclusion is not true!). These considera-
tions really only apply to ﬂtp (and Kt) scattering, since in pp and §p
reactions the beam particle also has spin, which complicates the spin
analysis. We shall not go into details but merely state that the NN pola-
rization may be discussed along much the same lines as in #N scattering,

and that, in particular, one may define a polarization parameter P also here.
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Some results of the recent experiments concerning P are shown in
Fig. 6.9. Indeed, even if P turns out to be small, of the order of 0.1,
it is certainly not zero. Consequently, spin effects cannot be ignored

even for in the region of 10 GeV/c, unless as a I'irst approximation.
P1ab ) 193

+
How would spin effects influence the preceding analysis of 7' p

elastic scattering? Clearly, the derivation of the scattering amplitude and
its impact parameter expansion, Egs. (6.8) and (6.9), is no longer true,
except qualitatively as a rough approximation. Indeed, things become
complicated and only additional measurement of the R and A polarization
parameters can give the complete answer. However, for the analysis of

(Re ¥/Im F) (t = 0) the situation is better, since in the very forward

direction the spin flip amplitude necessarily vanishes [see Egq. (4.39)].

For pp scattering, many polarization measurements (actually at least
nine) are required for a complete determination of the scattering amplitude.
Furthermore, there are several (in fact three) terms with different spin
structure even in the forward amplitude, complications which are usually

ignored in the data analysis of Coulomb interference experiments.

So far we have only discussed elastic scattering at relatively
small scattering angles. We now treat very briefly what happens outside
the forward diffraction peak. For the c.m.s. scattering angle 9 near to
90°, the cross-section turns out to be extremely small, typically
6-12 orders of magnitude smaller than in the forward direction
@o_,/at) (e = 909 ~ (107 =107"°)mb/(GeV/c)?]. We may refer to Van Hove's
report at the 1966 Berkeley Conference, as quoted in the bibliography, for

some recent results on such large angle scattering.

An interesting question is what happens at still larger angles, near
to the backward direction in the c.m.s. Keeping in mind that the identity
of particles in pp scattering forbids elastic scattering at larger angles
than 90°, one must go to, for example, 7N reactions to study this question.
Some experimental results for ntp scattering are shown in Figs. 6.10 and
6.11; recall (Exercise 2.5) that in the backward direction the variable
W~ -2k2(1+ cos ®) is approximately zero. One notes that (dopj/dt) (180°)
reaches ~ 10 pb/(GeV/c)? which, although a factor of about 10° less than
in the forward direction, is still somé 100 times bigger than the cross-

section around 90°. Thus the backward peak is indeed significant. In
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Backward elastic 7 p scattering for 4 S Plab < 8 GeV/c as measured by
W. Selove et al., and by W.R. Frisken et al., taken from Van Hove's
1966 Berkeley report (see caption to Fig. 6.10).
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more detail, it seems as if the backward scattering also shows an exponen-
tial peak. Its slope is slightly bigger than for the forward peak

~ (10-20)(GeV/c)-2. We also note the dip-bump structure in the 7 p case,
which seems absent for ﬂ-p scattering. On the other hand, the n-p cross-
section could flatten out, or even turn over, very near to ©® = 180°. Note
also that the backward cross=-section seems to decrease rather fast with

-3
energy, something like Plab®

A summary of this chapter may be given as follows. Elastic
scattering shows a diffraction character in the sense that the differential
cross-section has a pronounced, approximately energy-independent, peak in
the forward direction and decreases exponentially as a function of the
momentum transfer squared with an approximately energy-independent slope
of about 1O(GeV/c)-2, and also in the sense that the forward scattering
amplitude is approximately imaginary. However, the cross-section shows
no trend of diffraction minima and maxima at high energy. Instead, on a
logarithmic plot it is more like a parabola open upwards. Moreover, the
phase of the elastic amplitude (for u:p and pp) is about 105°. Finally,
one cannot ignore spin effects, the polarization parameter P being about
10% even at Piap = 12 GeV/ce Therefore, any simple diffraction model can

be used only to reproduce the gross features of elastic scattering.

The essential experimental results on total and elastic scattering are
collected in Table 6.1, following the way of presenting the data given by
Wetherell at the 1966 Berkeley Conference.
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CHAPTER 7 - SOME OTHER TWO-BODY REACTIONS

The two-body reactions most closely connected to elastic scattering are
the charge exchange processes like w-p - ﬂ°n, K-p - R?n, np » pn and Eb-* nn.
Consider first the pion-nucleon charge-exchange reaction. From isospin

jnvariance it is related to @nN elastic scattering. To see that let the #N

scattering amplitudes in the isospin channels I ='/3, A , be denoted FZI' Then
() o F(r'p » 7'p) = F5 , (7.1)
el
- - - 1 2
Fél) =F(mp->mp) = 3 Fs + 3 Fy, . (7.2)
R _v2 - (+)_ (=)
Fc.e = F(ﬂ p - 7°n) (Fs-F4] V—[: (7.3)

Exercise 7.1: Check the relations (7.1)-(7.3) from a table of Clebsch-

Gordan coefficients.

Thus, the charge exchange amplitude is proportional to the difference
between the ntp elastic amplitudes. Since, from the experimental data,
these two amplitudes are not very different, one expects dU /dt to be
rather small compared to dc' (u p)/dt. Moreover, the dlffere;ce

(+) él) need not have the same t-dependence as either term separately,
s0 there is a priori no reason why dcb o /dt should have the same varia-

tion with t as has agél/at.

The experimental results are shown in Figs. 6.1 and 7.1, As is seen,

ddc .. /at in the forward direction is a factor of 30 smaller than the

elastic cross-section at Piab ™ 3 GeV/ec. It decreases with increasing

energy as pl:L86 to become about 200 times smaller as (dG /dt)(t = 0) at

Py ~ 18 GeV/c.



3-8

" p—nn
! p (GeVic)
C v 100 MIT - PISA
. o 40 SACLAY - ORSAY
- 4 59 do _0oss mb
I v 98 a(O):lBZ GeVic)?
: :383 (o¢.4(0) = 0.57)
107" '
§ C
b|« i
TIO
— }
Bs T
107
107
1 | [ ]
0 05 10 15 20

-t [(GeVic)]

Fig. 7.1

Differential cross-section for m p = #°n in the range & < plap < 18 GeV/e
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This decrease of the forward charge exchange cross-section is related
to the decrease of the difference cfot("-p)'.cfot(”+p)' Namely, the charge
symmetry relation (7.3) and the optical theorem (3.34) implies

F‘cceo(N = O) = Re JL‘c-eo(@ = O)+ 1 Im bc.en(g = 0) =
(7.4)
SRe £ (9= 0) -1 5 T [ohos(n R) =0y (a'R)]
so that
d:c e F + T 2
—— ©=0) = 5= [tot(mp) ~otot(np)]* + 17 [Re F, .. ©=0)]% . (7.5)
Consequently, if Re Fc o (®=0) has (approximately) the same energy
dependence as Im F @ = 0), the forward charge exchange cross=section

Ce€e

should decrease roughly as pl‘bz’ if we invoke the Lindenbaum result for
the total cross-sections as discussed in Chapter 5, in particular Eq. (5.3).
The difference between the exponents, -1.2 versus -0.86, can presumably be
blamed on the errors in the data and on the possibility of getting slightly
different results when using different parametrizations. In fact, if

Lindenbaum fits directly the difference Gtot(ﬂ-p)'-ofot("+p) he finds a

decrease as P]_%33, implying a charge exchange cross-section behaving like
P{jgé‘ In passing we note that the form (7.5) can be invoked to measure

| Re Fc.e.(@:=°)l5 the results are that it is roughly equal to the
corresponding imaginary part, so the phase of the forward charge exchange

amplitude is about 45° (modulus 50°).

The experiment shows a characteristic structure of dcboe./dt as a
function of t: in the very forward direction a flat top, and possibly even
a decrease for © » 0, then a roughly exponential peak with logarithmic slope
of about 11(GeV/c)-z followed by a minimum at -t~ 0.6 (GeV/c)® and a
secondary maximum at -t~ 1.0(GeV/c)?. The forward flat top is usually
ascribed to the contribution from a large spin-flip term. Since this is
proportional to sin ©, it is bound to vanish for @ = Q. It may, however,
raise quickly as soon as O is away from the forward direction and could

thus give rise to the observed structure in the very forward cross-section.
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Concerning the dip-bump structure at larger Itl we note that it is present
even at the highest energies. Thus one finds a cross-section that seems
to show a diffraction pattern in a case where diffraction cannot occur;
remember that diffraction depends upon the interference between the
incoming plane wave and the outgoing scattered one describing the same

type of particles.

The word "&a la mode"™ to describe a forward peak in an inelastic reac-
tion is instead "peripheral". In a very qualitative, semi-classical
picture this means that an inelastic 7p reaction occurs only for incident
pions hitting the non-central, or peripheral part of the proton. The
pion is therefore only slightly def'lected by the interaction and should
in the majority of cases be scattered at very small angles, which explains
the peak. Since the nuclear forces of longest range are those mediated
by particles having the smallest masses (largest Compton wavelengths), this
interpretation means that the incoming pion interacts only with the meson
cloud surrounding the proton. In particular, the charge-exchange reaction
could be described along these lines by saying that the proton is trans-
formed into & neutron by virtual emission of a positive p=-meson, which is
absorbed by the negative pion to become a neutral pion. Note that the
incident pion cannot absorb a virtual pion to become a pion, since this

would violate conservation of G-parity and even ordinary (space) parity.

These considerations form the intuitive basis of the one-particle-
exchange (OPE) model. The ideas can be substantiated in terms of, for
example, Feynman diagrams. The graph describing the p-meson exchange
contribution to the reaction ﬂ-p > 7m°n 1is given in Fig. 7.2. We shall
consider the OPE model in some detail later on. Here, let me only warn
you against two things. First, a Feynman diagram like that in Fig. 7.2
does really not describe the space-time development of the interaction.
Even if it is of great didactic help to thirk of the p-meson as being
emitted and reabsorbed, the physical theory underlying the Feynman graphs
is much more sophisticated than that, as you have learned, for example,

"from Prof. Veltman's lectures. Second, straight-forward calculations from
the simple Feynman diagram of Fig. 7.2 give results in definite disagree-
ment with the experimental findings. Thus, it is at best a qualitative

way of visualizing how the charge-exchange reaction could take place.



3-87

Fig. 7.2

Feynman diagram for p-meson exchange
in pion-nucleon charge exchange.

Before we leave the experimental results on the pion-nucleon charge-
exchange scattering, we mentioned that the polarization parameter Pc.e.
has also been measured. The results are exhibited in the two last
drawings of Fig. 6.9. Although the errors are rather large, the data
evidently show a non-vanishing polarization. We shall come back to this
point later, in connection with the Regge pole model. In fact, the pion-
nucleon charge-exchange reaction thoroughly studied experimentally as it is

is, constitutes a very adequate test for that model.

The other three charge exchange reactions which have been measured so
far may be discussed in an analogous fashion. In particular, the ampli-
tude for charge exchange can always be related to a difference of elastic

amplitudes by invoking isospin invariance.

Exercise 7.2: Prove that the amplitudes for charge-exchange are related to

the elastic amplitudes by, in an obvious notation,

1) Kp » Kn = (K'n) - (K'p)yy »
ii) np »pn = (pp)y = (P)gy »
1ii) pp »m = (pp); - (Pn)g; -
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The experimental results are given in Figs. 7.3-7.5 and summarized in
Table 7.1. The general trend of the data is the same as for pion-nucleon
charge exchange: decreasing cross-section as function of the incident
momentum, and a pronounced forward peak in the differential cross-section.

Minor differences, as shown in Table 7.1, should, however, be noted .

o O - - - - - - - > o - - - - - o -

Exercise 7.3: Assume a one-particle exchange mechanism for charge-exchange

scattering. Which particles can be exchanged in the
different reactions? [Hint: Consider exchange of the
pseudoscalar mesons n, n and K, the vector mesons p, w, ¢
and K* and the 2" mesons A.(1310), £°(1250), £°/(1500) and
K*‘(1h10). Use the known conservation laws for strong
interactions to rule out all but the p-, the A2~ and, in the

NN and NN cases, the w-meson.]

Many other two-body and quasi-two-body reactions have been studied
extensively. Let us just mention a few of them to see the general
character of the results. Figures 7.6 and 7.7 show the differential cross-
section for the associated production, or strangeness exchange reaction
u+p - Kf8+, as well as the corresponding polarization parameter P, in this
case measured by investigating the decay of the zv. The forward peak in
the cross-section could, in the spirit of the OPE model, be due to exchange
of a K'-meson; the K-meson is ruled out from parity conservation. Note
also that there is some trace of a minimum in do/dt at -t ~ 0.6 (GeV/c)?,
followed by a secondary maximum. Moreover, there seems to be a back-
ward peak, where the outgoing baryon prefers the direction of the incoming
meson. In the OPE model, this would mean that the incoming pion is
transformed into an outgoing sigma, and would require the exchange of a
baryon, in this particular case having strangeness different from zero.
Possible candidates are the A- and the I-hyperon and the Y*-resonances.

The borresponding Feynman diagram is given in Fig. 7.8.
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Fige 7.3

Differential cross-section for K-p -+ K°n in the range 5 < pjap S 9.5 GeV/c
taken from P. Astbury et al. [Physics Letters 23, 396 (1966)] .
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Differential cross=-section for i).p > nn in the range 5 £ pjgp S 9 GeV/c taken
from P. Astbury et al. [Physics Letters 22, 537, and 23, 160 (1966)].
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Diff'erential cross-section for ﬂ+p > K" at 3.23 GeV/c as measured by
R.R. Kofler et al., taken from Van Hove's 1966 Berkeley Report (see
caption to Fig. 6.10).
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Fig. 7.8

Feynman diagram with baryon exchange that contributes
to a backward peak in the reaction n*p » K'i*.

We note in passing that the same mechanism, baryon exchange, could be
invoked to explain the backward peaks in ntp elastic scattering. In
particular, both the nucleon and the N*(1236) could be exchanged in u+p
backward scattering, while the ﬂ-p case need a particle carrying two units
of charge, thus requiring N;zaé-exchange. This could be the origin of the

experimentally observed difference between the two reactions.

It should be noted, as pointed out to me by Dr. P. Carlsson, that the
baryon exchange model is not the only possible explanation of a backward
peak, since such a structure may also result from resonance formation and

decay in the direct channel.

An interesting reaction from the point of view of the Regge pole model
is the process ﬂ-p - nn. Experimentally, it is investigated by the same
techniques as the pion-nucleon charge exchange scattering, involving the
detection of the decay of the final meson into two gamma-quanta. The
experimental cross-section as given in Fige. 7.9 is also rather similar to
the charge exchange one. Note in particular the flattening off for very
small momentum transfers. In a OPE model, the only known meson that

could be invoked to explain the forward peaking is the Az-meson.

To illustrate the result on gquasi-two-body production, we reproduce
in Fig. 7.10 some results obtained in @' p collision at 8 GeV/e. For

comparison, the elastic cross-section is also given in the figure. The
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Fig. 7.9

Differential cross=-section for ﬂ-p »>nn, n > 2y, at 5.9 and 18.2 GeV/c from
0. Guisan et al. [Physics Letters 18, 200 (1965)]. Curves are freehand
fits to the data, and error bars only indicate typical statistical errors.
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Differential cross-sections for various (quasi-)two-body reactions in ﬂ+p
interactions at 8 GeV/c from D.R.0. Morrison's invited paper at the
Conference on High Energy Two Body Reactions, Stony Brook, April 1966
[preprint CERN/TC/Physics 66-20, 10.8.1966] .
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solid lines represent the predictions of the OPE model (with absorptive
corrections). The general experimental trend in all reactions are the
same: a more or less pronounced forward peak. This property is shared by

almost all quasi-two-body reactions.

In fact, the experimental results on inelastic reactions reviewed in

this chapter may be summarized in two main empirical rules:

i) The differential cross-section for a two-body (or quasi-two-body)
reaction has an approximately exponential forward peak as soon as
there exists a meson which can be exchanged in the reaction, but not
otherwise. A similar statement is true concerning a backward peak,
where baryon exchange is needed in meson-baryon processes, meson
exchange in baryon-baryon processes.

ii) Most cross-sections for inelastic two-body (or quasi-two-body)
processes decrease as the energy increases. The decrease can be
parametrized as pi:%’ where the exponent n varies from reaction to

reaction, ranging between ~ 1 and ~ 4.

A few final comments on these points. We have seen many examples of
forward peaks in reactions where some meson may be exchanged. Are there
any processes in which this is not allowed? Consider for example the
reaction Kfp > K=", Since the incident K-, of strangeness S = -1,
is transformed into an outgoing K+, of strangeness S = +1, exchange of an
S = 2-meson is required. Such an object has not been discovered so far.
Thus, if the rule (i) is correct,.one expects no forward peak in this
reaction, and experiments show indeed no such peak. In fact, I know of

no exception to the rule (i).

All inelastic cross-sections we have discussed so far have shown a
decrease with energy. But there are other ones that seem to have roughly
constant cross-sections over a fairly large energy interval. The most
important examples are the reactions pp - quZ , where N1Z is one of the
isospin-vé nucleon resonances of mass and spin-parity 1410 MeV(§é+),

1520 MeV (%~) and 1688 MeV(¥2*). This process has been measured by a
missing mass technique up to energies corresponding to Pigp = 30 GeV/c.
The results for the total cross-sections are shown in Fig. 7.11, together
with the data for production of N%Z(1236) in the same reaction. The
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Fig. 7.11

The total cross-sections for isobar production in the process pp - pN* as
functions of pj,p» teken from I.M. Blair et al. [Phys.Rev.Letters 17, 789
(1966)] .
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lalter shows a decreasing cross-section and is in fact below the detection

limit at Pigp ™ 15 GeV/c. There might be a f'ew meson-induced inelastic
reactions also having roughly energy-independent total cross-sectious, but

the energy intervals in which they have been investigated are not wide
enough to allow a firm conclusion.
A detailed treatment of inelastic two-body processes, in particular

illustrating the two rules (i)-(ii), may be found in the report by

D.R.0. Morrison at the Conference on High Energy Two Body Reactions,

Stony Brook, April 1966 (see caption to Fig. 7.10).



PART III

(Chapters 8-10)

COMPLEX ANGULAR MOMENTUM IN POTENTIAL THEORY
HADRON REGGE TRAJECTORIES
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CHAPTER 8 - BRIEF DESCRIPTION AND HISTORICAL SURVEY

Let me first in rather general terms try to give a description of what

the Regge pole model deals with. It appears in two different, although
closely connected contexts.

i) By means of a "Regge trajectory", it correlates particles (bound states

and resonances) of the same internal quantum numbers (baryon number,

isospin, G-parity, strangeness, etc.) and of the same parity, but with
spins that differ in units of two.

ii) High energy (quasi-)two-body reactions are predicted to be dominated by
the exchange of a few of these trajectories.

Let us illustrate the first point by some examples. Consider the
nucleon N(938) and its isobar N*(1688) of isospin ‘. and spin-parity 54", and
plot them in the diagram of Fig. 8.1 with the spin, J, considered as a func-

tion of the energy squared, E®; such a picture is known as a Chew-Frautschi
diagram.

A(1920) -~
N2 ‘,.A"'
52|
~

| A (1236) - N1688)
V2 N(938)

| 1 1 ] i>Ez

1 2 3 4 RG‘v)ﬂ

Fig. 8.1

The Chew-Frautschi diagram for the N- and A-trajectories.

The Regge pole model then states that there exists a (complex) func-
tion, aN(E), such that
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Re ay(E = 938 MeV) Ya s (8.1)

1]
n

Re aN(E 1688 MeV) = %4, . (8.2)

This function is called a "Regge trajectory"; in the Chew-Frautschi plot
it links the two, a priori separate points. It can, in fact, be looked
upon as a function that interpolates the angular momentum between the

physical values. Usually, the dependence of the Regge trajectory on the

energy is assumed to be

Re aN(E) = ;N+bNE‘ , (8+3)

which means a straight line in the Chew-Frautschi diagram. If this is true,

one has

1

- -2 ~

—(—-7 Re a (E) = by 1688 o TR (MeV) 1.0 (GeV)™*. (8.4)

Take another example, the isospin % resonances Na/(1236) or, as it is
often called, the A(1236), and the A(1920), of spin-parity %' and %,
respectively. They are also marked in Fig. 8.1, but cannot be connected
by the nucleon trajectory, since the isospins are different. By the Regge
hypothesis, they are instead connected by another trajectory, aA(E), such
that

1236 MeV) = % , (8.5)

Re aA(E

Re aA(E 1920 MeV)

/e (8.6)

If one again assumes a linear trajectory in the Chew-Frautschi plot, one

obtains
sy @, (B) X 0.9 (GeV) ™, (8.7)

which is roughly the same slope as for xye
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Similar considerations also apply to, for example, the mesons, among
them the p-meson, although it is less certain here whether there are at
least two particles on each of the trajectories, simply because the spins

and parities of the higher boson resonances are not well established.

In summary, the first claim of the Regge pole model is the existence
of trajectories a(E) such that whenever E equals the mass of a particle on
the trajectory, Re a(E) equals the spin of that particle. Several
particles with identical internal quantum numbers and parity may lie on the
same trajectory, provided their spins differ by two units. Experimentally,

-2
the slopes of the trajectories are about 1(GeV) .

To illustrate the second application of the Regge pole model, consider
the reaction ﬂ-p -» 7°n. The model claims that the object being exchanged
in this process is not really the p-meson as we discussed previously, but

instead something which is related to the p-meson trajectory ap, for which

Re ap(E = 760 MeV) =1 . (8.8)

In particular, the energy-dependence of the cross-section ddc e /dt is

immediately given by this trajectory. .
In this way, the Regge pole model constitutes a connection between
low-energy phenomena (resonances) and high-energy ones (differential cross-
sections, etc., at large energies). It requires detailed considerations
to really understand the two points, and also the connection between them.

Before we seriously dive into the Regge pool, let us however give a few

historical facts.

The Regge pole model originates in potential theory. In fact, the
whole story was started by Regge and his collaborators in the late 1950's
when they asked the question whether, and under what circumstances one
could consider the partial wave amplitude f(£, E) not only as an analytic
function of the energy E but also as an analytic function of the angular
momentum £. Regge remained all the time within the context of potential
~theory and could there strictly prove what he did. It was soon (around
1961) realized by other physicists (Chew, Frautschi, Gribov, Froissart,
just to mention a few of them) that the Regge ideas would have important

consequences for the interaction between elementary particles. However,
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since a complete theory for hadronic interaction is lacking, one must here
be content with plausibility arguments and guided guesses. These are,
however, based, on what is strictly proved in potential theory, and on those
general requirements which the strong interaction fulfils. In short, while
the Regge approach can be strictly proved in potential theory, it remains

a suggestion, or a model, for elementary particle interactions. "The

Schr¥dinger equation is the theorist's laboratory."

The Regge pole model first drew maximum attention around 1962 (see,
for example, the Proceedings of the 1962 Int. Conf. on High-Energy Physics
held at CERN). This was primarily due to the fact that the most simple-
minded approach, viz., one Regge trajectory exchange, predicted the shrink-
age of the pp ditfraction peak, in agreement with experiment. Soon, however,
experiments revealed a constant forward peak in utp elastic scattering, and
even an expanding diffraction peak for Ep interaction, in definite disagreement
with the assumption of one trajectory dominance. Due also to other diffi-
culties (occurence of Regge cuts, contributions from several Regge
trajectories), the Regge pole model lost most of its f'lavour. This can be
followed from the Conference proceedings. At the 1963 Sienna Conference,
Regge himself gave a pessimistic outlook. At the 1964 Dubna Conference the
Regge pole model was indeed discussed at one session, but with emphasis on
rather subtle theoretical problems. And at the 1965 Oxt'ord Conf'erence, the
word Regge pole was hardly mentioned at all, although it was about this time
that the model started to become "&a la mode™ again. Finally, at the 1966

Berkeley Conference, the Regge pole approach was once more taken seriously.

Why did an almost dead model revive like that? I think the answer to
this question is two-fold. First, the ingenuity of the experimenters
provided the theorists with a large amount of accurate high-energy data, in
particular on reactions which are crucial to the model, like pion-nucleon
charge-exchange scattering. Among other things, the numerous experimental
results allowed the theorists to use expressions containing several unknown
parameters which could be fitted to the data. In fact, it turned out that
one of the virtues of the Regge pole model was its elasticity, in the sense
that the really clean-cut predictions of the model at present accelerator
energies were rather few. Instead, it afforded a theoretical framework,
convenient for parametrization of the scattering amplitude and thus for

a phenomenological discussion of the data.
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The second point contributing to the Regge pole boom was the fact that
most other approaches (optical model, peripheral model, etc.) gave predic-

tions which were in disagreement with the data, and thus had to be ruled out.

In other words, the present interest in the Regge pole model is mostly
due to its success on a phenomenological level, while it is still rather
incomplete from a strictly theoretical point of view. Furthermore, it has
some internal anomalies, like the seemingly inevitable angular momentum cuts
(see Chapter 16). We shall in the following try to indicate both the

phenomenological successes of the model and its theoretical weakness.

CHAPTER 9 - REGGE POLES IN POTENTIAL SCATTERING

We shall always consider a (real) Yukawa potential

1
vy(r) =g ;exp (-vr) , (9.1)
or, more generally, a superposition of Yukawa potentials

V(r) = / dv g(v) :—.exp (=vr) . (9.2)

w>o

We adopt the convention that whenever we talk of a potential we mean such a
superposition. There are both mathematical and physical reasons for
considering this particular type. Mathematically, it makes possible the
proofs of statements (i)-(iv) below in the simplest way. Physically, it is
presumably the kind of potential which best reproduces elementary-particle
interactions, since exchange of a particle having mass v gives the same
form of the scattering amplitude as the Yukawa potential (9.1) in the Born

approximation.

Let us recall our discussion of the partial wave scattering amplitude
£(f,E) as an analytic function of the energy E, given at the very end of
Chapter 4. Since the radial Schrddinger equation (4.68), from which

f(2t,E) is to be determined, contains B in a "simple" way one may investigate
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solutions to the equation also for complex values of E. Such considerations
led to the conclusion that f(f,E) is an analytic function of E, except for
cuts and possible poles which may correspond to bound states and resonances.
The idea of Regge was now to observe that the radial Schr8dinger equation
also depends in a simple way on the angular momentum £. One could thus try
to explore its solutions for values of / other than non-negative integer
ones, in fact for arbitrary complex [-values. This is at first sight a
purely mathematical game, since physical (orbital) angular momentum occurs

in quantum mechanics only as an integer. It will turn out, though, that

the mathematical investigation also gives a great deal of physical insight.

It will take us much too far to follow the details of Regge's discussion.
We only state those results which are most important to our subsequent

applications (we assume E real):

i) The radial Schrddinger equation (4.68) has solutions for arbitrary
complex £, provided Re £ 2 -%. In particular, this means that one
may define a partial wave amplitude f(£,E) for complex f-values.

ii) £(¢,E) is a meromorphic function of £ (analytic except for poles) for
Re £ > -'/z, but is continuous for Re £ = -'/z.
iii) The poles of f(Z,E) are called Regge poles and occur:
- on the real f-axis if E is below the scattering threshold Eth’
viz., E < 0 in the non-relativistic case; the residue at the
pole is real here;
- in the upper half plane, Im £ > 0, if E is above E (E > 0 in the
non-relativistic case).
Moreover, the number of poles to the right of Re t = -% is finite.
iv) As |f] » e, |£(£,E)| is suitably well-behaved; this property will be

needed only in connection with Eq. (9.18) below.

Let us add a few comments to these results. First, since it is
possible to define f(2,E) for arbitrary complex £, it means in particular
that £(£,E) may be defined for all real !-values greater than -Y%. 1In
other words, one is able to interpolate the partial wave amplitude between
integer !-values, where it was first defined. This is illustrated in
Fig. 9.1. Such a result, although only a special case of the continuation
to arbitrary £, is of importance for the impact parameter representation as

we discussed it in Chapter 4, in particular for the transition from

Eq. (Le46) to Eqe (4el7).
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An illustration of the interpolation of the partial wave amplitudes
between integer f-values; since f?t, E) is in general
complex, we have plotted |f(£, E)]|.

The analyticity of f(#, E) as function of £ is illustrated in Fig. 9.2.
In the complex f/-plane we have also marked the position of one Regge pole
and how the pole position moves as. the energy E varies. Detailed considera-
tions show that the pole, which for E << Eth lies to the left of the line
Re ¢ = -)Q, could for some f£=-value cross this line and enter into the
meromorphic domain; whether it does so or not depends among other things
on the strength of the potential.” If E is still below the scattering

threshold Eth’
figure. As E passes Eth’ the position of the pole acquires a positive

the pole moves along the real axis as indicated in the

imaginary part, and the trajectory moves off into the upper half-plane. As
E increases to +e, further considerations show that the trajectory turns

back and eventually returns to the lef't of Re ¢ = -}Q.

Let us now more carefully def'ine the commonly used concepts, already

introduced above:

i) A Regge pole is a pole of the partial wave amplitude f(£,E) in the
complex f-plane. If it occurs at ¢ = @, and if it is a single pole

(pole of order one), then in the neighbourhood of £ = a one has
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902

An example of the motion of one Regge pole in the complex

angular momentum plane as

the energy E varies from

numerically large, negative values through the scattering

threshold Eth

f(¢,E) = +

L -a

(terms, finite at £

to large positive values.

a) . (9.3)

Since £(£,E) also depends on E, so do in general the pole position

a - a(E) and the residue R = R(E).

ii) As E varies, the pole moves in the complex t-plane.

a = a(E) is called the trajectory

So far, it is pure mathematics.

non-negative f-values. We shall see,

pole has definite physical implications.

as follows.

Consider the pole position a as f

there is an energy E_ such that a(En) is a non-negative integer

a(En)

Therefore,

of the pole, or the Regge trajectory.

Physics is still cont'ined to integer,
however, that the concept of a Regge

In a rough way this may be done

unction of the energy E. Suppose

=n

(9a4)
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Obviously, this requires En to be less than Eth’ since otherwise a would
have an imaginary part. For energies near to E = En’ a Taylor series

expansion gives

a(E) = a(E,) + (E-En)a'(En)+ eee X n+ (E-BEp)a’(E,) , (9.5)

so that for £ near to n and E near to En the amplitude reads

- R R ‘- 1!
DN e camr o vl EcnRICEEE IRNCID

But this means that £(# = n,E) has a pole as function of the energy at

E = En’ which corresponds to a bound state at that energy of angular
momentum / = n. Summarizing, if the Regge trajectory passes a non-negative
integer n for an energy En < Eth’ then it implies a bound state of energy En
and angular momentum n. Since one and the same trajectory may pass through
several integers, it may give rise to several bound states; for example, the

trajectory of Fig. 9.2 gives bound states with n = 0 and n = 1.

What happens for E > E We can of course not get a bound state.

4
th’
But how about a resonance? To see how it may come about, let us suppose

that there is an energy Em > Eth such that

Re a(Em) =m, (907)

where m is a non-negative integer. As before, we expand

a(E) = Re a(E)+i Im a(E) X

P

n+ (E-Ep) [& [Re a(E)]]E_E +i Ina(Em) . (9.8)
—m

Here, we assumed Im (E;) to be so small that no further terms are needed in
the expansion of the imaginary part. It is convenient to introduce the

notation

‘ =[§E [Re a(E)]:\E (9.9)

i} =Ep
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Yo =1 a(Em) | (9.10)

L =

to be able to write, for E near to Em and £ near to a(Em)

R t-m |
f(t,E):-;-LE-Em+i'/zI‘- "‘] . ' (9.11)

K

Consequently, if the form (9.11) is valid also for £ = m, the partial wave
amplitude £(£ = m,E) has now a dependénce on the energy which is character-
istic for a resonance of angular momentum ¢ = m, energy Em and width T

[ef. Eq. (4.61)]. Some conditions must be fulfilled, though, for this
interpretation to be true. First of all Im « (Em) must be so small that
a(Ey) = m+ i Im a(Ey) does not differ too much from m in order to allow

the above-mentioned extrapolation to the physical f-value. Second, I' must
be positive, which requires k to be greater than zero since Im a(Ep) is
positive. In order that a Regge trajectory should give a resonance, it
must thus increase through the value Re @ = m as the energy increases
through Em. For example, the trajectory of Fig. 9.2 gives a d-wave
resonance at E = Ez, but none as the trajectory bends over and decreases

through the values Re a = 2, 1 and O.

In summary, a Regge trajectory a(E), the real part of which passes

through a non-negative integer n at an energy E = En’ gives rise to:

i) a bound state if E < B,
ii) a resonance if E > E,,, if Im a(Ep) is smell, and if Re a(E) increases

through its value at E = En'

In this manner, one and the same trajectory not only connects bound
states of different angular momenta to each other, but also possible
resonances to each other and to the bound states. The trajectory of
Fig. 9.2, for example, represents two bound states and one resonance. In
this sense one may say that the Regge trajectory interpolates the angular

momentum between integers.

Instead of picturing the Regge trajectory in the complex f/-plane with
the energy E as a parameter, it is very often convenient to concentrate

on Re a(E) and plot it as a function of E. This gives the diagram in
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Pig. 9.3, which represents the same trajectory as that of Fig. 9.2.

Essentially, this is the Chew-Frautschi plot already mentioned in Chapter 8.

Two things must be done first, though. Instead of E one should take E? as

a variable . Moreover, one should extend the Regge ideas from the safe

realms of potential theory to the more exciting but less certain context of

elementary-particle interactions. This will be done in the next chapter.

—-F

E: EnE,;

A ///////////////

- Fig. 9.3

The Regge trajectory of Fig. 9.2 now with Re a(E)
plotted as a function of E.

Before that, however, we shall return for a while to mathematics and

explore the consequences of the Regge ideas on the partial wave sum

kF(cos ©, B) = (2!4-1)f(l,E)P (cos®) . (9.12)

[\/ g

o
1]
-3
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The aim is to investigate what the analycity properties of f(¢,B) as a
function of £, and in particular the Regge poles, means for the total
amplitude F(cos @,E). For that purpose, we apply a trick known as the
Sommerfeld-Watson transform. Its starting-point is to consider the
partial wave expansion as the sum of residues of an analytic function,
and then to use the Cauchy integral theorem in order to transform the sum
into an integral. Finally, by deforming the integration contour, one is

able to exhibit the contributions from the Regge poles explicitly.

To this end, consider the function

n(22+1)f (L, E)Pe(- cos ©)
8lL) = sin =n¢

. (9.13)

From the treatment above we know that £(£,E) is an analytic function of [,
except for Regge poles. As is indicated in Appendix 3, Pl(-cos‘g) is also
an (entire) analytic function of £, and so is sin @f. Consequently, g(£)

is analytic for Re £ > =)z, except for poles. These are:

i) the Regge poles;
ii) the poles at £ =n, n = 0,1, 2, +es , arising from the vanishing of
sin mf. The residue of g(£) at £ = n is obtained by noting that, for

£ near to n, one has

sin w¢ = sin mn+ (£-n) l'i- sin 111:] toees X
ds
£=n
(9.14)
~ (£-n)7 cos an = (£-n)u(=)" .
Remembering that Pn(-x)<= (-)nPn(x) for integer n, we thus get
Res g(2 =n) = (2n+ 1)f(n,E)Pn(003 @), (9.15)

j.e., exactly the term in the sum (9.12). This is one reason why one

considers g(2), Eq. (9.13).
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Now, let C be a path that encircles the zeros of sin #f but not the
Regge poles. For instance, the curve C of Fig. 9.4 will do if we assume
its far right ends to be closed at infinity. Cauchy's integral theorem
(cf. Appendix 1) then implies

5117_{/ (£)ar = \/‘“Res g(£ =n) =
c n=o
(9.16)
= Z (2n + 1) £(n, E)Pn(cos ®) = kF(cos 6,E) .

A1

/‘ m 2 a,
qAq x

% ? T Reggepoles
/-VZ -+ azx i
/ o T 3~ 4 —~Res
7

Fis. 904

The choice of the path C in Eq. (9.16).
Three Regge poles are exhibited, the positions
of which correspond to E > Eth'
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Summarizing, we have derived an integral representation for the
scattering amplitude F(cos ©,E), in which the sum over partial waves at
integral angular momenta is replaced by an integral along a path C in the

complex angular momentum plane.

How does this formula exhibit the Regge poles when we even avoided
them in order to get Eq. (9.16)? The point here is that we may use the
Cauchy theorem once more to deform the contour C and pick up the contribu-
tions from the Regge poles. To this end, consider the curve C’ of
Fig. 9.5. It consists partly of the previous path C, but also of pieces
of a circle in the first and fourth quan&rant. The circle radius will
eventually tend to infinity. Moreover, the contour C’ comprises the
straight line Re £ = -% + €, € > 0 small; € is there only to assure that
the path of integration stays within the domain of analyticity for £(£,E)
and, as a consequence, for g(2). Applying the Cauchy theorem to the contour

integral of g(f) along this new path C’ gives

A AIm‘?

a3 x
\Regge poles

C a; / .
— 2—39% t »>Re £

0 1

-

DN

QAN

Fig' 905

The path C’ of integration used in deforming the contour C
to pick up the contributions from the Regge poles.
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s 938(,)“ - - > Res g( = a3) , (9417)
¢’ i

where the sum runs over all Regge poles inside C’. Note the minus sign in
front of the sum, since C’ is encircled clockwise, i.e., in the negative

direction.

On the other hand, we have in a self-evident notation

(9.18)

[0:]
—~
N
S~—r
a
E S
n
3
+
T
+
N —
+
>
[1,]
Pany
™
N—r
=7
o
L]

Now, using the property (iv) on page 3-107 above, one is able to prove that
the integrals along the circular pieces of C’ vanish as the radius of the
circle tends to infinity. For this to be true, it is essential that g(¢)
of Eq. (9.13) is defined with the factor sin #{ in thke denominator. For
instance, a factor tan #¢ will not do, although it could give the result
(9.15). I am indebted to Dr. H. Hogaasen for this remark. We shall not
carry through the proof but merely take the vanishing for granted.

Introducing the "background integral" from the definition

. i ' (2e+1)f(e E)P,(~ cos w)

BI{cos ©, E) = o /. o7 (9.19)

Re £=-Y%+¢
we obtain, by combining Egs. (9.16) and (9.18),
1 7 _
kF(cos ©,E) = el g(2)as = (ﬁ g(e)ae - T' , g(e)dz
c f
(9.20)

a;) + kBI(cos 9, E)

‘:ﬂRes g(e
/.
i
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This constitutes a new representation of the scattering amplitude as a sum
over the Regge poles to the right of Re £ = -%, and a background integral.
To exhibit more clearly the Regge pole sum, we calculate the residue of g(£)
at £ = a;. The form for £(2,E) is given by Eq. (9.3). Since all other

factors in g(?) are t'inite at £ = a,, provided a; is not an integer, we have

n[ 20 (E) + 1]R; (E)P,, (B)(-cos 9)

Res g(¢ = a3) = sin 72 (5) . (9.21)
i

For economy in writing we introduce

By = By(B) = = £ [205(E) + 1]Ry(8) . (9.22)

Both here and in Eq. (9.21) the energy dependence is explicitly exhibited.

The final result then reads

ﬁi(E)Pai(E)(-cosﬂa)
sin nd;(E)

F(cos 9,E) = + BI(cos 9,E) . (9.23)

i

We shall call this formula the Regge-Sommerfeld-Watson (RSW) representation
of the scattering amplitude. It will be used extensively in our subsequent

discussion.

What are the advantages of the RSW representation? A general answer to
this question can be given as follows. The partial wave expansion is of
immediate value only when a few terms in the sum contribute. As soon as
many terms must be taken into account, the sum becomes difficult to handle.
In that case it could happen that the RSW representation is simpler in the
sense that only a f'ew Regge poles appear in the sum and that the background
integral either can be neglected or be handled in one way or another. i‘or
instance, provided the background integral may be neglected and only one
Regge pole contributes, one knows explicitly the cos @-derendence of the
scattering amplitude since Pa(~cos‘9) is a known function. Although in a
different context, these considerations form the basis for the use of the
RSW representation in high=-energy scattering phenomenology, as we shall

subsequently see.
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We have now developped the necessary formalism in order to give a more
stringent discussion of how a Regge pole may give bound states and resonances.
Let us concentrate on the contribution to F(cos ®,E) from one Regge pole
a(E)

E)P, (-cos @)
F(cos 8, E) = a sir(lEgra(Ej Foeee (9.24)

By using Eq. (A3.11) of Appendix 3, one finds a contribution to the nth

partial wave from this Regge pole that reads

£(2 = n,E) = w[aéfﬁ* D a(E;_n P (9.25)

The dots here correspond to the dots in Eq. (9.25). It shows that one

Regge pole contributes to all partial waves, in general.

Exercise 9.1: Derive Eq. (9.25), using Eq. (A3.11).

One may now discuss, in exactly the same way as above, what happens at
such an energy E = En < Eth that a(En) = n. The conclusion is that
f(¢ = n, E) has a pole in energy at E = E .  One may also repeat the
previous treatment to discuss the case when E = Em > Eth and Re a(Em) = m.
The conclusion one arrives at is that this represents a resonance provided
Re a(E) increases through the value m as E increases through Em. The only
difference in the present and previous treatments is that we now consider
the physical partial wave amplitudes, i.e., (2, E) for non-negative integers
£ = n, while previously we considered f(2,E) in the neighbourhood of the
Regge pole, i.e., for £ X a, and extrapolated to the physical (f-value (in

the case of a resonance).

Exercise 9.2: Discuss what happens for £(£ = n,E), Eq. (9.25), at an

energy E such that Re @(E,) = n in the two cases (i) E <Ey,

(i1) E,>E,, - Hnt: Repeat the treatment of pages 3-109 to 3-111.



3=119

CHAPTER 10 - HADRONS ON REGGE TRAJECTORIES

The ideas presented so far are well-established ones in the sense that
from well-defined mathematical assumptions one arrives by logical steps at
watertight conclusions. However, the results, interesting and original
as indeed they are, are perhaps not terribly exciting, since we at least
feel that we have a pretty good understanding of the Schrddinger equation

without invoking the Regge investigations.

The really exciting things come into play if one conjectures that the
Regge idea generalizes to hadronic interactions. It cannot be much more
than a conjecture, since there exists no complete, firmly established
dynamical framework from which logical conclusions can be drawn. However,
the experimental consequences of the conjecture are certainly so interesting
that from a purely phenomenological point of view much has been learned by

applying the Regge pole model to hadronic interactions.

The results from the potential approach that are taken over to

hadronic interactions are, essentially, the following:

i) The partial wave amplitude f(£,E) can be defined for complex f/-values.
It is analytic, except for a finite number of isolated Regge poles of
order one, at least in the half-plane Re 2 > -Y2. Sometimes we shall
need analyticity further to the left of the line Re /[ = -Ya.

1i) As | 2| » », the amplitude |f(Z,E)| behaves in such a way that the

contribution from the circle at infinity to the RSW transform vanishes.

These assumptions imply the RSW representation

B3 (E)Pg, () (- cos ©)
sin nai(E)

F(cos ©,E) = + BI(cos 8, E) (10.1)

P~r\/q

of the scattering amplitude. It follows that a Regge pole gives bound
states and resonances in exactly the same way as it did in potential

scattering.

When applying the Regge ideas to hadrons, it must also be kept in mind
that a scattering amplitude now carries quantum numbers like baryon number,

isospin, G-parity (when it applies), strangeness, etc. In other words, one
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must tell which particular scattering process one considers. Consequently,
each Regge trajectory also carries the same attributes. Particles can lie
on the same trajectory only if they have the same set of quantum numbers

except for spin.

10.1 Boson Regge trajectories

To discuss the classification of hadrons on Regge trajectories, let us
first consider the simple case of ww-scattering in the isospin I = 1 state.
Experimentally, there exists a ##, I = 1 resonance with ¢ = 1, viz., the
p-meson. The assumption is now that this particle lies on a Regge trajec-
tory ap(E), which then satisfies

Re ap(E =m = 1 . (10.2)

o)
Im ap(mp) is related to the width of the p-meson. In a Chew-Frautschi plot
i.e., a diagram like that in Fig. 9.3 but with E? instead of E on the

abscissa, we then know one point on the p-trajectory (see Fig. 10.1).

p

|
| |
|

) 1 ] 1 >E2
(0760)° 1 2 (e 3 [(Gev)']

Fig. 10.1

The Chew=-Frautschi diagram for the p-trajectory,
assuming a constant slope of 1 (GeV)™2.
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Are there any more particles on the p-trajectory? In this approach
we need a "m, I = 1 resonance, so from Bose-Einstein statistics it cannot
have spin O or spin 2. The first possible candidate for a "Regge
recurrence" of the p-meson would then have spin 3. What do we know about
its mass? The only thing we can be sure of is that if it exists it must be
heavier than the p-meson; recall that a trajectory must increase through
an integer in order to give a resonance. However, the following admittedly
crude argument may be applied. As we saw in Chapter 8, the N- and the A-
trajectories have slopes approximately equal to 1(GeV)-z. If the same slope
applies to the p-trajectory, we may extract the mass ms; of the first Regge

recurrence of the p-meson from

5 -1
£ zx 1 (10.3)
ms -mp
to get
mi X 2+mf = (1.61)% . (10.4)

Consequently, a straight-line p-trajectory with a slope of 1 (GeV)-z predicts
the first Regge recurrence of the p-meson at ~ 1.6 GeV with spin-parity 3.
Indeed, as you know from Prof. Goldhaber's lectures, the g-meson of mass

~ 1.65 GeV seems to have the right quantum numbers.

In the same simple-minded way one may discuss any scattering process.
Take for example wp-scattering in the isospin I = 1 state, and neglect for
the sake of simplicity the spin of the p-meson. Here, we know of at least
one resonance, the Az-meson, of spin-parity 2" and mass 1.310 GeV. The

Az-trajectory would then satisfy

Re aAe(E =mp,) =2 . (10.5)

Which could be the other particles on that trajectory? One might expect
mesons with spins 1 and 3, since Bose-Einstein statistics do not apply for
non-identical particles. However, there is now another argument which is
invoked in order to force the first Regge recurrence of the A;-meson to

have spin 4 [spin O will be excluded; see Eq. (10.13) below]. This is the
concept of signature, intimately linked to the existence of exchange forces.

It requires a small detour back to the mathematics of the Schr&dinger equa-

tion to explain these concepts.
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From nuclear physics one is familiar with the existence of a (space-)
exchange potential'wzf(r). By definition, it exchanges the space co-
ordinates of the two interacting particles. That it to say, if ¢(¥) is the

: 3 > > >
wave function for the relative motion r = ry =ra, then

Op -»> - --> _
Vg (Plo(r) =V (r)g(-r) =
(10.6)
1 L
= Ver(7) = >.,(2“ )£ (2, E)u (r) (=) P (cos0) ,
£=0
where Vex(r) now is an ordinary function of r = IFI. Here, we also

introduced the partial wave expansion (4.67), using the fact that r - -r
implies (r, cos ) » (r, =-cos®).

Such an exchange potential is in fact expected to occur in all
elementary-particle interactions, if a potential description is at all
appropriate. Without further discussion we mention that in field theory

it is connected to the appearance of crossed (u-channel) diagrams, as is
illustrated in Fig. 10.2.

Fig. 10.2

Exchange diagram for the process a+b » a+ b contributing to (a)
the direct potential Vair and (b) the exchange potential'wm{
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The potential that enters in the radial Schrddinger equation is then,

in general, the sum of the usual (direct) potential and the exchange

potential
L
V(r) = vy, (@) (), () =
+ .
Vasrt Vex =V for £ even (10.7)

Vdir-vex =V for £ odd .

Now, the factor (-)l causes troubles when one studies solutions with !
complex. True, one could write, for example, exp (imt) instead of (-)l,
but then one runs into difficulties with the asymptotic behaviour as

|Im ll > oo In particular, the contribution from one of the circular
pieces forming the path ¢’, Fig. 9.5, will not vanish and the RSW representa-

tion will break down.

The procedure is instead to treat the even and the odd f-values

separately. Formally, this may be done as follows. Write

F(cos ®, E)

L B

| >~"8

(2¢+1)£(2,E)P,(c0s08) =

(o]

™~
1}

L e

™~-":8

1
’(21., r (e, E) l_E {Py(cos 8) + Py(-cos®)] + (10.8)

™
1]
o

+% {Py(cos ©) - Py(~cos @)-{j =

= F(+)(cos 8,E) + F(-)(cos 0, E)

where

F(*) (cos 0,8) = & > (224 1)£(*)(2, ) [Py(cos 8) £ Py(- cas®)] . (10.9)

[———;

=0
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Obviously, F(+) is a sum only over even f-values, since the two Legendre
polynomials in the expansion of F(+ cancel tor odd ¢-values, We emphasize
this by denoting the partial wave amplitude for even £ by f(+)(l,E). They
are obtained trom a radial Schr&dinger equation with the potential V T/ of
Eq. (10.7). In the same manner, F' ’ is a sum only over odd f-values, and
the corresponding partial wave amplitudes f( )(l E) are determined from

the potential V( ) of Eqs (10.7). The fact that f( +) and t( -)

from different potentials implies that they are, in general, different

are obtained

analytic functions of £. In particular, one expects f(+) and f(-) to have
different Regge poles.
+
For F(") one may now perform the RSW transform, since no factor (-)l
enters explicitly. The result is a straightforward generalization of the

representation (10.1) and reads

F (cos @», E) = '_/___, m{ 2. (E)( cosd)*P (E)(cos O)’;

(10.10)

+ BI(t)(cos ©,E) .

Here, the extra factor Y, in Eg. (10.9) is incorporated in the functions
ﬂ (E) and in the background integrals. The total amplitude is, of course,

st111 the sum of F( +) and F‘

In summary, the existence of an exchange potential implies that the
partial wave amplitudes f(t)(l,E) have dif'fferent analytic continuations in
£, and, in particular, different Regge poles. One says that a Regge pole of
f\+)(l E) has signature 7 = +, while a pole of f( )(l E) has signature 7 ==

Thus, the signature of a Regge pole, sometimes also called J-parlty, simply

(+

tells whether the pole occurs in the continuation of f or of f

With this signature concept one may write

205, al=)

F(cos 9,E)

o (10.11)
mL al(E)( c0s0)+ 7. P (E)(cos O)}+Bl(cosu E),
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where 7. is the signature of the Regge pole ai(E). Moreover, the background
integral is now the sum of BI(+ and BI'‘ , but we shall not emphasize this

fact since it will be of no subsequent importance.

The signature concept for a Regge pole is extremely important. For the
classifiication on trajectories it implies that a Regge pole manifests itself
as a particle only at f/-values which differ by two units. To see how this
comes about, let us concentrate on the contribution to the partial wave
amplitude from one Regge pole in the RSW representation (10.11). From
Eq. (A3.11) one finds [cf'. also Eq. (9.25)]

£(¢ = n,B) = ﬂ[a(gfﬁ% TaErs [T e o (10.12)

Consequently, a Regge pole of even (odd) signature contributes only to a
partial wave with even (odd) angular momentum and can, therefore, give an

energy pole only if £ is even (odd). Thus, a positive signature Regge

trajectory can only give a particle of even angular momentum, a negative

signature pole only one of odd angular momentum. This 4f = 2 spacing rule

is the first main conclusion to be drawn from the existence of exchange

r'orces.

With this fact in mind, let us now return to ww- and mp-scattering.
In nn-scattering, as we saw, Bose-Einstein statistics already gave the
A¢ = 2 spacing rule, so the signature conceprt is not really needed there.
For mp-scattering, however, occurrence of exchange forces implies that the
Regge partners to A, could only have spin 0, 4, 6, etc. If we again assume
straight-line trajectories of slope ~ 1(GeV)-2, we would get t'or the mass
me of the hypothetical spin-zero particle

2 ~ 2 2

nf Xmf-2=-0.3. (10.13)

Thus, spin 0 is ruled out since it would correspond to a particle of imaginary

mass. For the spin 4 recurrence one obtains
mi X mp +2 = (1.93)° (10.14)

suspiciously in the vicinity of the S-meson.
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In Fig. 10.3, all the known non-strange boson resonances are marked in
a Chew-Frautschi plot. Those having well-established spins and parities
occupy the proper places in the diagram, while those for which spins and other
quantum numbers are not known are put below but at the appropriate energy.
Throughout, horizontal bars indicate the measured full widths. If you like,
this may be called a pessimist's Chew-Frautschi plot for the non-strange
mesons. Also drawn in the diagram are the p- and Az-trajectories, both
assuming a straight-line form with a slope of 0.9(GeV)-2. The fact that
the p-trajectory does not pass exactly through the position of the p-meson
is connected to its determination at negative values of the squared energy:

these points will be further elucidated in Chapter 14 below.

You have had essentially this picture, Fig. 10.3, discussed during the
lectures by Prof. Goldhaber. who also treated the strange mesons in an
analogous fashion. I have nothing new to add here. Let me onlv stress
that the only reasonably well-established trajectories are the p~ and the
Az -trajectories, where two particles might be present on each of them.

For the other particles one is left with two possibilities: either they
are alone on their respective trajectories - although this is not very
exciting it is perfectly legitimate, since the trajectories may bend and
turn downwards before reaching the next possible angular momentum (cf.

Fig. 9.3 in this context): or one could attribute suitable quantum numbers,
including spin-parity, to the resonances for which spin, parity, G-parity,
isospin, etc., are not established. Such highly speculative considerations
have indeed been carried out [see, e.g., D.G. Sutherland, CERN preprint
TH-768 (1967) and references cited therein].

One final point about the p- and the A;-trajectories. For the sake of
argument let us assume that g(1650) is the first Regge recurrence of the
p-meson and that S(1910) is the first recurrence of the Az-meson. Experi-
mentally, it seems as if all these four mesons lie approximately on the same
straight line in the Chew-Frautschi diagram. In other words, the p- and
the A2-trajectories seem in fact to coincide so that one and the same
"trajectory could account for the four particles, spaced as they are by only
one unit of spin. This would then indicate that exchange forces are not
present, or at least play a minor role. In the fashionable language used

at present this is referred to as "exchange degeneracy".
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If one assumes a quark model, and attributes the bosons to Regge poles
of the quark-antiquark scattering amplitude, one may give an argument for this
exchange degeneracye. Namely, the direct forces are due to Feynman diagrams
of the type given in Fig. 10.4(a), the exchange forces to diagrams as in
Fig. 10.4(b). Since qq systems of low masses presumably exist (the mesons),
while a qq system presumably would have rather large mass (and charge VR
the direct potential is expected to dominate over the exchange one. Let
me merely note that it is not really necessary to invoke quarks to explain
the exchange degeneracy. The same argument would apply equally well to the
(more realistic?) case of direct and exchange forces in nucleon-antinucleon

scattering.

q
11 (Qq) t (qq)

Nel
-<<;::
Nel

q @ q q (b) q

Fig. 10.4

Feynman diagrams contributing to quark-antiquark
(a) direct forces and (b) exchange forces.

10.2 Fermion Regge trajectories

Consider mN- (or KN-) scattering. There are now two partial wave
amplitudes £(¢,* ,E) for each value of £, depending on whether j = t+% or
t- Y%, respectively. Since a potential now in general includes a spin-
orbit part proportional to o+ L, the amplitudes f(£,* ,E) would in a
potential approach be determined from different potentials. In particular,
the Regge poles of f(f, +,E), which could give particles of spin-parity

v, %Y, %", %%, etc. (remember the negative intrinsic parity of the pion),
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will in general be different from the Regge poles of f(f,-,E), for which
particles of spin-parity )£+, 3$_, 5§+, DQ-, etc., may occur. Moreover,
appearance of exchange forces implies the 4f = 2 spacing rule in each of

the two groups. Summarizing, a fermion Regge pole is characterized by:

i) the relation between j and £,

ii) the signature, i.e., whether £ is even or odd.

This gives the following four possibilities:

’/2-’ 5/2-’ 9/2 geee

l-1/2: 3/2-., 7/2-, 11/2-’000
+

e+ Ve s %Y, %Y, VT,

+ +
1-1/2: ’/2+, 5/2 ’ 9/2 geee o

positive signature (£ even) and j = t+ Y

positive signature (£ even) and j

]

oo

negative signature (£ odd) and j

negative signature (£ odd) and j

Besides, each Regge trajectory carries isospin and strangeness. Conse-
quently, in aN-scattering there are all in all eight possibilities for a

Regge trajectory.

With these facts in mind, we turn to the experimental results as
presented in the Chew-Frautschi plot of Fig. 10.5 for the strangeness-
zero fermions,. As for the bosons, Fig. 10.3, the well-established
particles occupy their appropriate places in the diagram, while the non-
settled ones are put below but at the proper energy. Again, horizontal
bars give the full widths. Note also the different vertical scales for

the I = Eé and I = 3& resonances.

The strange fermions may be exhibited in an analogous manner, as you

have learned from Prof. Giacomelli.

The situation for the nucleon resonances is perhaps more encouraging
than for the mesons. There seems to be three trajectories with at least
two members. These are the N -trajectory through N(938,Y2%) and
N*(1688, %), and the Ny-trajectory representing N*(1525,% ) eand
N*(2190, % _); both these trajectories have isospin I = /2. The third
one is the I = %, A-trajectory with (1236, %2¥) and 4(1920,%%). Quite
a few well-established resonances of spin > or less, and mass below
~ 1700 MeV, seem to be "Regge singlets", however. Note, though, the last
remark of this chapter. [Note added in proof: It seems now established
that A(2420) has spin-parity ''%4"; see Phys.Rev.Letters 19, 476 (1967).]
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Fig. 10.5

Chew-Frautschi diagram for the non-strange fermions; note the quadratic
. mass scale and the different J-scales for the I = % and I = 3 fermions.
Well-established particles occupy their proper place, unestablished ones
are placed below at the appropriate energies. The notation and quantum
number assignments of Rosenfeld et al. (see caption to Fig. 10.3) are
followed; see the text for f'urther information. Horizontal bars give
full widths.
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Linear extrapolation of the presumed trajectories predicts resonances
of higher and higher spins and masses, and the field is open for specula-
tions. In ract, there has been a bump reported at the very high mass of
~ 3960 WMeV, which would fit on the Ny-trajectory if it is a resonance of
spin-parity 2% (!!!). In aN-scattering, the position of this bump
corresponds to Plap ~ 7 GeV/c. However, this possible resonance, as well
as those occuring in Fig. 10.5 at masses 3340 MeV and 3660 MeV, were not
seen in elastic or total cross-sections measurements, but in a 16 GeV/c
ﬂ-p bubble chamber experiment by investigating the four prong events

containing two or more neutrals
- - - ‘
Tp-TW W p+ MM, (10.15)

where MM denote the missing mass. From studies of the distribution in
the invariant mass of p+ MM, the above-mentioned bumps were round.

[(J. Ballam, Seminar at CERN on April 18, 1967; see also J. Ballam et al.,
Bull.Am.Phys.Soc. 12, 488 (Ref. BF11) (1967)]. As was pointed out to me
at the School by Dr. Wojcik, the possible resonance at 3660 MeV has also
been seen as a bump in the p+ 77 invariant mass distribution in the
reaction w+p > p+ 8w at 8 GeV/c [J. Bartke et al., Physics Letters 24B,
118 (1967)].

Before we close this chapter, two remarks are appropriate. First,
need a Regge trajectory be a straight line in the Chew-Frautschi diagram?
The answer is no. There is no convincing theoretical argument favouring
a straight-line trajectory, nor is there any definite argument against it
within a limited energy interval. What is puzzling, however, is that the
trajectories, in particular the non-strange fermion ones, seem to increase
indefinitely. Of course, it should be kept in mind that these speculations
are based on in fact rather scanty experimental evidences. However,
they pose certain theoretical problems. From numerical computations
using a Yukawa potential (9.1), one always finds trajectories that bend
down rather quickly, something like the one drawn in Fig. 9.3. Moreover,
an infinite increase of the trajectory seems in disagreement with the
basic requirements of the Regge pole model and strong interaction dynamics
in general [see N.N. Khuri, Phys.Rev.Letters 18, 1094 (1967)]. |
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Second, a fermion trajectory shows some peculiarities that we have
not mentioned so far. It originates from a general property, known as
the McDowell symmetry, which a fermion partial wave amplitude has to
satisfy [S.W. MacDowell, Phys.Rev. 116, 774 (1959)]. Namely, from very

general assumptions one is able to show that

f(t,+,E)=f(2+1,=-, =E) . (10.16)

That is, the two partial waves with the same j but opposite parities
transform into each other when the energy changes sign. In particular,
if say f(f, + ,E) has an energy pole at negative energy, this is also a
pole of £(£+1,-,E) but here at positive energy, so it corresponds to

a particle. [Recall in this discussion that we now consider relativistic
scattering, so the non-relativistic kinematics implied in the potential
scattering treatment is totally inadequate. In particular, negative
erergy does not mean a bound state. In f'act, in relativistic kinematics
a negative energy is always unphysical. The condition flor an energy pole
to give a bound state or a resonance depends on whether it occurs below

the scattering threshold or not.]

For a Regge trajectory, the McDowell symmetry means that a Regge pole
at a(E) in f(£,+ ,E) would at the same time be a Regge pole at a(-E) in
f(f+1,=-,E). If now a(E) depends only on E?®, the sign change of the
energy is of' no importance. Consequently, t'rom the McDowell symmetry
and straight-line trajectories ih the Chew={rautschi plot one expects the
fermions to occur in parity doublets (9£+, Dé'), {%é+, %4-), etc., the two
particles in a doublet having (approximately) the same mass. If one
relaxes the straight-line ccndition, one still obtains parity doutlets, but
now with dif'ferent masses in general. For example, it could be that the
N.Z(1670, % ), which does not lie on any of the two I = % trajectories
in Fig. 10.5, is the parity doublet to N12(1688,5/z+). The absence of an
expected nucleon partner, of spin-parity Dé-, would then be explained by
a vanishing residue function at the energy (850 MeV according to the
.estimates) where it shou:d appear. We refer to, for example, C.B. Chiu
and J.D. Stack, Phys.Rev. 153, 1575 (1967) for further discussions and

references.



PART Iv

(Chapters 11-16)

REGGE POLES AND HIGH-ENERGY REACTIONS

We shall now turn to the other application of the Regge pole model,
viz., to scattering of particles at high energy. Within this model, any
high-energy two-body reaction, elastic as well as inelastic, is due to the
exchange of one or a few Regge poles. In order to understand these ideas,
one must first thoroughly be familiar with the concept of crossing relation,
or crossing symmetry. Once we master this indeed very important general
property of the scattering amplitude, we shall first treat some aspects of

the one particle exchange (OFPE) model as an application.
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CHAPTER 11 - CROSSING SYMMETRY. THE OPE MODEL

What is crossing symmetry? In general terms, it is a relation which
connects the scattering amplitude for particle-particle interaction to that
of antiparticle-particle interaction. To make this more precise, we must

introduce some formalism.
Consider a two=-body reaction
a+b » c+d (11.1)

which is also illustrated in Fig. 11.1. As a definite example, we may take

S —

Qb qq

Fig. 11.1

The s-channel reaction (11.1) and
the notation for the four-momenta.

pion-nucleon charge exchange scattering
7 p->7mn. (11.2)

Neglecting possible spins, the reaction is described by one scattering
amplitude. In order to arrive at the simplest formulation of the crossing
relation, it is necessary to use the relativistic scattering amplitude T of
Eq. (3.20); a similar definition of T applies to any two-body reaction.

Moreover, it is convenient to consider T as a function of all the four-

momenta Qg o0 9y

T = T(q¢» 935 %a» ) » (11.3)
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despite the fact that T is really a function only of the invariant variables

s = (qa+ qb)z = (qc+ qd)g ’ (11.4)
t = (g-9,)° = (g-9y)° » (11.5)

so that
T = T(s, t). (11.6)

We shall call the reaction (11.1) the s-channel reaction.

Besides the process (11.1), we shall also consider the reaction

a+c > b+d , (11.7)

where ¢ and b are the antiparticles of ¢ and b, respectively. It is
jllustrated in Fig. 11.2. For the example (11.2), the process (11.7) becomes

7 7° - pn (11.8)

Fig. 11.2

The t-channel reaction (11.7) and
the notation for the four-momenta.

0

since m° is its own antiparticle. The relativistic amplitude for this re-

action as a function of the four-momenta is denoted
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T = T(pg, pgs Pys P3) (11.9)

As tor T, the amplitude T is in fact a function only of the relativistic

variables
s = (py+p7)° = (pg+pg)° (11.10)
t = (p-pp)® = (p3-pg)® s (11.11)
so that
T =1T(s,%) . (11.12)

The reaction (11.7) will be called the t-channel reaction.

A priori, there is no connection between the s- and the t-channel
reactions (11.1) and (11.7). However, the principle of crossing symmetry
tells that they are, indeed, connected. This principle can be flormulated in

the one equation
T(pgy Pgs Pgs P3) = T(qg = =93 9 = Pgs 9y = Pgs @y ==P5) +  (11.13)

It means the following. Assume that from some theory we are able to calcu-
late the s-channel amplitude T as function of all the four-momenta. In
other words, we assume that we know the analytic expression for T. Then we
need not calculate separately the t-channel amplitude T. We merely have to
substitute in the analytic expression for T the t-channel momenta according
to the rule given in Eq. (11.13), which is sometimes also called the substi-
tution rule: change sign of the antiparticle momenta, but not of the
particle momenta. Note that it is the f'our-momenta that enters; thus one
must also change the sign of their zeroth components, i.e., the respective

energies.

The crossing relation may be derived from general principles of quantum
field theory. The basic ingredient of the proof is the following observa-
tion. You know from Prof. Veltman's lectures that in field theory a crea-
tion operator is always associated with a factor exp (ikx), an annihilation

operator with a factor exp (-ikx); remember that kx = koXo - kx in our
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conventions. In an amplitude like T, the particles a and b must be
annihilated, resulting in factors exp (-»iqax) and exp (- iqu'), while the
created particles c and d are represented by factors exp (iqcy) and

exp (iqdy’); integration over the space-time coordinates x, x’, y and y’
is understood. A similar argument applied to T gives factors exp (-ipax),
exp (ipsx'), exp (-ip;y) and exp (ipdy). Comparison of the exponents
yields the substitution rule (11.13). A complete proof must, of course,
also consider the factor in the integral over the space-time coordinates
that multiplies the exponential functions, and also under which conditions

one may consider T as an analytic function of the momenta.

The crossing relation is most easily understood in terms of the four-
momenta. However, in most applications one is interested in how it looks
in terms of the Mandelstam variables s, t and s,t. This form is easily
derived. Indeed, the substitution rule (11.13) immediately yields

i(;, E) =T[s = (pa-ps)z = -t., t= (pa-i-pa)a ;] . (11.14)
Consequently, in going from the s-channel to the t-channel, the energy
variable s becomes a momentum transfer variable {, and the momentum transfer
variable t an energy variable s. This may be illustrated in the Mandelstam
plane (cf. Fig. 2.2). For simplicity, we shall only treat the particular
example of pion—nudleon charge exchange. Without going into the kinematical
details, it is clear that s = t must be greater than (2M)*® for the t-channel
reaction 7 7° - En to take place (M denotes the mass of the nucleon). More-
over, t =3 is expected to be negative, since it is a momentum transfer
variable. The exact shape of the t-channel physical region is indicated in
Fig. 11.3. Note in particular that the physical regions for the s- and the

t-channel reactions do not overlap.

The content of the crossing relation (11.14) may be summarized as
follows. Suppose we know the analytic expression for the s-channel scatter-
ing amplitude T(s, t) as function of the two independent relativistic variables
s and t, confined to the physical region of the s-channel (ef. Fig. 11.3).
Then the t-channel scattering amplitude is given by the same analytic

expression, only for different values of the variables, viz., confined to

the t-channel physical region of Fig. 11.3. The argument applies also the
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other way around: knowing the t-channel amplitude T(s, t), the s-channel
amplitude is given by the same analytic expression if one identifies s = t,
¥t = s. Another way to express the same fact is to say that one and the
same function T(s,t) represents the scattering amplitude in both the
s-channel and the t-channel, depending merely on whether it is evaluated in
the physical region of the s- or the t-channel. Since these two regions do
not overlap, it is very essential that T(s,t) is an analytic function of
its arguments in order that the continuation from the one physical region to
the other should be possible. Moreover, since the analytic continuation of
a function may depend on which particular path one chooses to continue along,
the crossing relation may take slightly different forms depending on that

choice. We shall not enter into any details here.

tZchdnhe 7 At
physical

4M?
N\

\ s+t= 2M?42m?

7

s-channel
physical region

Fis. 11.3

The physical regions for the s-channel (7' p » #°n) and
the t-channel (#™#° + pn) reactions in the Mandelstam plane.
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I am afraid all this was rather abstract, so let me try to illustrate
how crossing symmetry is applied in a definite example. Consider the reac-
tion w #° - En. The amplitude for this (t-channel) reaction may be expanded

in partial waves

T(s, t) = 8rvs (2l+ 1)f (¢, E4)P,(cosBy) . | (11.15)

ct
[ 20N
“Il\/xs

Here, the partial wave expansion is introduced in analogy with Eqs. (4.4)
and (3.20). Moreover, k, and k, denote the c.m.s. three-momenta in the
initial (7 #°) and the final (pn) states, respectively, and the c.m.s.
energy Et and scattering angle @t carry subscripts t to emphasize that they

are t-channel quantities.

At an energy Et near to the p-meson mass mp (this is certainly an
unphysical energy, being below the threshold 2M), the scattering amplitude
is expected to be dominated by the £ = 1 partial wave in which the p=-meson
occurs as a resonance. The one p-meson exchange model for the s-channel
reaction ﬂ-p » 7°n now amounts, essentially, to keeping only this resonating
p-wave in the t-channel amplitude and to invoking crossing symmetry to get

at the amplitude in the s-channel.

In more detail, one assumes that

T(s, t) X Ep(s, t) = KP(E)P£=1 (cos 8y) , (11.16)
where .
Kp(s') = Su»/f(ktkg)‘/z pr(z = 1,E,), (11.17)

the partial wave amplitude Ep(l = 1,E{) being a Breit-Wigner form similar to
that of Eq. (4.65). Although it is possible to go into the details of the

8 = t dependence of K (s), in particular to show that K (s = t) is proportion-
al to the propagator denomlnator (t- ma) - characteristlc of the one p-meson
exchange Feynman diagram, it will take us too far to do so here. However,

we call attention to the important fact that Kp(;) is independent of the

t=-channel scattering angle cos @t'
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I5ing the crossing relation (11.14), the exprression (11.16) is now
Ansumed to be a good approximation to the scattering amplitude for the
s-channel reaction 7 p - 7°n at high energy. From the crossing rules, the
function Kp(g) is then replaced by Kb(t); note that it is independent of s.
[o see what crossing symmetry means tor Plz,(cos @t) = cos @t, we must
express it in terms of the invariant variables. In the same way as in

Chapter 2 one easily derives

-t - -r=)? - 2 - - / a
s_t_(pa pb) = m® + M 2¢ €p+ 2k k/ cos O, (11.18)
where
1 /= 1
‘a-‘b-gg—gﬁ, (11.19)
2 1 - 2 2 1 , 2
kt=f-:>~(s,m,m)=z(t-z+m) , (11.20)
4s
12 _1_)\- 2 ..1 - L M2 )
k=3 (s, 4%, 06¢) = 7 (t=-u) (11.21)
Thus
I V(t-u)(t-un®) cos 0, =s + £ -n® -1 =5 (11.22)
2 t 2 t?

thereby defining the new variable s Equation (11.22) is the needed

t‘
expression for cos Ot.

Consequently, the one p-meson exchange model, which is a special case of
the OPE model, for the reaction ﬂ-p » 7°n amounts essentially (there are a

few minor points which we ignore) to adopting the form

- ?St

T(s,t) = K (t)P cos W) = K (&) -
(3, 6) = K, (617, (c08 1) = K, () e

for the scattering amplitude. Here, we extracted a factor i = V-1 from
each square root in cos @t in order to get roots of positive numbers; to do
this correctly, one must actually consider the path of continuation from the

t-channel to the s-channel properly.
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There are two important points about the form (11.23) which we want to
emphasize. First, as mentioned above, Kp(t) is proportional to (t-m:)-‘.
For t near to m:, Kp(t) thus becomes very large, and the assumption that the
whole amplitude is given by the r'orm (11.23) is reasonable. To the extent
that t is not too far away from the position of the p-pole, the approximation
of keeping only the p=-exchange coantribution is presumably all right, but
becomes more and more dubious as t gets away from m?. Anyhow, if it is true
also for t < O, the factor (t-:nz)-' produces an s-ihannel differential
cross-section that is peaked at small ltl, in qualitative agreement with the
experimental results. The conclusion holds provided there are no other

factors in Kp(t) that spoil this t'eature.  Actually, such factors do occur.

The second point is that the energy dependence of the amplitude (11.23)
is explicitly known. Namely, for 1'ixed t and s -+ o, the amplitude behaves
as a constant times s. The result is, from Eg. (3.23), a differential cross-
section which at fixed t behaves as a constant at high energy. This predic-
tion is solely due to the fact that one keeps only the p-wave in the t-
channel amplitude. It disagrees with the experimental findings as presented
-1

in Chapter 7, which rather show a decrease, roughly like s~ Piap °F

stronger.

More generally, we see that the energy dependence of' the dii'ferential
cross-section predicted by the OPE model is entirely governed by the spin of
the exchanged particle, i.e., the particular t-channel partial wave that is
assumed to dominate. In fact, the fth t-channel partial wave, contributing
the factor Pe(cos Ut) to the rull amplitude, yields a cross-section which at
fixed t behaves as 522-2 for s tending to int'inity. To see this, note that

. 1 .. . .
cos ¥, ~ 5 > », and Pg(x) ~x  for x » o« for £ > 1 this is disaster, since

if th: cross-section f'or one particular reaction goes to int'inity with the
energy, so does ths total cross-section, in violent disagreement both with
experiment and theory, the latter as represented by the rroissart bound.

A solution to this dilemma was f'ound through the introduction of the Regge

pole model, as we shall see in Chapter 12 below.

Summarizing, the OPE model with exchange of a boson having spin 2 1
predicts an energy dependence which disagrees with the experimental results

and, for spin 2 2, also with general theoretical requirements. Moreover,
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the t-dependence of the OPE amplitude, which should reproduce the experi-
mentally observed small angle peaking in do/dt at fixed s, is in general not
in very good agreement with the data either. While there are no means to
cure the energy disease of the OPE model, unless by invoking the Regge pole
model, there are some suggestions on how to remedy the bad features of the

t-dependence.

We may refer to, for example, the lectures by N. Schmitz and by
H. Pilkuhn at the 1965 CERN School of Physics [report CERN 65-24 (1965)]

for further details and references on the OPE model.

CHAPTER 12 - THE HIGH-ENERGY SCATTERING AMPLITUDE
IN THE REGGE POLE MODEL

To be precise, let us consider pion-nucleon scattering as illustrated in
Fig. 12.1. The application of the Regge pole model to this reaction at high
energy is based on the following procedure, closely related in f'act to the

way we developed the OPE model in the previous chapter:

i) Start with the RSW representation of the amplitude for the t-channel
reaction wm - NN.
ii) Use crossing symmetry to conclude that the same analytic expression also
gives the s~channel amplitude.
iii) Consider the high-energy limit in the s-channel in order to isolate the

contributions from the Regge péles with the largest real parts.

We now present these three steps in more detail.

Tt\\ ( tl) / /{t

Fig. 12.1

The s- and the t-channels for pion-nucleon scattering.
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First, we adopt the RSW representation (10.1) for the t-channel scatter-
ing amplitude, for the time being neglecting the modification due to the
introduction of signature. Both the scattering angle and the energy should
now carry a subscript t, and read @t and Et’ respectively, to emphasize that
they are t-channel quantities. Moreover, as in the OPE model, we must

consider the relativistic amplitude T(s, t), for which we write

e B® _
T(s, t) = | m Pai(g)(-cos ©¢) + BI(cos 8¢,3) .  (12.1)

i

Here we have made the modification of considering the traject&ries @y the
functions Bi and the background integral BI as functions of s = E: instead
of Et' Moreover, the factor 87V§: in the relation between the relativistic
amplitude T and the "non-relativistic" one, F, is taken care of by rede-~

fining B, and BI in going from Eg. (10.1) to Eq. (12.1).

At first, the form (12.1) is valid only in the t-channel. However,
the second step is to invoke crossing symmetry to conclude that the
s-channel amplitude T(s, t) is given by the same expression. We only have to
replace s by t, and to use Eq. (11.22) to obtain cos @t in terms of s and t.

Still, the formula does not look particularly simple. It should be
noted, though, that it contains the energy-dependence rather explicitly.
Namely, s appears only through the argument cos Gt of the Legendre functions
P&i(-cos<9t). The importance of this fact becomes more transparent if one
performs the third step, that of going to high energy in the s-channel.

This should be taken to mean that the masses m and M, and the momentum
transfer V=t can be neglected compared to the c.m.s. energy Vs. In

- particular

- 28t -3

cos 9, = X
T o Vo-mE demt ot Y-t

=8 . (12'2)

As above, we extracted here an i = V-1 from each square root in order to
get roots of positive entities in the s-channel. Note also that Eq. (12.2)

means that cos @t becomes numerically very large as s increases. This is of
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course no contradiction, since @t is the t-channel scattering angle and we
now consider the s-channel physical region. The argument of the Legendre

functions thus being very large, we may apply the result (A3.10) to obtain

a(t)
Pa(t)(-cos@t) = K(t) <‘ss—o'> for S > o , (12.3)

where all s-independent quantities are lumped into one function k(t), which
is a known function of t if a(t) is so. The scale factor so, of the same
dimension as s, is arbitrary and introduced only to have the power of a

dimensionless number.

In this way we have isolated the energy-dependence of each individual

Regge pole contribution. Since

2 ¥ = (3 o exp| i Im a log s (12.4)
So So So ’

it follows that a Regge pole of larger Re a will at high energy dominate one
with smaller Re a. Moreover, we may estimate the importance of the back-
ground integral (9.19) simply by noting that the only factor in

BI(cos @t,g) that depends on cos @, is Pe(-costat); this argument is not

t
spoiled by the redefinitions that BI has undergone. Since the integral is

along Re £ = =Y (+ €), it follows that

_
BI(cos 0, t)x s /a for 5 %o o (12.5)

At high s-channel energy the RSW expansion of the t-channel amplitude thus

reads

N v; (¢) s () ("
T(s, t) = ZJ m ;:) + 0\3 > . (12.6)
i
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Here, the functions Y, are the products of the respective ﬁi by the func=-

tion k of Eq. (12.3). If we order the Regge trajectories so that

Re a4 ZRe a2 Z Re as 2 cee Z "1/2 ’ (12.7)

we may write

t
T(s, t) = 1At =2 @t () + 2t ii\az( ) +
’ sin way (t \so sin maz (t So )
, o) s\
sin ma3(t) \ so et

which is nothing but a representation of the s-channel scattering amplitude

(12.8)

as a descending asymptotic series in powers of s, valid for large s.

A few comments on the representation (12.8) are appropriate. First,
does one know something about the reality properties of a(t) and y(t)?
If we again refer to potential theory, we recall that the Regge trajectory
and residue were real below the scattering threshold (see Chapter 9).
Since t = s £ 0 in the s-channel physical region, it seems reasonable to
assume that a(t) is real there. The argument is not straightforward,
though, since s < 0 corresponds to Et = Vs being complex. We shall not
enter into a discussion but only mention that for boson trajectories the
assumption that Im a(t) = O for t £ O seems to be all right, while for a
fermion trajectory it certainly is not. We shall assume a(t) to be real in

Eq. (12.8) unless we explicitly state otherwise.

Concerning Y(t), it is related to the residue R = R(Et) by factors
(«(t), Vf}ﬁ:‘, etc.] which are real for t £ O if a(t) is real; cf. Egs. (9.3),
(9.22), (12.1) and (12.3). Moreover, in potential theory the residue R is
real below the scattering threshold [see point (iii), page 3-107]. In the
same spirit in which a(t) was assumed real, one also assumes y(t) to be real

for t £ O [ef. also point (ii) below].

When deriving the high-energy form (12.8) we neglected exchange forces.

They imply, from Eq. (10.11), that we must consider P, (- cos Gt)+ TPa(cos Gt)
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instead of Pa(-coset) in Eq. (12.1); 7 = *1 is the signature of the Regge

pole a(t). In a straightforward way the high-energy approximation then
reads

Pa(t)(-oos 8¢)+ TPa(t)(cos 84) = k(t) ‘:(%)a(t) + T <_ i)d(t):l =

(12.9)

c(®)[1+7 exp [-ima(t)}] (%)"(t) .

The fact that (_)a(t) here equals exp [-ima(t)], and not exp [ima(t)],

can only be proved by considering how the analytic continuation from the
t-channel to the s-channel physical region is performed. Thus, the occur-
rence of exchange forces simply implies the extra parenthesis in Eq. (12.9).
It is so important that one introduces a special notation for it, taken
together with the factor sin ma(t) of Eq. (12.8):

C(t) = 1+7 exp j=dima(t)}

sin ma(t) : (12.10)

One calls {(t) the "signature factor".

Summarizing, the Regge pole model implies a representation of the high-

energy scattering amplitude that reads

(s, 8) =m0 (e) (&) ®) )@ (&)

(12.11)
+ y3(t)gs () <§%>a3(t) + oeee

where:

i) a(t) is the trajectory of the t-channel Regge pole continued into
the s-channel, i.e., the exchanged Regge trajectory; a(t) is assumed

real for a boson trajectory.
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ii) y(t) is the residue function; it is assumed real for a boson trajectory.

In fact, assuming the high-energy form (12.11) with a(t) real, the
reality of y(t) can be strictly proved from general principles of
quantum field theory [see, for example, Van Hove's lecture notes,
report CERN 65-22 (1965), Chapter IV]. In this proof, the
signature concept is crucial.

iii) ¢(t) is the signature factor

E;;';};z:; exp {-i.% a(t)} for r o=+
2

g(t) =¢X | (12.12)

]
Ll

\—————cos %la(t) exp {-i% a(t)} for T

In particular, since both a(t) and y(t) are real, the phase of the
contribution from one Regge pole of definite signature is uniquely

related to its energy dependence.
The form (12.11) will from now on form the basis for our discussions.

We stress once more that the amplitude (12.11) is obtained by represent-
ing the t-channel amplitude as a sum of Regge poles. In that channel, the
Regge trajectory is connected to bound states or resonances. In the

amplitude it shows the dependence on cos ©, through the Legendre functions.

When continued to the physical region of t;e s~-channel, in particular to
high energy, the same Regge trajectory now tells the energy dependence,
since cos @t is related to the s-channel energy. This property is
~illustrated in Fig. 12.2. In particular, a Regge trajectory a(t) is

directly accessible to experiment at t > s only when it increases through

th
a positive integer subjected to the Af = 2 rule, but for (in principle) all

values t £ O.

We now also see an important point where the Regge pole model differs
from the one particle exchange model. In the latter, the energy dependence
in the s-channel was given by Pl(cos @t) ~ sl, with £ equal to the angular

momentum of the exchanged particle. For example, an Az-exchange model for
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the reaction ﬂ-p - nn implies an amplitude behaving like s?. In other

words, the OFE model can be looked upon as a Regge pole model in which the

Regge trajectory is constant = [. For £ 2 2 this certainly disagrees with

the theoretical and experimental findings. Only the ract that a Regge

trajectory is allowed to vary with t in proceeding from the t- to the s-

channel removes this discrepancy.

+ Re a(t) P
3t

particles

]_

excha%/
1

/ (Esn =8y, s

vV

s -channel t-channel physical region

physical region
Pig. 12.2
The Chew-Frautschi diagram tor an odd=-signature straight-line trajectory
which gives particles of spin 1 and 3 in the t-channel physical region,

and which can be exchanged in the s-channel physical region.
Et th is the threshold energy for the t-channel reaction.
b

CHAPTER 13 - TOTAL CROSS-SECTIONS AND THE P-, P~ AND p-TRAJECTORIES

Equipped with the rorm (12.11) for the high-energy scattering
amplitude, and its interpretation as contributions from different exchanged
Regge poles, let us now turn to a more phenomenological discussion. Consider

the total cross-section. The optical theorem (3.36) reads
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Oiot = % Im Tel(s,t = 0) (s large) . (12.1)
Consequently, only the values of the Regge pole parameters a(t) and y(t)

at t = 0 matter, and we need for the time being not be concerned with their
t-dependence. Let us first assume very high energy so that only ay (t=0),
the Regge trajectory with the largest t = O intercept (the leading or "top-
ranking" trajectory) contributes. If it is to reproduce the ccnstancy of

the total cross-sections (remember the Froissart bound), we must require
ag (0} = 1. (12.2)

What could be the signature of this trajectory? If it had 7y = -, then the
signature factor (12.12) would have a pole at t = 0, since cos {?Qu) = 0.
To svoid this, one assumes Tq = +. We shall in @ moment give another and
better motivation for this assignment. We note in passing that the
positive signature property and a:(0) = 1 implies a purely imaginary t'or=-
ward amplituce, in agreement with what is expected from the data (see

Chapter 6, in particular Figs. b.4-6.5).

(t*) a .- M~a (t) a_-

(2)~b b (2) b
(a) (b)

Fig. 13.1

Comparing the two reactions (a) ab » ab and (b) ab - ab.

One cells this trajectory the Pomeranchuk trajectory, since it assures
the validiily of the Pomeranchuk theorem, which says that Utot(ab) and

dtot(;b) must become equal at asymptotic energies. This comes about as
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follows. The t-channel reaction for ab - ab is aa - sb, while for the
process ab » ab it is aa - bb (see Fig. 13.1). Thus the t-channel reactions

are the same except for one thing: the scattering angle @t in the t=-channel

c.m.s. is always defined as the angle between the momenta of particles (1)

and (2) of Fig. 13.1. But it means only that cos 9,

when going from Fig. 13.1 (a) to (b). Now, since a positive signature

changes to - cos Gt

amplitude is symmetric as a function of cos @t’ containing as it does

Pa(- cos @t) + Pa(cos St), the contribution of such a Regge pole to ab and
ab elastic scattering is indeed the same. In summary, only a positive
signature Pomeranchuk trajectory can account for the asymptotic equality of
Gtot(ab) and Gtot(ab). This is the most correct argument for the positive

signature assignment of the Pomeranchuk trajectory.

In passing we note that a negative signature trajectory gives an
amplitude that is antisymmetric in cos @t, so it is equal in magnitude but
has opposite sign for ab -+ ab and ab » ab. Moreover, exactly the same
argument can be applied to any two-body reaction ab -+ cd and its "crossed
reaction" cb - ad. This property of a Regge amplitude is sometimes called
"line reversal®. It is a direct consequence of the signature concept and

crossing symmetry.

So, the Pomeranchuk pole aP(t) must have positive signature. What
other quantum numbers does it carry? Obviously, it must have baryon number
B = 0 and strangeness S = 0 in order to be exchanged in an elastic reaction.
It must have positive G-parity in order to contribute to pion-nucleon
scattering. Its isospin could a priori be O or 1, but since it could give
a mm-resonance with £ = 2 (recall o = +), it must have I = 0; actually,
the I = 0 assignment can be proved without invoking the occurrence of a
particle on the trajectory. In summary, P has all the quantum numbers of
the vacuum, except spin, so it is an example of a "vacuum trajectory".

This property allows it to be exchanged in all elastic reactions.

From experiment we know that the total cross-sections are not constant
at present accelerator energies. In the Regge pole model expression (12,11)
this means that other trajectories besides ay = ap must be taken into
account. Consider in particular pion-nucleon scattering. The utp total
cross-sections are given in Fig. 5.1. Here one needs at least two more

trajectories. First, a negative signature one, contributing with different
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signs to u+p and l-p scattering, in order to explain the finite difference
o%ot("-p)-'ciot(ﬂ+P)' This trajectory is identified with the p-trajectory,
and has ap(O) X 0.6 as we shall discuss in more detail below. Second, one
needs one more vacuum trajectory to explain the energy variation of
afot(”-p) + Gfot(”+p)’ to which the p-trajectory does not contribute. 1In
other words, one must explain the fact that both cross-sections seem to
approach their common Pomeranchuk limit from above. This trajectbry is
called P’ ("Pomeranchuk prime") and has aP,(O) ~ 0.7. With t&ese three
trajectories, P, P’ and p, one is able to reproduce the Gfot(w_p) data very
well, so no further trajectories are needed. Moreover, the ratios

Re Tel(s,t:= 0)/Im Tel(s,t = 0) are 'also accounted for by these three
exchanged Regge poles.

Are there any particles on these trajectories? Evidently, the p-
trajectory is associated with the p-meson and, possibly, the g-meson as
previously discussed in Chapter 10 (see in particular Figs. 10.1 and 10.3).
Both P and P’ could give mesons having I = S = 0, G = + and spin-parity 2+,
¥, ... . 1Indeed, there are two isoscalar mesons in the 2% nonet, fo(1250)
and £ (1500) (see Fig. 10.3). It seems more or less a matter of taste if
one associates these with P and P’. Indeed, a straight-line trajectory
would have a slope of ~ 0.6((?reV)-a if P is associated with fo, of
~ 0.8 (GeV)™ if f, lies on the P’-trajectory, and ~ 0.6 (GeV)™ if P’ is
associated with f¢ . Now, as we shall see, it seems as if the slope of
ap(t) for t < 0 is still smaller [~ 0.3(GeV)™ or less], so usually P is not
associated with either fo or fd. Then P’ could best be associated with f,,
since this would imply a slope of the trajectory nearest to the slopes for

the p~-, Az- and fermion trajectories.

CHAPTER 14 - PION-NUCLEON ELASTIC AND CHARGE-EXCHANGE SCATTERING

Later on, we shall briefly discuss Ttot also for NN, ﬁN, KN and KN
collisions. Let us, however, first consider #aN scattering also away from
t =0, Then things become more complicated. In fact, with P, P/ and p
contributing, the nip elastic amplitudes are

= !+ . .
Tel;,,:p(s, t) =P+P'%p (14e1)
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Here, each Regge contribution is a shorthand notation for Y(t)g(t)(s/so)a(t).
Note that the p-trajectory, having negative signature, contributes with
different signs to the ntp amplitudes. To be able to calculate doél/at,

one must now know the trajectories and the residue functions as functions

of t. The Regge pole model predicts essentially nothing concerning this
t-dependence, so ignorance must be compensated for by assumptions. We

shall return to these problems later.

It is evident that the complications mentioned are less severe if only
one Regge pole contributes. With the Ansatz (14.1), this is the case for

the charge exchange reaction 7 p » #°n [cf. Eq. (7.3)]

1
Tc.e.(s’ t) = V2 [Tel;ﬂ+p = Teliﬂ"p] =v2p . (14.2)
Consequently
o, . 20, (t)-2

where D(t) comprises the t-dependence of Viyp(t) and §p(t) as well as a
(16w)”" arising from the, expression (3.23) for the differential cross-
section. We emphasize that D(t) is an essentially unknown gquantity from

the theoretical point of view.

Still, the form (14.3) implies a non-trivial prediction, viz., the
shrinkage of the forward charge-exchange peak. This may be seen as

followse. Let us for simplicity assume a linear p-trajectory
a (t) =a (0)+t a’ 1ok
() =a,(0) ME (1h4)

where aé is ~ 1(GoV)-z; what is actually needed for the discussion here is
a trajectory that increases with t. It follows that

N2, (B)=2
CRNC

2 -

p(0)-2 .

exp | 2ta’log — | . (14.5)
p So



3=153

Now, the exponential factor here is the only one in the expression (14.3)
for the cross-section that has a mixed s- and t-dependence. Neglecting
the other factors, it implies at fixed s an exponentially decreasing cross-
section as a function of Itl. Its slope, however, equdh;2a; log (s/s0)
with a; > 0, which increases with s and implies a peak that shrinks with
energys If the possible t-dependence of D(t) is taken into account this
shrinkage could become superimposed upon an energy-independent "background
peak", but the essence of the argument would still be true. Of course,
it could happen that the background is so large that it more or less masks
the shrinkage. In summary, a reaction which is dominated by the exchange
of one Regge pole, the trajectory of which increases with t, will have an

exponentially peaked cross-section that shrinks with energy.

How does this prediction match the experimental data? From Fig. 7.1
one sees indeed a shrinkage, albeit rather weak. Besides the inf'luence
of an energy-independent background peak, one must in this context also
keep in mind that s changes only by a factor of ~ 2 when P10b increases
from ~ 4 GeV/c to ~ 18 GeV/c, so log s merely changes by a factor of ~ 1.6,

Logarithmic variations are always very weak.

Actually, what one does is to consider

do
Ce€Co S
log < e ) = log D(t) + [2ap(t) 2] log - (14.6)
as a function of log s at fixed t. In this way one may directly determine
ap(t) experimentally. The result is shown in Fig. 10.3. A very good

parametrization of the trajectory is given by
ap(t) = 0.57+0.,91t, 0< =t < 1(GeV/k)? . (14 7)

It extrapolates to ap[t‘= (760 MeV)?] = 1.09; alternatively, ap(t) =1
for t = (690 MeV)?.

Summarizing, the Regge pole model seems to give good agreement with
the differential cross-section data for pion-nucleon charge exchange,
assuming exchange of the p-trajectory having a constant slope. The

trajectory extrapolates (approximately) to the position of the p-meson.
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Let us just in passing note that another case where only one trajectory
is expected to contribute is the reaction ﬂ-p - Nn. As in the OPE model,
among the established bosons only the Az:-trajectory could be exchanged.

The Regge pole model then predicts a cross-section for n-production of the
same form (14.3) as the charge exchange one. One could thus derive
aAe(t) for t < 0 directly from the datas The Az-trajectory determined in
this way is also shown in Fig. 10.3. Note that aAg(t) seems to have a
curvature, i.e., a varying slope. Caution is needed, though, since the

data have rather large errors.

As soon as several trajectories contribute to a particular cross-
section, the problem of shrinkage is no longer theoretically clear-cut.
In fact, due to compensation between different Regge pole contributions,
one may over a limited energy interval reproduce a constant slope of the
forward cross-section, and even an expanding forward peak. However, the
absence of an appreciable shrinkage for the ﬂtp elastic diffraction peaks
at the highest energies considered so f'ar seems to indicate that the
Pomeranchuk trajectory, which should more or less dominate here, has a

fairly gentle slope, aé L O.B(GeV).a.

Historically, the first Regge pole boom in 1961-1962 was largely due
to the shrinkage experimentally found in pp elastic scattering.  When,
however, wp showed no shrinkage, and Ep even showed antishrinkage, i.e.,
expanding diffraction peak, the Regge pole model fell into disgrace.

It should be clear from what we have said, though, that shrinkage or non-
shrinkage in a limited s-interval for a reaction where several trajectories

can be exchanged is really not a crucial test of the Regge pole model.

Since the Regge pole model seems to work well for the charge-
exchange cross-section, it is really worthwhile to develop it further, in
particular to take the so far neglected spin-complications into account.
This will allows discussion of, for example, the polarization. One must
now consider two amplitudes, the spin-non-flip one, G, and the spin-flip
one, H. In the Regge pole model they should be obtained from the t-

" channel reaction w7 7° - Sn, for which there are also two amplitudes.
Namely, for each f-value the En system can be in a triplet or in a singlet
spin state. Moreover, the situation is complicated by the fact that one
must use relativistic amplitudes, not the "non-relativistic" G and H, in

order to be able to formulate the crossing relations properly.
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We shall not derive the expressions for G and H in the Regge pole
model, but merely state the results and give some plausibility arguments
for them. The 1966 Erice lecture notes by ReJ.N. Phillips quoted in the
bibliography may be consulted for some more details. The result reads,

under the assumption that only one Regge pole contributes

) / a(t) '
87Vs G(cos ©,E) = g(t)l(t) —> (14.8)

S

\ 20
. /s a(t) .
873 H(cos 8, E) = V=E h(t)¢ (t)a(t) \;> ) (14.9)

As before, the function {(t) is the signature factor, while g(t) and h(t)
are residue functions. The extra factors 8wVs in front of G and H convert
them into relativistic amplitudes. Note that G takes the same form as if
the particles had zero spins; this is not unreasonable, since G has the
same partial wave expansion as had the amplitude F previously. However,
this argument is dubious, to say the least, since the Regge pole expres-
sion originates from considerations of the t-channel partial wave expan=
sion. On the other hand, there are two extra factors, Y-t and a(t), in
the expression for H as compared to G. The factor V=t is explicitly
extracted, since H is proportional to sin © «= V=t (9 is the s-channel
scattering angle); in other words, Y-t assures the vanishing of H in the
very forward direction. The factor a(t) comes about as follows. The
t-channel amplitude from which H is obtained by crossing symmetry has,
like H itself, a partial wave expansion in terms of sin @tPl’,(cos Gt).

The RSW representation therefiore contains sin 0, Pa'(t)(-oos ®4). At high

energy

sin 8, = V1 -cos*@g~ cos By ~ s, s large , (14.10)

-1

(- - d _ L4 o __a
Pa( cos O4) = (05 87) Pa( cos 9,) 3.8 =098 , s large . (14.11)

This explains the factor a(t)(s/so )a(t) in H.
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Ne note two important features of the amplitudes (14.8), (14.9):

i) the spin-non-flip and the spin-flip amplitudes have the same energy
dependence ;
ii) if a(t) is assumed to be real, the residue f'unctions g(t) and h(t)

are both real. The phases of & and H are thus the same, since they

are both given by the signature factor {(t).

The cross-section obtained from the amplitudes (14.8), (14.9)

reads

/s~\2a(t)-2

-g —-—1— 2 e 2 - 2 2 /8
= =1 1EOIF [le(®)*+ (=t)a(t)? [n(¢)]*] s , (14.12)
while the polarization as given by
. *
lsl* + [l

is zero, from point (ii) above.

Let us now apply these results, which are valid f'or any reaction of
spin-parity structure O + %' > 0 +'% ", to the particular reaction
ﬂ-p - 7°n. The prediction of the p-exchange Regge pole model is
unambiguous: there should be no charge exchange polarization. ¥xperi-

mentally, P X 15% even at Py > 11 GeV/c (see Fig. 6.9), in definite

C.e
disagreement with the prediction. We shall in a moment discuss how the

theory can be twisted to obtain a non-vanishing polarization.

Before that, however, let us consider the expression (14.12) tor the
dirflerential cross-sectiou. It is of the general form (1u4.3), due to
point (i) above. Fits to the data reveal that a large spin-r'lip residue
function h(t) is needed in order to reproduce in the simplest way the
experimental flattening off at very small t. Actually, one i'inds that h
is comparable in magnitude, or even greater than g. This fact has the
following interesting consequence. Due to the factor a(t), the spin-
flip term vanishes whenever a(t) = 0. For the p-trajectory (14.7)
 this happens at -t= 0.6 (GeV/c)?. One then expects the dit'ferential
cross-section to show a minimum around -t = 0.6(GeV/b)2. This compares

very favourably with the experimental r'indings, Fig. 7.1. In summary,
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the dip-secondary bump structure in the pion-nucleon charge exchange
differential cross-section is, in the p-exchange Regge pole model, explained
by the fact that the otherwise large spin-flip amplitude is proportional to
ap(t) and therefore vanishes at =t =X 0.6 (GeV/c)? where ap(t) = 0.

What could be invoked to explain the non-vanishing polarization in
ﬂ-p -+ 7°n? Evidently, if one sticks to the Regge pole model one need
something more than pure p-exchange. Several suggestions have been put

forward, among them:

i) contribution from a secondary trajectory, sometimes referred to as
the p’;
ii) influence of direct channel resonances;
iii) a complex trajectory, Im ap(t) # 0 for t < 0;

iv) contribution from a cut in the angular momentum plane.

We shall briefly discuss the first two possibilities, and refer to the
bibliography for further details.

A p’/-trajectory would add contributions to G and H of the same form as

the p=trajectory. In an obvious notation we may write

G = Gp+ Gp, , (1h4a1k)
H=H +H, . (14415)
The polarization then reads
2 In [G,H) + G, Hy']
PP
= £ . (14016)

Ce€o

|62 +|n|?

Remember here that Gp%; and Gb,H;S are both real. Now, dﬁb o /dt is well
reproduced by the p-term alone. Consequently, Gb' and Hb, must be rather
small. In particular, one needs ap, < ap. The polarization may then be
written
a +a
p/

P

/i> sin ﬂ(ap-apt) a ,-a

\ ()PP - 14,1

R -(2)7 7 s ntamapn - ()
So
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Thus, Pc.e. is predicted to decrease with energy in this model. For

ap-ap, ~ 0.5 and reasonable p’ residue functions, the cross-section is
virtually the same with and without the p’/~-contribution. The polarization
at 6 GeV/c could, however, be 15-20% and will at 11 GeV/c only have decreased
by a factor ~ Y. Such a gentle energy-dependence is not ruled out by the

present data.

Another explanation invokes direct channel resonances. That is to say,
besides the p-trajectory exchange one includes contributions from the N*
resonances that can be formed by the incident u-p system and decay into the

final #°n state. In other words, one assumes amplitudes of the form

F = F}-+Fre , (14.18)

s
(F stands for G and H) where the p-contribution is of the forms (14.8), (14.9)
while Fres is a sum over resonating partial waves in the s-channel. That is,
for G and H _ one uses the expressions (4¢38), (L4+39) with partial wave
amplitudes of the Breit-Wigner form [cf. Egs. (4¢63)-(4.65)]

s 1
E Eres‘+l A I‘tot

341‘ Vxe * X

Here, Xgq1 is the resonance elasticity and X6 the probability for its decay
into 7°n, related in isact to X1 by isospin invariance. If only the well-
established resonances of masses < 2 GeV (corresponding to Plab < 2 GeV/e)

1

2, if one

are used, one obtains a total amplitude Vs Fres behaving like s~
makes the rather drastic assumption that the form (14.19) extrapolates far
away from the resonance position. An argument like the one used aboye for
the p’/ -trajectory shows that the polarization Pc. . now behaves as s-/é-ap
~ 3-1, hardly in agreement with experiment. If, on the other hand, one
assumes resonances all along the straight line fermion trajectories in

Py = M GeV/c.

However, one does not know their elasticities. Arguments based on the

Fig. 10.5, there will certainly be resonances even at, say,

experimental values of (j4-3é)xel, and on the spin assignments of the
resonances, indicate an exponential decrease of the elasticities with

energy, though. So once more one expects a decreasing polarization, even
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if the decrease may be rather gentle. In summary, the p + res explanation

of the charge exchange polarization is marginally tenable. The non-vanishing,
almost energy-independent #N charge-exchange polarization poses great
difficulties for the Regge pole model.

To close this chapter, let us return to ﬂtp elastic scattering. As we
saw, three Regge poles are needed, the P, P/ and p. Even if the trajectories
were known as functions of t, one spin-non=-flip and one spin-flip residue
function for each pole remain unknown. So one assumes some parametrization,

in the simplest cases, for instance
h(t) = [a(t) +1]D, exp (Dst) . : (14420)

Here we only point out the fact that many unknown parameters are introduced
in this way, so one starts to leave even the modest amount of theory one has
and approaches curve-fitting. Still, some non-trivial predictions emerge.
For example, one finds in fitting dasl/at for v:p that P and P’ give very
small contributions to the spin-flip amplitude. Since p has a large spin-
flip part, the main contribution to the polarization is given by

Py« Im [(Gp+ Gp, )Hp“] . ' (14021)

Consequently, since the p-contribution has opposite signs for 1+p and 1-p,
while GP and GP' stay the same, the model predicts

(14.22)

Pel;n*p Pel;w'p'

One may even invoke arguments in favour of a positive Pel;v*p at small |t|.
These predictions compare favourably with experiment, Fig. 6.9. Note also
that the polarization is predicted to change sign around -t = 0.6 (GeV/c)?,

since Hp changes sign here according to the discussion above. This is also

in agreement with the experimental data.
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CHAPTER 15 = SOME OTHER TWO-BODY AND QUASI-TWO-BODY REACTIONS

In the same manner as 7N scattering is discussed, one may treat KN and
NN scattering. Consider, for example, NN and NN reactions, in particular
the four elastic processes pp - pp, pn - pn, Ep - Ep and En - En as well as
the two charge exchange reactions pn -» np and Ep - ﬁn, all of which have
been measured. Which Regge poles can be exchanged? For the elastic
processes one expects, besides P, P/ and p, the A (in this context sometimes
called the R-trajectory) and also the w; the last two are excluded from
ﬂtp elastic scattering due to G-parity conservation. By considering the

appropriate t-channel reactions, one is able to deduce the following

results
Tel;pp =P+P' -w=- p+ A2, (15.1)
To,pn =PtE et 0 A, (15.2)
Tel;ﬁp =P+P +w+ p+ Az, (15.3)
Tel;fm =P+P +w=- p- A , (15.4)
c.e.;pn “o+ 2k, (15.5)
- 20+ 2h2 . (15.6)

Neglecting spin complications, each pole here contributes the form
y(t)g(t)(s/éo)a(t) to the amplitude. The absolute sign in front of each
contribution in these equations is of little importance, since the sign of
y(t) is, in general, unknown. What is important, though, is how the sign
changes in going from one reaction to another. For example, P and P’
contribute the same amount to all elastic reactions; this is so because they
are vacuum trajectories. The w-trajectory is an isosinglet of negative
signature, so it changes sign in going from pp to Ep, and from pn to Sn
elastic scattering. It contributes the same sign to the pp and pn
amplitudes, since the t-channel, I = 0, NN state is given by the combination
(pp+ nn) A2 implying equality of the amplitudes for PP - w - pp and

PP » W nn. On the other hand, since p and A have I = 1 and signatures
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Tp =-, T, =+, one easily deduces the contributions from these poles. Or,

Ao

once knowing their contributions to the elastic amplitudes, one may use the

results of Exercise 7.2 to obtain the charge exchange amplitudes.
The table yields

Tiot (PR) =0 4 (PP) « 2[Im p=Inm Ae] , - (15.7)

ot (PP) =0 o (Pn) « 2[Im p+ In ] . (15.8)

Experimentally (see Fig. 5.1) both these differences are small. Thus, the
contribution of the p=- and Az-trajectories to the NN and NN elastic scatter-
ing is small. Then

Since this difference is large (~ 20 mb) experimentally according to

Fig. 5.1, the w=-trajectory gives an appreciable contribution. Moreover, for
the same reason as in N scattering, both P and P/ must contribute. Thus,

in order to treat NN and NN elastic scattering one needs at least three
trajectories, P, P/ and w. Observe, though, that in order to treat the
charge-exchange reactions one must take also the p- and A;-poles into account.
Experiments on oy . can be fitted with the values for aP(O) and a, (0) taken

from #N scattering and an w-intercept of aw(O) ~ 0.5,

The discussion of the differential cross-sections is even more involved
than in the @N case, since there are now more trajectories contributing and,
in a consistent treatment, also several spin amplitudes, actually five for
each reaction. We shall not go into details. Let us just remark that one
has great difficulties in reproducing the two charge-exchange reactions by
the p * A, exchange model. Remember here that the pn charge exchange showed
a very steep decrease for increasing ltl in the nearly forward direction,
while Ep charge exchange was more "well-behaved" (see Figs. 7.4 and 7.5),
features which seem impossible to fit with only p and A2 contributing.
Moreover, the energy-dependence of the charge-exchange cross-sections causes

troubles. We refer to the bibliography for further reading.
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KN and KN elastic and charge exchange reactions can also be treated in
the same way. One finds the same five trajectories contributing here as in
the nucleon-nucleon processes. We shall not enter into the details but again

refer to the bibliography for those interested.

Many inelastic reactions have also been treated in the Regge pole model.
In fact, we have already discussed the charge-exchange processes and n-
production in v-p collisions. One could proceed to treat associated produc-
tion (strange meson exchange), backward scattering (baryon exchange) and
resonance production processes in meson-nucleon collisions, photoproduction
of mesons, etc. In general, the Regge pole model replaces the one-particle
exchange model for these inelastic reactions. Note in particular the
different criteria for the exchanged object in the two models. In the OPE
model, implying an amplitude proportional to (t-mg)-4 with m, the mass of
the exchanged particle, exchange of the lightest particle is thought to
dominate. In the Regge pole model, on the other hand, the trajectory with
largest a(t) dominates at high energy. These two prescriptions very often
give different results. For example, w-exchange should play a minor role in
the Regge pole model, while it is supposed to give the main contribution in

the OPE model as soon as it can be exchanged.

The prescription for the Regge pole model is thus that any trajectory
which may contribute to a particular reaction also should be exchanged.
This "universality principle" for Regge trajectories implies, among other
things, that reactions which are dominated by the exchange of the same
Regge pole should have the same energy dependence. Let us see how this

prediction works in a few examples.

If the Pomeranchuk trajectory can be exchanged in an inelastic reaction,
the cross=-section should remain constant. Examples of such reactions are
PP - pN{Z, where the P-trajectory is indeed allowed and which, from Fig. 7.11,
seem to show an almost energy-independent cross-section. Note that P cannot
contribute to pp - pNiZ, which requires exchange of an object with I = 1.
We also note that the spins and parities of those N;Z that have a constant
production rate are %*, 3~ and %", so the P-exchange just conserves the
relation j = t-ﬂé, merely adding some units of orbital angular momentum
(0, 1 and 2, respectively), when transforming the incoming proton into an
outgoing NiZ. The theoretical basis for this empirical rule is not well

understood.
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The charge exchange reactions, being dominated by p=- and A; -exchange,

should show forward cross-sections with an energy dependence

-1 1

13- 1 -
Ce€ (t = o) ~ s—z s ~ 8 ~ plab (15.10)

dt

in rough agreement with the experimental findings.

In associated production processes, the exchanged object is one of the
strange mesons K*(890) and K*(1400). A straight-line extrapolation from the
position of these resonances to the t < 0 region, assuming a trajectory slope
of ~ 1(GeV)-z, leads to aK,(O) ~ 0.2, implying a forward differential cross-
section behaving like ~ pigg . The present experimental data do not allow a

stringent test of this prediction.

+ +
The reactions # p » p p may have w- and Az-exchange dominating, while

u-p -+ p°n allows only A;-exchange. The energy-dependence of the forward
cross-section predicted fromzw- and/or A;-exchange is ~ pi:b’ while the
experimental fin@ing is ~ Piab? the errors being rather large, though.
Moreover, w or A;-exchange will give predictions for the decay distribution
of the outgoing p-meson which are not in agreement with the data; besides,
these decay distributions seem experimentally the same fof pt and p° produc-
tion, again within experimental uncertainties. Thus, the p-production
processes seem to cause troubles to the Regge pole model. In fact, these
reactions are excellently accounted for by the OPE model, assuming pion

exchange and so-called absorptive corrections.

CHAPTER 16 - FURTHER PROPERTIES OF THE REGGE POLE MODEL

In this chapter we collect some more or less disconnected theoretical
topics, related to the discussion of high-energy reactions in the Regge pole

model, The treatment here is more condensed than in previous chapters.

16.1 Pactorization

One characteristic property of the OPE model is the occurrence of two
coupling constants, one related to the vertex aec (see Fig. 16.1) the other
to the vertex bed. Indeed the OPE model amplitude is proportional to

3 " : [ .
5aec Bhed’ i.e., it "factorizes" into one contribution from each vertex.
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Fig. 16.1

An illustration of the factorization
in the OFPE model.

A similar factorization property can be proved for the one-pole

contribution

a(t)
y(t)g(t) /s> (16.1)

to the amplitude in the Regge pole model. More precisely, it turns out that

the residue function y(t) can be written

y(t) = (known kinematical factors)yaR (t)Yde( ) . (16.2)

Here, YaRe (t) refers to the coupling of the Regge pole R to the t-channel
initial state ac, while Yde(t) refers to the coupling of R to bd.

The practical importance of this factorization property lies in the fact
that one and the same Regge pole coupling YaRc(t) may occur in different
reactions, since it is independent of how the Regge pole couples to the other
two particles. Let us illustrate this property by an example. Consider
pp, "p and 7w elastic scattering and assume asymptotic energies so that only

the P trajectory contributes. The factorization principle implies
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T .
el;pp ™ YpPp YpPp ’ (16.3)
Te1;np ™ YapPn Yppp ’ (16.4)
Tel;mr“ YaPr Yapr (16'5)
which yield the relation
o—tot(pp)o—tot(ﬂﬂ) = [Utot(ﬂp)]z ’ (16'6)

be tween the total cross-sections, and a similar relation f'or the elastic ones.
Although this is a pretty safe theoretical prediction, the wm cross-section
not being measured so far, it is by no means uninteresting. For example,

it could happen that ctot(ﬂn) may be within reach in an intersecting

storage rings arrangement.

The factorization property has rurther important consequences. As in
the OPE model, one may use different internal symnetry schemes, such as
isospin invariance, SU(3) etc., to relate the coupling of one exchanged
object to different members of the multiplets. For example, once knowing
how the p-trajectory couples to the t-channel state ﬂ-ﬂ°,.one may use SU(3)
Clebsch-Gordan coefficients to obtain its coupling to the K K° state,
assuming of course that SU(3) is a good symmetry. This reduces the number
of arbitrary functions needed in a phenomenological fit. Other applications
of the factorization principle occurs in, for example, considerations of
different polarization parameters in NN scattering, since the factorization
refers not only to coupling of a Regge pole to different particles but also
to different spin states of the same particles. It will take us much too
far to go into details here, and we refer to the bibliography for further
studies. We only emphasize that factorization is a property of a one-Regge-
pole contribution. As soon as several trajectories are exchanged, there is,

in general, no clear-cut prediction from this principle.

16.2 Ghosts

Consider the signature factor g(t) for, say, a positive signature Regge

trajectory
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£ (%) -.I:sin z a(t)]" exp [-1"5 a(t):] L r=a. (16.7)

This factor has a pole for a(t) = 0. If this happens for t greater than
zero, it gives a bound state. However, it cannot be tolerated for t < O,
since it would mean an infinite differential cross-section at that t-value.
One way to get rid of the undesired pole (the "ghost") is to assume that the

residue function y(t) is proportional to a(t)
v(t) = a(t)[a(t)+1]y(t) . (16.8)

It is then the factor y(t) which obeys the factorization principle (16.2).
Here, we also extracted a factor a(t)+ 1. This is not needed to kill any
ghost, like the factor a(t) is. However, one may show that it still has to
be there, the reason being that the residue function must vanish at a(t)-
values which are symmetric with respect to a(t) = -%2. It produces a zero
in the amplitude, which should be detectable as a minimum (if other poles

contribute) in the cross-section.

16.3 Fermion Regge poles. Daughter trajectories and conspiracy

A fermion Regge pole is expected to contribute to, for example, backward
7N elastic and charge-exchange scattering. As already mentioned, one
peculiar property of a fermion trajectory is that it is complex for t £ 0.

As a consequence, one does not have the simple relation between the trajec-
tory and the phase of the amplitude that one had for a real trajectory, and
one does expect a non-vanishing polarization even if only one Regge pole
contributes. In fact, one may show that if a fermion trajectory af(t)
contributes to a particular scattering process, so does its complex conjugate

trajectory, af(t)*.

There is one more hitherto overlooked characteristic of #N backward
scattering which is merely due to kinematical considerations. This property
is shared by all reactions that do not have the masses pairwise equal as

in elastic scattering. It comes about as follows. Consider ﬂ-p -+ 7°n



Figo 16.2

The s- and the u-channels for
pion-nucleon charge-exchange scattering.

backward scattering, as illustrated in Fig. 16.2. We adopt here the usual
convention to call the u-channel that channel in which the RSW representation
of the scattering amplitude is performed. For our purpose this is merely

a matter of notation, but the reason is that the t-channel is reserved for
the reaction & 7° - En. In the u-channel, the variable s is a momentum
transfer variable. Defining the u-channel scattering angle eu to be the

one between the incoming proton momentum and the outgoing positive pion

momentum, one easily derives [ef. Eq. (2.9)]

s = - 2k;(1 - cos 9y) (16.9)
where

k2 = 0 Mu,ut, W) (16.10)
Consequently

2u |
cos 8u=1 +ms (16.11)

It is this variable that appears as an argument in the Legendre functions
when the RSW representation of the u-channel amplitude is analytically
continued to the s-channel. But in the backward direction of the s=channel,

the variable u can take the value zero and may even be positive




(cf. Figs. 6.10, 6.11 and Exerciss 2.0 ). L7 Joliows st ces O does not
become large as s tends to intinity il u = 0. in yacth, for any t'inite s,

however large, there is always sn interval in v usar to the backward direc-

tion where cos ®u is bounded. 1he

aoptusimation corresponding

to Eq. (12.3) can then not be derived i1 & sireisl Uorrard way.

. . o L ~ o oohalu) .
Still, it could happen that the chavactorictic bBolaviour (s/s0) (w) is

valid even at u = 0, only that ii wust be corived To 2n0lhol wWay. A simple

R L : ‘ a(u) .
continuity argument supports tols ougeosuioas. i L o ) (u) 1s
valid for u < 0, it is not unlikelyv to be itrue alsc Jor o = 0. To give a
more convincing argument requircs maoch woce Lovolves thineling. In tact,
one may prove that the suggestion iz true.

This has a very interesting conseguence, thougl. Namely, in order to

arrange the Regge pole behaviour, cne L occurrence of so called
daughter trajectories. This amounts tn tli 'ollowing.  Let ag(u) be the
trajectory that is assumed responsiblie for the backward scattering. The
correct Regge behaviour is obtained on:y if Lhls pole 15 sccompanied by

another trajectory, ay (u) of opposite sivaature te ag (1) and such that

ay(u = 0) =ap(u =0)-1. This pole 1s called the Uirst dsughter trajectory
to ao(u); it has also a daughter, etc. This set ol trajectories gives a

contribution to the amplitudes which individually do not have the desired
energy-behaviour but which add in such a way as i produce the Regge pole
form for the amplitude. The fundamental reason ifor this compensation is

the requirement that the Regge pole contribution to the scattering ampli-

tude should fult'il the analyticity propeciies amplied by the Mandelstam

>

representation. An analogous situation occurs in, for example, N-N scattering.
Here, due to the spin complications, Mandsistam analyticity implies either
"conspiracy" between two trajectories, now having the same intercept at

t = 0, or the vanishing of some (cowbination of } residue functions at that

point ("evasion"). We refer toc the biblicgraphy for further studies.

16.4 Cuts in the angular momentum plane

One important conclusion from potential thoory, which was taken over to
hadron interactions, was the fsct thet ihe only singulavilies occurring in
the angular momentum plane to the right ot the line Ke 7 = - Y%, are the Regge
poles. Only under this assumption can tihe HON reproscuiation {10.1) and the

high-energy form (12.6) be derivad.



3-169

~ e
\\ //
\\ e 4
a) £ Eaft)

Figo 1603

Double Regge pole exchange in a two-body process.

Are there some theoretical arguments for or against this assumption?
The answer is that, once having assumed the existence of Regge poles in
hadron interactions, one is more or less naturally led to the existence of
cuts in the angular momentum plane; namely, the exchange of two Regge poles,
symbolically indicated in Fig. 16.3, having trajectories ai(t), i=1,2,
implies a cut going to the left from a position ac(t) in the complex f-plane
given by

al.al

aét)=a1®)+u(m-1-+mua{

t, (16.12)

where for simplicity straight-line trajectories ai(t) are assumed. We
illustrate this in Fig. 16.4. Summarizing, a cut in the angular momentum

plane seems almost unavoidable in hadronic interactions.

What is the influence of a cut on the high-energy scattering amplitude
(12.1)? Without going into details, we merely state that the dominating

contribution from the cut is given by

a (t) -
yc(t)(s/éo) ¢ [1log s/s0] Y , V>0, (16.13)
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Fig. 16.4

An illustration of the appearance of a cut
in the angular momentum plane.

Consider for example pion-nucleon charge exchange. Here, the cut could be
due to joint exchange of P and p. But this would mean, from Eq. (16.12),
that ac(t) > ap(t) as soon as t < 0. In other words, the contribution of the
cut is expected to dominate over the p-exchange contribution for all values
of t except possibly for t = 0. Of course, it could happen that, for some
miraculous reason, the factor multiplying the cut contribution vanishes.
However one feels rather uneasy about the occurrence of cuts. They pose a

very intriguing theoretical problem.
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APPENDIX 1

ANALYTIC FUNCTIONS

We adopt the following definition of an analytic function (more

"minimal" definitions, i.e., requiring less assumptions, exist).

A function g(z) of the complex variable z is analytic (or holomorphic)

a if it allows a Taylor series expansion

in the neighbourhood of a point z

g(z) = ) b J(z-a)" | (A1.1)

1]
‘\\/ﬂn

0

=
[1]

(with coefficients bp independent of z), which has a radius of convergence

R > O.

It is permitted to differentiate term by term in the series to get
k
z=a

Next we give a few examples of analytic functions.

i) The function

g(z) = }C g o e® (A1.3)

is an example of an entire function: since the series expansion

converges for all z, it is analytic in the whole complex plane.

ii) Consider

edesilien Lyl G

g (z) =

I



3=172

kFor v = 0, 1, 2, 3, ... , the series reduces to a polynomial, which
evidently represents an entire function. For all other v values, the
radius of convergence is R = 1. However, since the series may be
summed to give (1-z)”, the function which for |z| < 1 is defined by the
series can be defined for all values of z, except possibly at z = 1.

This is a particular example of how an analytic continuation may be

performed: the original definition of the function has a meaning only
for certain values of the variable; by some trick, however, one is able
to extend the definition to other z values and, consequently, to obtain
a runction which is identical to the original one where this was

def'ined, but which has a larger domain of definition.

AImz

]
M —-» Re 2z

Fig. Al1.1

An illustration of the multi-valuedness
of the functions (A1.4).

The behaviour near z = 1 of the particular function (A1.4) requires
detailed study. To this end, let us consider a circle of unit radius

centred at z = 1 (see Fig. Al.1). For points on the circle, one has
z =1-exp (ip) , 0S¢ <27, (A1.5)
so that

(1-2)" = [exp (19)]" - (a1.6)
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Now, start at the origin, ¢ = 0, where gv(z =0) =1, and go one turn

around the circle back to the origin to end up with ¢ = 2w. Then

gv(z) = [exp (2iﬂ)]v = exp (2imv) . (A1.7)

This value dii'fers f'rom the original one, unless v is an integer,
positive, negative or zero. For non-integer v, one is thus forced to spe-
cify not only that one considers the points z = 0 but also what value one
gives to gv(z) at that point, and how the different values hang together
(this gives the different "branches" of the function). One way to avoid
ambiguities of this kind is to forbid a complete tour around the circle
by cutting it at some point; where is completely arbitrary. Since

the same discussion can be carried through for all circles centred at

z = 1, one thus has to forbid encircling all of them, that is, to have

& cut running r'rom the point z = 1 out to infinity. Usually (but not
necessarily!), this cut is taken along the real axis, either from z = 1
to z = 4w oOr from z = 1 to z = -w. The f'irst of these choices is
illustrated in Fig. A1.1.

Summarizing, for non-integer v the runction defined by the series

(A1.4) can be continued to all values of z, except possibly z = 1,
provided one cuts the plane from z = 1 to inf'inity. This is necessary
in order to have a single-valued function. The t'unction is said to be

analytic in the cut plane.

A cut is a particular example of a singularity of an analytic flunction.
Another, more well-known, type is a pole. In our example (Al.4) with

p ==-1,-2,=-%, .., there are no troubles with the multi-valuedness of
the function; thus, no cut is needed. However, the function is

infinite at z = 1, to be precise in a manner such that
lim (1-z)|"I gv(z) =1 , v=-=1,=2,¢e0 (A1.8)
z-a»1

This situation is characterized by saying that the function has a pole

at z = 1. This ends our examples.
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The concept of a pole for an analytic function is a very important one:

if for 0 < Iz-al < R, a function g(z) allows the representation

o N21
g(z) = an(z-a)n + Zdn (z_1a » Ay £0, (A1.9)
n=o n=1

then it is said to have a pole of order N at z = a; di1 is called the residue

of the pole at z = a

dy = Res g(z =a) . (A1.10)

The function (A1.9) is said to be meromorphic at z=a, i.e., analytic except
for a (isolated) pole.

One of the most important properties of analytic functions is given in

a theorem due to Cauchy, which we formulate as follows.

Cauchy's theorem

Let g(z) be meromorphic, i.e., analytic except for isolated poles, in a
(bounded) domain D of the complex z plane, and let C be a closed contour in D

such that an arbitrary point in D is encircled at most once by C. Then

M
96 dzg(z) = 2ni \L;Res g(zg) - (A1.11)
C m=1

Here, z,m= 1, 2, «ee 4 M, are the positions of those poles of g(z) that are
enclosed by the curve D. Moreover, it is assumed that C is encircled in the

positive (counter-clockwise) sense (cf. Fig. A1.2).

We indicate the proof of this theorem in the special case when g(z) is
of the form (A1.9); it is easily generalized. The situation in the complex
z plane is illustrated in Fig. Al1.3. Let z = z, be an arbitrary point on C.
Then, for integer k # - 1, one has



3-175

Z=2o
Kk k 1 Kk+1 |27 %0
95 dz(z-a) = [ dz(z-a) =[m (z~-4a) +:| =0, (A1.12)
Z2=2o
c 2=2g
along C

k+1
since (z-a) assumes the same value after a complete tour around C.

bim 2 ”i g
(2 [ fou

>Re z

Fig. A1.2

The situation in the complex z plane where the
Cauchy theorem applies in the form (A1.11).

»>Re 2

Fig. A1.3

An illustration of the proof of the Cauchy theorem for the function (A1.9).
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Consequently, since term-by-term integration is allowed, one obtains

qs dz g(z) =d qﬁ zd_za . (A1.13)

C C

So, if the residue di vanishes, the integral vanishes. In particular if

g(z) is holomorphic (no poles) in D, and C’ is any contour in D, then

S& dzg(z) =0 . (A1.14)
C’

This part of the Cauchy theorem may be used to prove (do this!) that the
contour C in Eq. (A1.13) may be deformed into the circle

z=a+-12-Rexp(iq>) , 0Sg<om. (A1.15)
Then
iz 2w %Rid(p exp (i9)
gs z_g:/ 7 = 2mi . (A1.16)
3 R exp (i¢)
circle o

This ends our physicist's proof of the theorem (A1.11).
The following result is an immediate corollary of the theorem (A1.11).

If g(z) is holomorphic (analytic with no poles) in a domain D, and C

any positive contour inside D that encircles any point at most once, then

a if a is inside C
_z_ggdzsm- {8“

0 if a is outside C . (a1.17)

- — . - - - - - - - - - - . . - - - - - € T " T G = > -~ - - - - - . s -
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APPENDIX 2

BESSEL FUNCTIONS

The Bessel functions Jo(x) and Jy(x) of order zero and one, respectively,

are defined by

m
1
Jo(x) = p f de exp (ix cos ¢) , (A2.1)
(o]
w
d 1
Ji(x) = ol Jo(x) = i [ de cos ¢ exp (ix cos ¢) . (A2.2)
o
By expanding the exponential
o
exp (ix cos @) => 1 (1x)® cos” ¢, (A2.3)
__J .
n=o
and using
PR
ﬂ%—’—l'-: if n = 2o is even,
v 2 m
fdcp cos™ ¢ = (A2.4.)
[}
0 if n is odd ,

equals (2m-1)(2m-3)(2m=5) ... 3.1, one easily derives the

11
In particular, for small values of

where (2m=-1)!!
series expansions of Jo(x) and Ji(x).

x it suffices with the first few terms:
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Jo(x) =1 - % % =2 + ﬁ? éL x*+0(x%) = exp (— % x’> + 0(x*), (a2.5)

an approximation which is good to < 10% for x < 1.5. Moreover, by

differentiation
%Jg(x) =§ (-1) --;-x+T1§x’+O(x’):|=exp (-%x‘)+ o(x*), (a2.6)

which is accurate to < 10% for x < 2.5. Note the different constant factors

in the exponent for Jo, and J4!

05

0.l

005

Fiso A2.1

The x-dependence of the Bessel functions [cf. Eq. (A2.6)].



3-179

Besides the relation (A2.2), one also has

&= [x3(®0)] = x3,(x) (A2.7)

Exercise A2.1: Prove Eq. (A2.7). [Hint: use the defining integral (A2.2)

for Jy(x), differentiate, and perform' a partial integration.]

In the same way as an "arbitrary" function f(x) can be represented by a
Fourier integral, it can also be represented by a Fourier-Bessel integral

which reads

£(x) =fydy Jo (xy)e(y) » (A2.8)

o

where

6) = [ ¥ ax' B (eypeee) . (42.9)

These two relations can be summarized in

/X’ydy Jo (xy)Jdo (x'y) = 8(x=-x") . (A2.10)

[}

For a proof of the Fourier-Bessel theorem, we refer to G.N. Watson, Theory of
Bessel Functions, Cambridge University Press (1952). The impact parameter

expansion (4.50) is an example of a Fourier-Bessel transform.

A Fourier-Bessel transform used in Chapter 6 is
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k(x) = [ yay 3o (xy) exp (-37) =%eXP <-

x2> . (A2.11)

Fi-

Exercise A2.2: Prove Eq. (A2.11)! [Hint: prove that
a) x(0) = Va3
b) (dx/dx) = - (x/2) k(x) by suitable partial integrations.]

- - - - - - - - - - - - e " " = W - > T e an O L W W e am S e eSS dm S WS WS S e
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APPENDIX 3
LEGENDRE FUNCTIONS
The Legendre polynomials are defined by
1 at ., !
P,(x) = —— =5 (X =1)" . (A3.1)
2 ¢! dx

One may derive an integral representation of Pl(x) as follows. Let

(x? -1)‘ . (A3.2)

1
£(x) = 7
27 ¢!

Being a polynomial, f(x) can be written as a Cauchy integral
2ni

£(x) = 5 Sb a £&1, (43.3)

where the integration path is any closed curve in the complex { plane which

once goes around the point & = x. Then

I3
P (x) = 4 f(x) = L a¢ ——Exﬁl——- =
l( ) dxe ( ) i ¢ (f‘X)l+1

(83.4)
C A g €=
o

2ni (f-x)zﬂ

In particular, if the integration path is chosen as a circle of radius
¥x® =1 around x (we assume for the time being that x> 1), as is illustrated

in fig. A3.1, we may write

E=x+Vx®=1exp (i9) , -m<o 7. (A3.5)
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*Img

Fige. A3.1

The path of integration used in deriving Eq. (A3.6).

Finally, introducing ¢ as the integration variable instead of ¢, one derives
from Eq. (A3.4)

m

Pl(x) = ;}f do[x+Vx® =1 cos cp]' . (A3.6)

- — — - - . . - G D . W - - T P W W D e - - - A P - - e - - " - T T W Gm -

Exercise A3.1: Derive Eq. (A3.6)!

This is the desired integral representation of Pl(x). It is valid for
all values of x, also complex ones (provided |arg x| < %2 m), if proper care
is taken of the square root; if -1< x < +1, for example, one must define

@2 -1 =1V1-x*. Moreover, the integral representation may be used to
define Pl(x) for any £ value, be it positive-integral as in the derivation,
arbitrary real or arbitrary complex. Some care is needed though, in

defining which are the branches of the multi-valued function that are chosen.
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From the form (A3.6) many useful relations for the Legendre functions

P l(x) may be derived. We now give some of the formulae used in the main

discussion.

i) For 0 21 - x << 1, writing v1 - x? as ® ¥ 2(1 - x) and using

|:1 +1v¥2(1 -x) cos {l’ = [1 " -1-{11/27_-;0 cos (p}]‘z

(A3.7)
~ exp | 12v2(1 -x) cos (E' , (l large) ,

one finds, noting the definition (A2.1)
Pt(x) = Jo<l\/2[1 -x]> s (02 1-x<<1, 2 large) . (A3.8)
This approximation is accurate to S 10% for 0 X 1 - x £ 0.2 already for

L =1,

ii) For x » t » one finds

I+

P,(x) = <! i-fd(p |:1

[}

w/1-x-z cos {'l i~

(A3.9)

m
z-}xlf(1+oos cp)tdq; » Re t>--12- .

o

The restriction Re £ >- Y applies, since otherwise the x independent
integral does not converge. The integral may be evaluated explicitly
to give
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(x) = (2x)? TLLES xR (43.10)
P,(x) = (2x , A3.10
¢ JAT(L+1 Re £ > =Y

where I'(z) is the conventional Euler gamma function.

jii) For n 2 O an integer, one has

% [ dx P (x)P,(x) = u(z-xi%r(ln?u Ty ° (a3.11)

This formula is discussed in Section 3.12 of the Bateman Manuscript
Project "Higher Transcendental Functions", Vol. 1 (McGraw-Hill,
New York, 1953).
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