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I. INTRODUCTION.

In the present lectures we shall discuss a few selec—
ted topics in the theory of electromagnetic (e.m.) interac—
tions. It was intention of the auther to select for discus-—
sion the questions, that would be of current interest, and
to stress, whenever possible, the consequences of such re-
markable features of the e.m. interactions as the gauge in-
variance (or divergence condition) and smallness of the uni-
versal coupling constant (uzl/—e‘;r?:é_._? ). Considering on-
1y the terms of the lowest order in sy we have the uni-
que possibility to study the dependence of the cross secti-—
ons on fthe invariant mass of the virtual photon in elastic
and inelastic lepton scattering (the spacelike region of
q2< 0) and in annihilation and creation of the lepton pairs
(the time --1like region q§>-o). The study of the q2 —~ depen-
dence of the e.m. current matrix elements will be the cent-—
ral and pivotal line, which unite all the questions to be
considered. The contents of the separate sections of these
notes can be outlined as follows. In Section 2 we shall de-—
al with the e.m. interactions of leptons and some results
of the experimental check of QED at "large" (q—0) and
"small* (q——oo) distances are briefly reviewed. The rest
will be devoted to the e.m. interactions of hadrons. In the

2

interval -CO < q2< + o0 two points: g = 0 and
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q2 =my (v =fﬁ¢o,w ) are of special interest for the rea-

sons, which are selfevident. In Section 3 the case of q2= 0
and q—~0 is considered. The exact low energy theorems for
emission and absorption of the soft quanta are shown to fol-
low from the gauge and relativistic invariance of the theo-
ry. Dispersion sum rules for the photoabsorption cross sec—
tions are derived and some consequences from them are dis-
cussed. Section 4 deals with the region Oé;q%g m% and
My _ () , which is the region most suitable for the applica-
tion of the vector meson dominance model of e.m. interacti-
on of hadrons. The experimental data and the theoretical im-
plications on elastic and inelastic electron-nucleon scatte-
ring are discussed in Section 5. In Section 6 we turn to the
time-like q2> 0, to consider both the annihilafion and crea-—
tion of lepton pairs in the reactions, where hadrons are

participating.

2. GAUGE INVARIANCE AND TESTS OF QED.

2.1 Basic Equations

It is well — known to everyone, that the lepton quan-
tum electrodynamics (QED) 1is based on the simplest form of
the Lagrangian, which describes the evolution of coupled
system of two fields: the spinor field ¥ (x) of leptons
and the vector field gﬂ(x) of photons:

&L, (F £ A)=&Le (F, ) +Ly (A +Lint (7, A) (2.1)
The free e.m. field Lagrangian

_ L g Fﬁﬂ/
;CJ,(AI—‘Z ‘v (X) (x) ) (2.2)
Fu, =0uA, -0, A Ou =2
v <A =0 A, O
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is invariant under substitution
%ﬂ — %a(x) - d&,f(x) (2.3)
where f(x) is an arbitrary function.

In the free lepton field Lagrangian
Lo = = F ) (Uyu u+m)¥(x) (2.4)
we make now the substitution

d/u—rd/‘ +[:eA/u (2.5)
which leads to

Le (F.4) —>Le (¥) + Lipp (F ¥ A)
with

Lint = eFyu¥hAu=ejuAux (2.6)
As a result, we have, that both the Lagrangian (I.I) and
the field equations

OAu (x) = Ou Oy Ay (X) = = e ju(x)

(L'}/'“d/u +m)¥(x) = eix’”%(x) A p (x) (2.7)

are invariant under the gauge tranformations

y—e @ty | Fog=Foxye IR

Ap (X) —= A u (x) = Op fx) (2.8)
i.e. gauge - invariant.

The lepton current conservation

d/uj/u (x) =0 (2.9)
follows automatically from the gauge - invariant Lagrangian.

2.2 Experimental Foundation of Gauge Invariance.

The gauge invariance is postulated as one of the basic

symmetry principles of the e.m. interactions and it is the
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mathematical formulation of two empirical facts of great
importance:

I. The current conservation (Is9) or the electric char-
ge conservation.

2. The masslessness of the photon i.e. the absence of

the "mass term"
2

‘_g’l’ A A" (2.10)
in the Lagrangian LJ(A).
The best experimental evidence for the charge conserva-
tion is the absence of non-charge-conserving decays
e"=39 (Te >2xI0°T yr) and e™—v+y (Te >4 10225y 1)
The conserved electric charge is the universal coupling con-
stant of the e.m. interaction. The confirmation of this uni-
versality consists in the precise determination of the char-
ges of stable particles e, D,V . It was shownz) that the
electron charge differs from that of proton by less than 5
parts in IOI9 and that the neutron charge (hence, the neut-
rino charge from fs—decay n-p+ € +Y ) is less than IO'IgX
x/e/,(e is the electron charge).
Table I gives the 1is£ of the upper bounds for the pho-
ton mass in units of the electron mass m, (correspondingly,
the lower bounds for the Compton wavelength .ﬁx of photon)

which were obtained from various experiments.
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Tabdble T

Summary of upper bounds for the photon mass (from
Ref.3)
Method v Y m, / me
I) The dispersion of the
velocity of light from the 0,I cm 10’9

double starse.

2) Velocity of the radio

T km 10717
waves.
3) The Coulomb low. 10 km 1010
4) Magnetic field of the 20
30 000 km 10

Earth.

A few short comments concerning Table I are worth to
mention:
I. It is evident, that the velocity of a photon V would not
be the universal constant ( v<¢ ), when m # 0, but would
be a function of the photon energy J

vV _ K - 1

c ~ Vka*m; - \/,,,. (x/;‘&,)?.
(for instance, the velocity of the blue light would be hi-
gher than that of the red light). The light wvelocity disper-—
sion in vacuum should cause the colour phenomena to be ob-
served in the eclipse of the double stars.
2, As mX £ 0 the Coulombpotential should be replaced by

the Yukawa potential

Z 7 (2,11)
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while the vector-potential of the magnetic dipole jf' is
modified in the following manner

— ? /LL "" ITIJ,'Z

The best experimental 1limit for my,, reached up to now, 1is
just coming from a comparison of Eq.(2J2 with the magnetic
field of the Earth.

Henceforth, we shall assume that the gauge invariance

is satisfied exactly.

2.3 Modifications of the theory and the high energy tests
of _QED.

The dynamical model specified by the Lagrangian(2.I)
is very elegant and economical one. All observables are ex-—
pressed finally in terms of the only universal coupling con-
stant and the lepton masses, which are assumed to be given.
The Lagrangian (Z.I) is clearly to have meaning as an "effec—
tive" one, for it does not take into account the interacti-
ons of the Dirac and Maxwell field with other fields. Among
the reasons for the possible breaking of "pure" leptonic QED
is that the strong and weak interactions have eventually to
display itself in electromagnetic effects. Another possible
cause for disagreements between the theory and experiment
could be the violation of fundamental principles underlying
the present — day quantum field theory , such as the Lorentz
invariance, the general principles of the quantum mechanical

description (the probability conservation, to mention) and
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the locality of interaction between the fields.

The locality is commonly suspected most of all, as it
is responsible for mathematically meaningless divergent exp-
ressions which appear in theory. Qualitatively, these ultra-—
violet divergencies occur due to the following. Upon integ—
rating over internal momenta in the Feynman graphs we are
sumning over all possible states of a system with the infi-
nite degrees of freedom and the number of states grows with
energy too rapidly to be compensated by decreasing of the
transition probability to these states. An additional com-—
pensation needed to make the theory convergent is carried
out artificially, by attaching the phenomenological form fac-—
tors to the propagators and or vertices in the Feynman diag-
rams. In this section we discuss briefly the bounds, which
gauge invariance condition put on various models of the
"oroken" QED.

The breaking of the QED consists usually in its "nonlo-
cal" modificationf>ln particular, one can suppose that in
the mutual transformations of the particles, such as
a=b+ ¢ and a + b-sc s all three particles are barred
from the simultaneous localization in the same space-~time
point, and that the field operators, averaged over the spa—
ce—~time region of the characteristic dimension of 1 ("ele-
mentary length")

¥(x)= ¢[x,ﬁ']:fﬁ'(x-x’)q§(x’)dx' (2.13)
enter the interaction Lagrangian. In Eq.(2.I3) F = F(x) is

the form factor. Non-locality, such as in Eq.(2.I3), intro-
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duces the additional momentum dependence in the matrix ele-
ments. Converting Eq.(2.I3) into the momentum representati-

on one can obtain

oo = L, [atp € T Fipy By = F(pyp(x),  (2.18)
where the bar denotes the Fourier transform of the function
in question (for instance, F(D) is the Fourier tranform of
F(x) ), ﬁ=-[ d)u is the momentum operator in the coordi-
nate representation.

To maintain the gauge invariance the differential ope-
rators acting on the charged particle fields should appear

only in the form of the following gauge - invariant combi-

nation

b\/u‘eA},((X)

Hence, if we are going to make use of the modified lepton

fields
¥ (x,F) =F (P -€A)¥(X) (2.15)

we shall have in the interaction Lagrangian non-linear de-—
pendence of e.m. field Af:(x), which leads to the presence
of the multiphoton vertices and additional difficulties
with divergencies in higher order diagrams will appear.
The commonly accepted parametrization of the matrix
elements of the processes with the fermion propagator

— the Bethe-Heitler pair production and the Bremsstrahlung -
+A— LT +A
£1+A—»Cz-‘}/ +A (2.16)
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is of the formi)
6}xp 4
G th A ( )

where m =m oT Mgy » is the invariant mass of the fi-

e‘*e”
nal state in Eq.(2.I6), A is the cut—off momentum.
Theoretically, the model of the broken QED with the mo-

dified photon propagator

I A _ A2
K2 K /\’*2_/\2 T K2(A%k?) (2.18)

looks more attractive as it can be made consistent with the

absence of divergences, the gauge invariance and the unita-
rity of the Sﬂmwrbﬁ).
This model can be checked in the processes, including
the virtual photon lines in the lowest order diagram:
- — - -
e +e —e + e
et + e — e + e
+ - + -
e + e — A+Uu
In Table 2 the summary is given of the values of A obtai-

5)

ned from recent high energy tests of QED,

Table 2
Summary of recent high energy tests of QED.
Experiment Value of A (95% Confidence Limit)
I. e +e —e + e
III0 MeV N >4 GeV

+ - + -
2. e e —e e

m€€

Mo+g= 1020 MeV N >2.6 GeV
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3. eTe” —v/u*/u"

Mo o= = 1020 LieV

4oy+ C—=C + ete”

A >1,3 GeV

N > 1.4 GeV
Mgs o 900 HeV

5.y+C—-C+/u*/u‘ A

7 1.5 GeV
m/uqﬁ/_,- & 1225 leV
6. ¢ + C —=C + e +¢
AN > 1.5 GeV
m_ < I030 KeV
ey
Te M +C—=C +u +
M ATy A > 0.7 GeV
£ \
Muy & 650 bMleV

2.4 The low energy tests of QED.

e turn now to the experimental tests of the theoreti-
cal predictions for the static properties of a system: the
bound state energies and the lepton magnetic moments.

Firstly, we shall discuss the hydrogen atom energy le-
vels. As is well known, in the nonrelativistic approximati-
on the bound state levels of the electron in the Coulomb
field are degenerate with respect to the orbital angular

momentum:

Is}é 5 231/2 2p1/2 2p,/2; 351/2 3P1,5 3Dy, 343, 345,35 e
(where each state is specified by the principle quantum
number n , the orbital angular momentum 1 = 0y, I, 2,.0.

.n=I, and the total angular momentum j ).
If we use the Dirac equation instead of the Schroedin-

ger one, then due to relativistic effects (mainly, due to

the spin-orbit coupling) the term with fixed n is splitted
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THE HYDROGEN ATOM

N 32|
| —S=1057.8 MHz
2S. -

V, =10969.1 MHz |
Ve —— 71—
S .

177.56 MHz

§;S>'/2 ' |
172 '
' P

59.18 MHz

Ry ~(Za)2m
fs~(za)*m
hfs~(m/Mp)Za)'m
s~a (za)m

AN

1S\ /p— 1S/57 Vhi; 1420406 MHz
i

FINE STRUCTURE

HYPERFINE STRUCTURE

142581

Fig. 1 The energy level structure of atomic hydrogen.
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into n components of the fine structure. All of them have
the same values of n and J but the different wvalues of
1 =j&%:

:[S'y2 H 25% ZP% ) 2}';)3/2 5 331 BPA(/2 , BP;/Z 3d3/2 , Bdglz')

%
At last, if the electron-proton relative motion is des—
cribed in a completely relativistic manner by the two-par-
ticle Bethe-Salpeter equation and if the proton structure
is taken into account in the form of a given static charge
and magnetic moment distribution, then all levels are split-
ted, each level with a given J being splitted into two
levels with JT=j=*(/ , where J 1is the total angular
monentum of the electron-proton system. The last type of
splitting forms the hyperfine structure of the hydrogen
atom (see Fig.I).
e have not yet told anything about the modification
of the effective electron-proton interaction due to the ele-

ctron "structure® i.e. the higher QED corrections, corres-—

ponding to the Feynman graphs, presented in Fig.Z2.

§ = é + :§§ -+ 4.%£§§E§:i#'”
(aq) @) (C)

Fig. 2 Feynman diagrams representing the electron "structure".

The calculations of the radiative corrections to the

bound state energies reveal the following features.
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The values of the fine structure and hyperfine structu-

re splittings

AEgs =En. L j=C+Y2)-E (n. €, j=€-V2) (2.19)

BEpts=E (., T=j+l2)-E (n.§, T=j- o) (2.20)

are weakly dependent on the radiative corrections (they con-
tribute about 0,I% = 1000 ppm)

It is important to note also, that among various terms
the dominant contribution to Egs.(2.I9) and (2.20) comes
from the interaction of the external e.m. field with an ano-
malous magnetic moment of electron (Fig.2(a) ). All the other
terms, but the electron anomalous moment corrgqﬁion, contri-

H

fe
bute to A Eh{s (n=I) about 60 ppm, to A Ep g (n=1) about

H
200 ppm and to A E{s (n=2) 1,2 ppm, while the experimen—

tal errors are *I,2x 10—12’ *9 ppm and * 5 ppm, res-

6)
pectively.

The tremendous precision of A Ehf;.s (n=1) attained using
the hydrogen maser technique cannot, unfortunately, be utili-
zed as a check of QED until a better theoretical understan-—
ding of the nucleon polarization can be made.

The complications due to the strong interaction dyna-
mics are absent in studying the hyperfine splitting of muo-
nium (/a*e‘ ). The main trouble here is that the electron/
muon mass ratio is not known to sufficient precision.

Contrary to A4 Eg and A E/,,cs y the lepton magnetic mo—

ment anomalies and the Lamb shift

S= Ef@f:j*’/z,j)-Eln,€=j—'/2,j) (2.21)
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are totally the higher order QED quantities.

The situation with the Lamb shift have caused the anxie-
ty for a long time, because various experiments were in sa-
tisfactory agreement with each other but disagree strongly
with a theory.s However, the recalculation of the 0(2- cor—
rections to the electron form—factors was made quite recent-

ly.7> The new theoretical value is in good agreement with ex-

periment
Sexp (n1=2)=1057 86+ 0,06 MH;
o1d: Syp (n=2) = 105%,56 £0.08 MHjz (2.22)

new: Sy, (n=2) =1057.91 £0.16 MHq

The measurements of the static e.m. moments of e” and
/ui is of great interest not only as a check on QED, but
also for the reasons of tests of the discrete symmetries P,
¢ and T. For example, the experimental equality of the g-
factors of electron and positron (within I ppm) and of muon
and antimuon (at the level of 0,7 ppm), permits us to rule
out any violation of TCP in the lepton g-factors at the le-
vel of I ppm.s) From here on, we shall assume, that the the-
ory is P-, C- and T- invariant. The matrix element of the
e.m. current %# , sandwiched by the spinor particle states
is

, 3 mT
<Pyl jpuc0)|p,>=(2n) 3]/-{2’% 12(/02)[);‘,/7,(92)4-

+iGu Fy(9Y]ulp) ,  §=Ps-P (2.23)
The Dirac (F,) and Pauli (F,) form factors give the

"normal (i.e. the Dirac) and anomalous magnetic moment dist-—

ribution and satisfy the normalization
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FI(O) = e
p= B+ £ ()

Our initial Lagrangian has no dimensional coupling constant,

(2.24)

as we have introduced the lepton-photon interaction in a "mi-
nimal"™ way i.e. using the gauge—invariant substitution (2.5).
This means, that F2(0> should be found in terms of the char-
ge and mass of the lepton in question:
F,(0=2 3 Aq(Z)"
2 om 52, 7 (2.25)
where An are the dimensionless numbers.

In table 3 comparison is given of the theoretical valu-
]

es of A,75 with experimentg).

Table 3
Comparison between the theory and experiment for the lepton

anomalous magnetic moments

Ay A, Ay
exp 0,5 -0,3285 -7%*2,4
e th —n— —n— 0,I3 = 0,5
. exp —— +0,76578 49 * 25
2 th —a— —— 23+ 3

We have represented the experimental results for F2(0)
in the form of the expansion of Eq.(2.24)assuming the theore-
tical values for the coefficients A; and AZ. The calculati-
ons show us, that the role of the high energy region in the
intergration over virtual momenta in the Feynman expression
for the magnetic moment (Fig. 2 @) as well as the sensitivity

of the theoretical result to possible modification of QED at
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small distances is quite different for electrons and muons.
We shall illustrate it taking as an example
the calculation of the Schwinger correction Ay = %. Let us
apply the dispersion technique and write the dispersion re-

lation for the F,(t) (t = qz):

T It
Fz(f)~3-%1,§n2-ﬁ (2.26)

where m is the mass of a lepton.
In the lowest order of perturbation theory ImF?_(t), cor-
responding to the Feynman. . diagram of Fig. 2 (a), is of the

form
2

F(t) =L &m
Lm Py (E) S TETE= G (2.27)

The explicit calculation of Fz(O), using Eqs.(2.26) and (2.27)

shows, that 99% of the exact value of A, = % is coming from

2 2

the integration of Eq.(2.26) over the region 4m~ < £ < 200m“.,

In the case of the electron the upper bound amounts to

2

t max = 200 me 50 MeV?‘, while for the muon we have

2,15 GeV2.

£ mox = 200 m5,
Thus, FZ’(O) should be much more sensitive to possible
breaking of QED at small distances. Due to its small mass
the free electron is a kind of the system, which is Udynami-
cally" isolated from the interactions with other fields and
the present discrepancy between (A3>exp and (A3)£h (see Tab—
le 3) looks rather intriguing. New determinations of the
electron moment anomaly are highly desirable. Further impro—

vement of the accuracy in the muon (g=-2) experiment will
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enable us to understand more deeply the modification of "pu—
Te" QED by the weak and strong interactions and to search
for both the specific u —structure and the breaking of the
fundamental principles of quantum field theory. We conclude
with a note, that the photon propagator, modified according
to Bq.( 2.18 ), leads to the modification of aH'( a= %-__2 )
of the form

2
- ég_/, 2 My (2.28)

a pu -3 A2 n
Equating Eq.(2.28) to the experimental error for aexp’ we
get

A >5 Gev , (2.29)

It should be noted also, that all the tests of QED depend
strongly on the precise value of the fine structure cons—
tant ol :

X™'=132,03608 0,00026 (1,9ppm) (2.30)

which was obtained by using the ratio 2 % y determined

via the Josephson effect in superconductors.s)

The theoretical calculations of the high order Feynman
graphs become manageable since the development of powerful
computer methods. The sixth order diagram of Fig. 2 (c)
(the photon-photon scattering contribution) is found to be
important for the evaluation of the muon moment anomaly

(A a/u)r,y =(184 t/,gg)j‘;‘; (2.31)
and it was obtained numerically.

To summarize, we can only repeat that the quantum elec-—

trodynamics seems to work as well as the initials imply (QED
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= Quod Erat Demonstrandum).

3. LOW ENERGY THEOREMS, DISPERSION RELATIONS AND SUM RULES.

3.1 General properties of the hadron e.m. current

There is no field theory of the hadron interaction at
our disposal. So, the field equation
e.m

UA/((X) 3‘9;1 (X)
a/.xA/u(x) =0 (3.1)

is just the definition of the hadron e.m. current J}l.
As in the case of the lepton electrodynamics, we shall

assume the validity of the current conservation
M
aIUJ— (X) =0 (3.2)

and the gauge invariance conditions

KpMav.. = q, Mav... (Pryq.)s0 (323

where M is the hadronic part of arbitrary matrix element

ru)..
including the real or virtual photons. (Note, that Eq.(3.3)
follows from Eq.(3.2) only for the one—photon amplitudes).

We state now the properties of J:n under the internal sym-

metry transformations. The eigenvalues of the electric charge

operator
A
Q= jd‘x To (x) (3.4)
obey the Gell-Mann-Nishijima relation
= + L .
Q=1, *5Y (3.5)

where 13 and Y is the third component of the isospin and

hypercharge, respectively. The local form of Eq.(3.5)
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Tu=e(Tu?+To)=e(Ti +h Ti) (3.6)
is assumed to be valid as well.
In Eq.(3.6) \I})G(S) is the isovector (isoscalar)
part of the e.m. current, i = I, 2,... 8 are the SU(3) in-
dices. writing Eq.(3.6), we have fixed the tensor properti-
em

es of Jtu both in the isospin and unitary space, as well
as the transformation properties under the (generalized)
charge conjugation

S A S (Vs)

GTy 6 =FIu (3.7)
(737;C"' ==-Ju
G =C-exp(-inT,) (3.8)

where C (G ) is the (generalized) charge cojugation opera-
A

tor, I; 1is the i-th component of the isospin.

3.2 The emission and absorption of soft Y —quanta.

(4

We start our discussion of the dynamics of the e.m. in-—-

teraction of hadrons with the consideration of the low ener-—
gy theorems (LET) and dispersion sum rules i.e. the questions
which are least dependent on particular dynamical models.

LET results in the exact limiting expression for the
amplitudes of absorption and emission of the zero energy
Y —quanta.
Let

TA=B+y)=€uTulf,.PaiK) (3.9

be the amplitude of an arbitrary photon process A:..’B+a/
2

with all particles lying on their mass shells pf =m;
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k% = 0. The theorem states, that the coefficients c¢_, and
¢, in the expansion
(=" =]
lim T(A==B8+y)=X Cak7 =8 +Cok®+Q(K) (3.10)
K- 0 Y ES K

are defined in terms of the static e.m. properties of the
particles involved (charge, magnetic moment etc.) and the ra—
diationless amplitude T (4 ==B),

As an example we list several processes in Table 4, po-
inting out which characteristics of the reaction A==B are

needed to describe the amplitude T (A==B+}) ) at k--0.

Table 4
Dynamical quantities needed for description of radiati-

ve processes at low photon energiles.

Reaction A=*B +) A="B T (A== B)

I. N+ N—=N + N +J/ N+ N—=N+ N phase—shifts of
NN-scattering

2. X’+ N—a)/+ N N-=N +J/ e.m. form factors
of nucleons

3. }'+ N—=sa+ N N-=N +a 9w coupling
constant

4, J,+ D—=n + D D=p+n gnpn'coupling

constant, or de-
uteron wave fun-—
ction

Due to the zero photon mass only the processes of the
photon emission and scattering are thresholdless. In this ca-
se Eq.(3.I0) defines the amplitude in the physical region of

a given process. The reactions of the pion production and
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nuclear photodisintegration are the threshold ones and the
value k = 0 is in non-physical region. Special considera-—
tion is needed to decide whether Eq.(B.IO) can be used at

w > wf/:z_ >0 and to compute the corrections, if neces-
s5ary.

There are several equivalent methods to prove LET. We
explain the general idea using the Low's approachlo}. The
proof is based on the masslessness of photon, the gauge con-
dition (3.3) and the lowest order approximation in .

The amplitude (3.9) gets contributions from two types

of terms

(t
T,u — Tf‘ex{ . T/un (3.11)

pext(int)

where represent the Feynman diagrams in which the

photon line is ended on the external (internal) particle li-

nes. Owing to the zero mass of photon, T/f‘:Xt has the singu-

larity at the point k =0:

‘.
Mu (K) Ca LG+ 0 (k) (3.12)

i

Tex'é{k)
# _L-Z (P; 2 K)-m?~ K

There are no internal virtual photon lines in the diagrams
we consider, since we confined ourselves only to lowest or-

der approximation in X . Therefore, we have

p2t _ 20y + 0 (k) (3.13)
where Tint(o) is regular at k = 0.

Define now new amplitudes

I ~ -
T/u = % + CoK® +CR +0(A’)E'%*Co+o(’<) (3.14)

s int
T/fl = T/J (0) - Cr (3.15)
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where we have introduced the constant CR s Which should be

defined from the condition

1
ky Ty =0 ) . (3.16)
The gauge condition (3.3) imposes
I o0,
Kp(Tu +Ty ) =0. (3.I7)
Taking into account Eq.(3.I16), we get finally
_md
7}1”- Ti +0(K) (3.18)
'tﬁ_ =0(k) s

which proves the statement (3.I0), because T; is expressed
in terms of the e.m. properties of "external" particles and

the characteristics of the process T (A::'B). As an example,
we consider below the Compton.scattering on nucleon and make
use of LET to be derived, to obtain the dispersion sum rules

for the photoabsorption cross sections.

3.3 Diversence condition and low energy theorems for the

e S e s o S S S R D S S SIS S S

fisovector" Compton scattering.

The e.m. currents, entering the Compton scattering amp-
litude, include, according to Eq.(3.6), both the isoscalar
and isovector parts. For the sake of generality and to em—
phasize some important points we consider the matrix elements
of the conserved isoscalar (Jﬁ;) and isovector (J}f , a=1,2,3)
currents separately. These matrix elements will be referred
to the "isoscalar™ and "isovector" photon scattering on nuc-

leons

Tuy = T(ySN—}°W) (3.19)
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aé a 8
T/,V=7’(J, Ny V). ab=123. (3.20)
The isotopic structure of the amplitude (3.20) is similar to
that of the T -N scattering amplitude

ab (+) -
Tuv =028 Tpv + 4 [Ta,16] Tue "’ (3.21)

The fact of the extreme importance is that the gauge condi-

tion (3.3) is replaced now by the non-zero divergence condi-

tion 5
é raéj
KuMu =€V =V, 20 (3.22)

a b}

What is Vv[ ' in Eq.(3.22) equal to?

One can obtain the exact and model — independent limi-
ting expression for V, at k—=0 or / and kz—’ 0. Accor-
ding to preceding consideration it is given by the pole diag-

rams, represented in Fig.3.

hz kf hl k"

Fig. 3 Pole diagrams for the Compton scattering.

Direct calculation gives

&m KiuT, o6 _ [, ‘Ca]u(Pz)[P (O)p + (3.23)
Kk—~a F2(0) J’/(z bi/v] u(P,)

em 2
K&mo T/lv Ky =[ T4, Ta]a(Pz)[Ff (0) fuu ~ (3.24)
2-—3

_ Fy(0) ILK;ZK;(” ]ll(F)

2m
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The current algebra approach gives us the model - dependent

result for arbitrary values of k, and k,
ab — v
kl,u'];ﬂv =2i€abe Cc Ut (Pz)[ﬁ, (qz)y, +
(3.25)

v 2
+L£22_%q_'_)6ﬂvq‘,]u(p,) , 9=K,"K2 :/oz'P:

which is consistent with Eq.(3.23) at k —=0.
The vector current conservation
(?/u J},G(X) =0
implies the vanishing of the divergence of one - current

(or, equivalently, one — "isovector - photon®) amplitudes as

well as the imaginary parts of the two — current ("Compton")

amplitudes: x "
3 (KX
K/uT; =£k/Jd"xe Lh IJ'/a:l,D> =-jd‘5(€ <nlap.7};a),o>(=3026)
] 6 g )
K,/UImT/:V :Im T/c,',, Koy X k,/,z<lc)2[7vln><n/\7'/g ’P’ >=0
? (3.27)

The non—-zero divergence condition (3.25) leads to important
consequences. Firstly, it follows from Eqs.(3.25) and (3.27)
that the real part of Ty, has the non — Regge fixed (i.e.
independent of the momentum transfer) power polynomial beha-—
viour in energy. Secondly, we should now use Eq.(3.25) ins-
tead of Eq.(3.3) in derivation of LET for T?,‘}?, and define

the constant C, in Eqs.(3.I14) and (3.I5) from
[a6]
FuT 2l Py g ),

; v[qu (3.28)

Revridlzw «0 (w'),

We write down the explicit formulae for the forward scatte—

ring (¥, =k, =k ) amplitude only.
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{a 6}

Ty (Bow) =4 {Ta, Tg) T ip)]- 57 5 g(p )29, & +

(%75@) x (ude -t ¥u) k]u(p), (3.29)

T[a'g](BOZﬂ -':—L[T ([3][/_’—- ) —F.{v(o)é' A
i /’O[Z(p'k)(}/ﬂfv'&/vay/«)ﬁ"

. (F’z (o)) 23/4\/ ]u(,o k = err‘- ’ (3.30)

Joe==du="%2="Js5=1 ; %20, p¥V,

where { .. denotes the anticommutator of the Pauli
isospin matrices T; , while [ 1 stands for the com—
mutator.

Corresponding superscripts in T's define the symmetric
part and antisymmetric one in the isospin indices.

Symmetrical amplitude (3.29) and, in particular, the
"physical® Compton scattering amplitudes, satisfy the zero

divergence conditions, as they should do. Hence,

{a 6} .8}
,uv = T/,U (Born) (3.31)
In the antisymmetrical case an additional term is required
[a.6]1I [a.8] faf
T/,V = Tuy (Born) + Ty J (3.32)
From Eq.(3.28) T[aﬁ] is found to be

[ ﬁ v /
e 4% T 2(p) 4 0G0 ]y 533

With the help of Egs.(3.29) - (3.33) we can find the low-
—energy behaviour each of T's in general form of the for-

ward Compton scattering amplitude

a6
'_'L] (w) = J05(7’++JLJ+LE¢JA'6 T* (w))+
+-£’,-[ a. ‘Z_"g]((fLJT (w)+L€LJKGKT (w))’ (3.34)
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where indices i, j = I, 2, 3 are understood to be contrac-

ted with the polarization 3—vectors of photons.

3.4 Dispersion relations_and FESR,

It follows from the causality and spectrality (i.e. com-
pleteness of the positive energy state - vectors) that T%t;
is an analytical function of =z (Re€2=w) in the region of
complex plane, limited by contour Cpr » as shown in Fig. 4.

Therefore we can apply the Cauchy Tormula

T(z /
T gy Q52 e (339
Cr
to define
++
T"“(O)-g;“. c_f) T = (2) §z (3.36)
Cr
-7 ¥z
7"1-0» (0) :2-:71_'-16 @7_:_2__2@_! oz (3.37)
CR

To derive the sum rules for each of four functions in Egq,
(3.34), we have
a) to substitute the left - hand sides in Eqs.(3.36)
and (3.37) for their zero-energy limits found from
Egs.(3.29) - (3.32).
b) to exclude the integrals over - R« w4 0 , using
the crossing-symmetry relations
Tt () =+ T 22 ()

(3.38
TEE () =~ T*% " (-w) )

¢) to express the integrals over 0% wW£+R  through the

optical theorem
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Fig. 4 The contour of integration in the Cauchy formula.
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I T ()= 2 Q.;G_ (3.39)
ImT--/w)— = §ﬂ-§- (3.40)

where

6t=4 6‘*&6‘"’]55[6(3/*”):6(r’/V)],

6}@9— the cross section of photon-nucleon interaction when
spin of the photon polarized parallel (antiparallel) to that

of nucleon.

We write down the final form of sum rules

X
“Gm " J5 (“’)d“’ +Co ', (3.41)

* .
o | m362~ = J dw (6 =G, )+CR , (3.42)

(p=%n)° 2 2
O\[ 8/772 5 (('Z, >P—<2, >I7)]”‘

R - (3.43)
+ ) +
:‘/LWZS %‘—9(6()“6‘ )+CR ,
W
(3.44)

A /a"_c? zjdzo (C)”;+)~6",(ﬂ_6:’+6:’) +C,p
O

where CR stands for the integral over the circle of radius

R in Fig. 4, and the indices attached to qzshow which of

four functions in Eq.(3.34) the whole sum rule should be re-

ferred to.

Writing Egs.(3.4I) — (3.44) we have used the notations

6v_=_=é (6 (+)+6(-)) (3.45)
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p{"g = 4 (;;' - F, ; ) (3.46)

F(0)=-4<2?>, Fy0)=x2, (347
,/uzﬁ',(O)'fpzlo)
and P (n) denotes a proton (neutron).

The cross sections entering sum rules (3.4I) - (3.44)
cannot be measured directly in photon reactions but they can,
in principle, be evaluated using the multipole (or phase—
shift) analysis of the meson photoproduction amplitudes. Sum
rules, analogous to Eq.(3.4I) and (3.42), can be proposed for

the measurable "real" photon-nucleon cross sections

-,%:2—’2f @ff (W)dw + Cr" " (3.48)
g7 @,
2 R
e ¥ 3 J’ p—
g,,;oz :z,ljzzj (6 - 6y () + C, ™ (5.49)
wO

with an evident modification in the case of the neutron tar-
get.

The finite energy (R<o9) sum rules (3.4I) - (3.44)
and (3.48), (3.49) are valid for any value of R. Let us con-
sider now the case of large R , when the Compton amplitude

12
has, presumably, the asymptotic expansion of the form: )

e'L'J?dz <) A= (¢)

T(w é) ZG'Z (f) iU7170‘ (¢) w +
(3.50)
+§;Ku)(¢ )5 (41 -1)")

The first term in Eq.(3.50) represents the ordinary Regge -
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pole contribution and the second one is non-Regge term,‘which
in the language of the complex J-plane approach is related
to the fixed poles. In Eq.(3.50) rL is the crossing phase
( m=+I for ™, m=-1 for %% ), T, 6, (t) and
A (t) are the signature, residue and trajectory of the Reg-

ge-pole, respectively. One can obtaln now

CE”‘,‘%% 65(0)5;*27[0 (o) , (3.51)
X~/
C/eo:“.;‘% = 6z /0)&&;, +2{, (o) (3.52)

where Cg(o) is related to the crossing — even (odd) ampli-
tudes TFE(1¥E),
Quantum numbers of the leading Regge — trajectories are

listed in Table 5.

Table 5

Quantum numbers of leading Regge - trajectories

Amplitude T P I G Symbol
rtt +I + 0 + P,P'— vacuum
Pomeranchuk po-
les .
+— P _+
T -1 + 0 + T =I"-mesons:
D(?) ’ * 0
T_+ -1 - I + P
T +I - I + ?

As (XP (0) = I, the sum rules (3.4I) and (3.48) are mea-

ningful only for R <oco . The other sum rules may happen
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to be "superconvergent" ones i.e. they might be finite even
at R — oo,

Unknown constants f, and f., contribute only to the
real parts of the corresponding amplitudes. For energy depen—
dence of these fixed pole contributions is similar to that
given by the Born diagrams (Fig.3), one can, conventionally,
to speak of them as of the part of the Born terms, which

"survive" at high energies.

3.5 Consequences on the total photoabsorption cross sections

from sum rules.

What are the results we get from the comparison of sum

rules with experimental data?

3.5.1. Energy dependence.
The measurements of the total cross section (SKP(LU)
in high energy region (say, W= 3 GeV) can be used to de-

termine the parameters of "effective" vacuum pole

> szdz':Ge,(;(’ w ™ H (3.53)
v=pp’
with the help of sum rules
Ra Kegtf1  Repr+n
j 0" {i’; () oo =5 gj}fm (%, ;r_RI eff | G
R, n=0,2.
For given R,& W< R, , the values of deﬁ are ve-

ry close for the pion-nucleon and photon-nucleon interacti-

ons. This fact means, that

Gp (1) . Gpr(m) . CIATPI+G(AP)  ppet (3.55)
ColY) — Gp' ) G (¥P)
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13)
Fig. 5 demonstrates the similarity of the energy dependence
of the pion-nucleon and photon-nucleon cross section at high

energy.

3.5.2. Isospin dependence.

e continue the line of comparison of Jt N- and ]'N—
cross sections. We note, that the Cabibbo-Radicatl sum rule

(which is nothing, but Eq.(3.43) with R—>°° and ¢t — 0)

- 2
2J72(1—Ie—:),-7’7.3[(x”4 Xn)®_ \’3772(<z,2>f, - < z,2>n)]:
oo

c! +) _ -)
=| (6 -9 )
th?

has the structure similar to the famous Adler-Weissberger sum

(3.56)

rule for the axial-vector coupling — constant renormalizati-

on in .ﬁ ~decay
du (6(”—6(_)) (3.57)
w J n o )

2
2’12(4'%',”‘) mra “9“&2) =
> th
where gné%Jl = I4,6 and gA = -I,23.

We point now to one qualitative feature of the isospin
dependence of nucleon excitation by pions and "jsovector"
photons. In Eq.(3.56) the Born-term contribution (e.g. the
first term in the left-hand side of Eq.(3.56) ) is less than
the current—-algebra contribution (the second term in the left-
hand side of (3.56) ), while in Eq.(3.57) just vice versa:
the current—algebra contribution is less than that of the
Born term. Thus, in total, the left-hand side of Eq.(3.56) is
negative, while in Eq.(3.57) it is positive.

Taking into account, that
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6“-6=2 Eu=Yp-6=12)) O30

we conclude, that the excitation of the I = % final states,
in comparison with the I ==%@-— states, goes much stronger in
photon reactions than in the pion induced reactions.This is
especially clearly seen in the region of nucleon resonances
with masses around I,5 — I,6 GeV (see Fig. 5). From this con-
clusion it follows also, that in the pion photoproduction

and Compton scattering in bvackward direction, where the u-
channel baryon exchanges are commonly assumed to be domina-
ting, in addition to the nucleon (Ny) and A ( I236) - tra-

jectories one should include at least one more Regge-trajec—

tory with I =% (the so - called N, - trajectory,
which goes through the first two resonances N* ’

- P -
which are N*(1520,3P= %) and N¥(2190,J =%2) ).

3.5.3. Spin dependence.

Due to the lack of direct experimental measurements of

Gp and Ga , entering the anomalous magnetic moment sum
rules (3.42) and (3.49), one must construct them from multi-—
pole analyses of pion photoproduction. The calculations ava-
ilable appear to confirm the validity of these sum rules, to-—
gether with basic underlying assumption on the spin indepen-—
dence of cross sections at high energies. Numerically, it

was foun;jothat the only contribution of A -resonance gives

good "saturation" of these sum rules (with an accuracy of abo-

ut 10 - I5%). To compensate the negative contribution to the
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sum rules from the nonresonant s-wave of o1 N photoproduc—
tion (evidently, it contributes only to G4 , because of an-
gular momentum conservation) the higher resonances N© (I520,
7% 35) ana w¥(1688, 7 =3%) should contribute mainly to
C{P « This is just the casé?vas is seen from forward and
backward pion photoproduction.

The corresponding differential cross sections do not
show any resonant peaks at the place of "second" and "third"
JU N-resonances, while the total cross sections do. Hence,
these resonances are excited mainly in the state with para-
llel spins of photon and nucleon. Angular momentum conserva-—

tion forbid them to contribute to forward and backward pion

photoproduction in that case.
3¢5.4. Possible evidence for fixed poles.

The interesting evidence for the fixed pole in Tfaﬁuﬂ
was discovered recently from the analysis of the dispersion
sum rulegsgnd dispersion relations for the forward ;yP -scat-

tering?.The value of the fixed pole contribution in Re'Tpﬂun
at w-+»oo was found to be of the order of the Thomson va-

lue
ReTP* (0) = - % (3.59)

The fixed poles may happen to be inherent only to "weak" am-
plitudes and be absent in the pure hadron amplitudes. Hence,
in view of Eq.(3.55) and smallness of (3.59) the belief to

get reasonable description of the high energy e.m. phenomena

in terms of ordinary hadron-like phenomenology looks promising.
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4. VECTOR MESON DOMINANCE MODEL AND MESON PHOTOPRODUCTION

AT HIGH ENERGIES.

4.1 Basic dynamical assumptions.

During the last two or three years great attention was
paid to the vector meson dominance (VMD) model in the theory
of hadron e.m. in‘teract:i.ont8 In fact, VMD reduces the studies
of the e.m. processes to the description of pure hadronic
dynamics where vector mesons play the central role. Since
the neutral vector mesons Po‘ w and have spin, pa-
rity and charge conjugation identical with the photon, they
can decay into the lepton pair with the virtal photon in the

intermediate state (see Fig. 6(a))

e+
v Y Vv
A > — B
e" )&\
(a) (6)

Fig. 6 Graphical representation of VMD.

Consider the matrix element of the e.m. current

(4)
T =M} (P08, ) 8" (Pa-Ps=q) = <BITi "(ONA>(PuPaq) (4.1)

describing the process =B +¥ (Fig. 6(b) ), where A and

B are arbitrary hadronic states,

When qz—a—mi (v =f3c,’u), @) the matrix element (4.I)
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should exhibit the resonance pole behaviour, owing to the

existence of V-mesons:

1 %4 2 2
Y (g% 2 = GyvMp (97 2~ FHVMY AV (2
2\/ v
wsere G‘Vimv gIV is the 7'-W'coupling constant,
M/u(q2 = me ) is the amplitude of A="B + V and R(qz) rep—

resents possible nonresonant background.

The basie dynamical hypothesis of VMD is that of the

v
smooth behaviour of M/z(qz) as we go away from q2 = me .
This smoothness assumption leads to the approximate equali-

ties

Tﬂ(AzB+J/)’q§0=§ 9y, T (A =BV g2 m? (4.3)
2
my

Tu(A==B+y(q%0)) =Zgq, 2 g2 Tu (A== B +V)l<12=mf (4.4)

which also can be obtained starting from the so-called cur—

rent - field identity

em 2
) = Vi (x (4.5)
Ao Vz:ﬁw'?ypmv # (X

where Yﬁ(x) is the local field operator of V-meson (V =
:J)o.(l),‘? ).

The important feature of Eq.(4.3) is the following. The

polarization four-vector E/I(Q) has to obey the subsi-
diary Lorentz condition
M
€ = 0 (4.6)
q, ’

to describe the unit-spin particle.

A
If q2 # 0, then €, (q@) has three polarization

= (A=1 D)

—
states: two of them ( € 1 ¢ ) are transversely po-
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larized, and the third one describes the longitudinally po-

- (A=3) -
larized state ( € Il fl ). On the other hand, if

q2 = 0 then 6;, (q¢) has only two transversely polarized
states. The essence of Eq.(4.3) is that the matrix element
T(A==3B + V;, ), where V-meson is in the state with transver-
se polarization, does not vary much under extrapolation
q2—>0.

We shall consider below some applications of Eq.(4.3)
to photoproduction of the pseudoscalar and vector mesons
from nucleons and nuclel at high energies. The high-energy
region is chosen for the following reasons.

The binary amplitudes

Y+ A==B+ C (4.7a)
V+ A==B+ C (4.7D)

satisfy certain crossing — symmetry relations under substi-

tution s ==u. With fixed value of t , we have

0 for Eq.(4.7a)

u=—S-'I:+mf+m;+mC2+ ) (4.8)
m, for Eq.(478) )

Clearly, Eq.(4.3) is approximately consistent with exact
u==s crossing - symmetry and identity (4.8) only at s> mi.
Further, the high-energy processes are dominated by small

momentum transfers, typical dependence being

98 = Aexp (BE),  B=5+0 Gev (4.9)
Hence, the distance between the physical t - region
C 14l =2 |t minl ) and the nearest singularity in t - channel

(which is either one pion exchange pole at t = m‘% or the
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two-pion cut t > 4 m%l ) is of importance.

The numerical value of t ... depends on ms. For

instance,
2,2
€ min (pv—»JOIVJ = - (.2%") (4.10a)
2 pin (}/V*//V) =0 (4.10b)

The difference between Eqs.(4.I0a) and (4.I0b) will disap-

pear only when W —oo,

4,2 YMD and_the vector meson photoproduction
According to Eq.(4.3) we have

Tlyn—=vW) =§, Grv: T (Vig ¥ —~VN) (4.11a)

T(M/_VN):\/Z','V" Trv Iy T(vgn—v, #). (4.1Ib)
The differential cross sections for the elastic photon and
vector meson scattering from nucleons have not been measu-
red yet. There are experimental data on the neutral vector
meson photoproduction and total photoabsorption on nucleons
and nuclei, as well as some indirect data on 6}0{ (P°N) ext-
racted from the coherent photoproduction of fo'S from
complex nuclei.‘”

The energy dependence of 6£°{_ (TP—»VP ) is presen-
ted in Fig. 7. In the cases V =f>° and ‘¢ the cross—sec-
tions vary smoothly, as in other processes of diffraction
nature. Within experimental errors the energy dependence of
aG ( TP""'J)OP ) is similar to that of the pion-nucleon
elastic scattering. At k > 2.5 GeV G (jno——a)p)
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vp—p°p
T [y,

5 - 2
R 1.5+ 25/K
X
b YP —~wp
2 - -
1 - -
YP—¢P
0.5 p= | -~
0.2 1 _
0.5 20 50

k GeV

Fig. 7 Compilation of total cross-sections for vector meson
photoproduction. (From Ref. 26).
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fits rather well to the empirical formula

54t (yp—=wp) =(/,5+-f;-§),uﬁ , [K]=6ev  (4.12)

The second term in Eq.(4.I2) displays the existence of non-—
diffractive mechanism with effective Regge parameter O%HG’O
At small t this contribution may be interpreted in terms

of one pion exchange diagram (Fig. 8)

Fig. 8 Feynman diagram for the one pion exchange in the
w-production.

The t-—dependence of dG (]/p—'./o"f) ) and do ( TP —
—=¢h ) is shown in Fig. 9. The solid curves correspond to
the formulae

' , 72
oS (y p—p°p) = Cp[Vd6 (n°p~1'p)'+ Yls trip > TTp) | .13)
d6(yp ~¥p) = Co[VAG (K'p —K1p) +VEGIK p=KP)~  (4.14)
~Ydeimp—p) | 2

which have been obtained within the framework of additive

quark model and assuming, that the spin effects in the quark-

—quark and quark-antiquark scattering are insignificant at

high energies. The last assumption enables us to express
SVNIVAN > - amplitudes in (4.II) through the pseu—

doscalar - meson - nucleon scattering amplitudes, Eqs.(4.1I3)
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Fig. 9a Comparison of the VMD and quark model predictions
with high—-energy p? photoproduction. (From Ref. 13).
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and (4.I4 ) are seen in Fig. 7 and 8 to fit the data extre-
mely well.

The spin dependence of T(}4V~'vﬂ/) can be studied via
the decay angular distribution of the vector mesons produ—
ced by the unpolarized as well as polarized photons. Let us
consider the reaction ho —UOOID—’JF*JFP . The decay angu—
lar distribution of pions in the jo° rest frame is des-

cribed by the standard formula

N e = ﬁjo(v;ﬁ*zz <OIMIA> f, 4 X
deosBde ~ Y MY G

x <Ay M8, 9>
where M dis the decay amplitude of ﬁ*Zﬂ with a given

helicity state (or the polarization state) of the f) -meson

/3
<B¥IMIAN>=DVz5, Yf,,\v (6.9)

‘Y{.o (e,lp) = COSG

) Ll
Y"ﬂ (6¢¥) = ;-'5- snfe "

(4.16)
The quantity ]DI‘2 is proportional to the j.)° decay width
and is of no importance for the angular distribution analy-
sis, since it is independent of |, due to the rotation in-
variance. The decay angles @ and ¥ are defined as the
polar and azimuthal angles of the unit vector J? y Which
denotes the direction of flight of one of the pions in the
p° rest frame (see Fig. 10). Using Eq.(4.I6) and averaging
Eq.(4.I5) over Y , we get the angular distribution of
ﬁ° 'S , produced by the unpolarized ]/‘S :
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p° REST
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y =N =NORMAL
TO THE
PRODUCTION
PLANE

N=vy xp°

*PinxPp
X = Nxz in out

PRODUCTION
PLANE

\POLARIZATION
PLANE

Fig. 10 Frame of reference used in analysis of the vector
meson decays.
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W8)~ £(p,+p, ) 8?6+ P0 cog?6 =
= p, $in®0 + p,, cos?6 (4.17)

Fig. 11 shows the distribution of the polar angle 3] s Which
is proportional to sin26 . Thus, the rho mesons are produ-
ced predominantly in the transverse polarization states i.e.
with c.m.s. helicity +1.

The forward photoproduction amplitude has, therefore, a

form similar fo that of the forward Compton scattering
o - % P e B d
fyn—=, N)={ rw)(ey-ef))n(&[e(rxgo*]),(z (w) . (4.18)

In the case of the linearly polarized photons the pion decay
angular distribution depends on mutual orientation of the
photon polarization vector and the decay plane (or, equiva-
lently the rho polarization vector). We consider only the
case of the forward photoproduction of the transverse pola-—
rized rho-mesons.

There are here two limiting cases.
a) €} I ‘é} . As seen in Fig. 10, P is the angle of the
photon electric polarization vector with respect to the pro-

duction plane. Since we consider the case of 2} ] ET we

have

- P ~(P
leto> = - L (6" T | ap=+>-€F Np=-1>)
! V2 (4.19)

Now, after substitution of Eq.(4.I9) into Eq.(4.I5) and ma-
king use of (4.I6), we obtain
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(From Ref. 13)



- 228 -

W, (6.9,)~ sin®0 cos’y (4.20)
where 4’=LP-§) is the azimuthal angle with respect to the
photon polarization plane.

b) If é}.Lé} » then
Wy (8,%,$) ~ $in?6 sin®y (4.21)

with the same notations.

The experimental ¥ -distribution is proportional to
0032 04 (see Fig. 11) and show that the rho is tending to
"conserve™ the direction of the photon polarization i.e. it

is almost completely linearly polarized. This means also,

that L1 > | £, in Eq.(4.1I8) and
A6 | (W= polt)=|£,|2= (Im£)2 (1+p)
) /00(3/ F . ’f (4.22)
O(Jo = _fle
s 20)

According to VMD - relations (4.II) we can write now

Giot (FP)= 42 Imf, (yp~pp)= L2 S Ty O%E(J’P”VP)(';«» (4.23)

w v=gw ¥

The comparison of Eq.(4.23) with experiment is shown in
Fig. 12 and is found to be goodi, if the g},v‘ S are taken
from the storage ring data on the vector meson production
in the electron-positron annihilation (see the last Section
of the notes).

One can test also Eq.(4.23) (with quite an evident mo-
dification) in the photon-nucleus reactions. Of special in-

terest here is the atomic number dependence of the corres—
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ponding cross sections:

cl6 — ___._4_6- —/© 2
a—?(rA V°A) d{(J'/V VONYF( ),

F{O)=Ne’(-{ , (4.24)
Cpot (FA) = Ogot G V) Vegy

Due to the multiple scattering of the produced V-mesons in-
side the nucleus one gets N‘.{:T < A, 21)

The experimental data on Oyx (yA) for a number of
nuclei are shown in Fig. 13 and they tell us that some shado-

wing indeed takes place:

GV
At very high energies the A-dependence of Gy,¢ (<TA) should be

the square root of that for the coherent f°-—production. It
would be very interesting to test this VMD - prediction in
the multi-GeV energy region.

The coherent ﬁ° -production on complex nuclel is sen—
sitive to the real part of the "elementary" interaction amp-
litude f(yN——vJO"/V), to the hadron matter distribution in-
side the nucleus, to the value and energy variation of Gﬂ,t()olv)
and to the nucleon correlations. All these factors were taken
into account by the DESY - group, who conclude from their
analysis 22) that there is no significant disagreement between
VD and data on the ﬁ° —photoproduction from complex nuclei.
However, the situation has not yet found its final settlement,
because there are disagreements between the results of vari-

19)

ous groups.



- 231 -

{00 — g A -]
- o AS MEASURED g e

O-YP

IN THIS EXPERIMENT 3
7.4 —18.3 GeV T

§?
T

S
o
(e ]a]

RHO DOMINANCE
PREDICTIONS

'dO' !
- 8 Cyn a1 rA=pA)|, -

B To |\ldo 7
P =9 —
4 dt (YP Pp)lno

USING DATA FROM
o SLAC 8.8GeV
0 CORNELL 6.2 GeV 7]

| 1 Lo 1 | ] ]
| 10 100

NUCLEON NUMBER, A

Fig. 13  Total YA cross-sections compared with G(YA) = Ac(Yp)
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. 23,24)
4.3 VMD and the pion photoproduction

The general characteristics of photoproduction of pseu-
doscalar mesons at small t-values are shown in Fig. 14 and
summarized in Table 6 25’26).

Table 6

General features of pseudoscalar meson photoproduction

Region. Features Energy dependence
|t] £ 0,3 Peaks and dips. No shrinkage
Variations among dif-
. d6 ,.\'/("2
ferent reactions. d¢ r
|t]= 0,5 Dip in }//V—’Ji°/V-
"Smooth" t-dependence ——
in all other reactions,
Jt] > 0,7 Great similarity among
reactions. Approximate —n—
exp(3t) - behaviour.
Small u. Great similarity among No shrinkage
reactions. No dips. d6 -3
cdu KJ’

It is difficult to explain all these features on the basis

of simple exchange models, especially the fact of approximate

2 do
Ky a¢
sidered. In the Regge-pole language this fact would mean,

constancy of in energy for the entire t-region con-

that the "effective" Regge trajectory is the same for all
processes and dqy(t)‘z 0 for all |[t]|<I,5 GeVz. So much
the greater interest is to compare the photoproduction cross
sections with their corresponding hadronic counterparts, ac-—

cording to VMD.
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Fig. 14 Momentum—transfer dependence for various processes of
pseudoscalar-meson photoproduction. (From Ref. 26).
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We shall confine ourselves to discussion of the pion
photoproduction cross sections which are the best known.

From our basic formula (4.3) we get

(J’ Ptz %’rf’df 2(p7, p~ '1)~gg;f gf(ﬂ*n—’fiip)

—90 2 (JOH f)l l) (:”P j’n) gfﬂc(S£ (‘nlD Jon)

(4.26)
where symbol )’V serves to specify only the transitions bro-
ught about by the isovector part of e.m. current.

In derivation of Eq.(4.26) we have used the relation
vetween the direct and inverse reactions, which follow from
T-invariance, as well as the isotopic invariance of the strong
interactions. Furthermore, we have neglected the difference
of the phase volumes and normalization factors of vector me-
son (mv # 0) and photon (ma, = 0), which are insignificant at
s > m‘% . The combination of the 7' — and I~ photopro-
duction on nucleons, which does not include the interference
terms between the isovector and isoscalar part of e.m. cur-

rent is most convenient to compare with experiment:

. d6 (yp—=7 rl)* ¢ (yn—a7p )) ﬁw?g f“(v) (W’P-‘Vﬂ)

#2910y Re[T (01p~2) T (Pexp— 7' | gme,mdt 2 (3p=p)
(4.27)
We have neglected the & -and ¥ —contributions for the

value of 6 (JIp—>Yn ) is very small and also due to the

relation of the vector-meson-photon coupling constants
2

2 2
Qrp Gy Fae =9:1:2 (4.28)
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following from the SU(6) - symmetry (or quark model) and fit—
ting rather well to available data (see Table 8 in Secti-
on 6).
The main difficulty in the checking of Eq.(4.27) is that
it is impossible to define in a relativistically invariant
manner the vector meson state with m% £ 0 and the transverse

polarization. The subsidiary Lorentz condition (4.6) projects
A=1,2,3

out linearly independent space-like vectors Qﬂ , Which

form the complete basis in the spin space of vector particle
A=12

(with unit spin). Two "transverse! vectors € u do not

form the complete basis. Hence, even if the vector €Eu is
the transverse one in a given Lorentz frame, in some other
frame it will have non-zero longitudinal component. Only in
the limit m,~0 the vector particle has two polarization

states in any Lorentz frame. It is worthwhile to note in this
connection, that in reactions of the vector meson production

by pions on the (pseudo) scalar target, which does not chan-

ge its internal parity
n+0f—-v~+0* (4.29)

no problem of the projecting of the transverse polarization
exists. The vector particle in (4.29) is automatically pro-—
duced in the "photon-like" state due to the angular momentum
and parity conservation?7)

Practically, the test of VMD relation
dé 4 o4~ A2 d6 + 4 * 4
dT(a’/'/e%.ﬂ #e)—gff,d—f—(” He -—->\P AIP)

looks most promising. An additional advantage of this reac-—
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tion is that owing to the isoscalar property of the target
only the isovector part of e.m. current operates. Hence, no
problem of the fa—w interference arises.

In the case of reaction nN-—=pPN the dynamical pro-
blem consists in determination of the reference frame, such
that the trasverse elements J°£j (1, j =*1I) of the spin
density matrix were altered minimally under extrapolation
m,— 0 and with fixed values of s> m‘% and t # 0. The-
oreticallj, the question could be resolved within a reaso-

nably simple model. The simplest one is the Born pole model

see Fig. 16) FV) . Yv) > 4
(V) ,f Hv_‘-(//
,2 // 1

Fig. 15 Feynman diagrams of the Born approximation.

The predictions of the gauge—invariant pole models for
TP~ ntn and also for }/p——».n‘A** agree satisfac—
torily with experiment at ]/-Té my (see Fig. 16 and 17). In
particular, such characteristic qualitative features, as the
sharp forward maximum (spike) in }/P“’JT"n and yn-—-gp
and the dip in the reaction na-*m'A** are reproduced qui-—
te well.

The calculation of the Feynman diagrams, shown in Fig. 15
can also be used for the theoretical analysis of the VMD for-
mula (4.26). The following conclusions were obtainedZS)t

I. Vector—-meson dominance relation (4.26) must be tes-
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H

ted in the helicity frame i.e. the element ‘ﬁ,(s,t) of the
spin density matrix of rho-meson must be taken in the c.m.s.
of the S-channel, when the spin quantization axis is direc-—
ted along the rho-momentum in c.m.s.

2. The effect of mpo # O disappears for transversely
polarized rho's as §s-—so0

3. At low emergies relations (4.26) and (4.27) may be
violated.

In full accordance with prescription of the point I)
it was discovered recently that there exists the forward
peak 1n.\p"d6’(n p—=Lp °n) in the energy interval from 2,7
up to II,2 GeV?Q)

The VMD gives the relation
9 (1Yo ~2%) = e i (P55 (7P —=pP) =
L g2 [ANPN) G2 (o= 2P+ B SR () trp—pp) -
- Py (P S8 (7 —=p )] (4.30)

. 2
—_ o ~ .
Since 'ng(}/P n°p) has dip at t=0,5 GeV", we must expect
analogous dip in the linear combination of cross sections en-—
tering the right-hand side of Eq.(4.30). Remarkably enough,
that this qualitative prediction of the VMD is also confir-

30)
med by experiment.

In Fig. 18 the check of Eq.(4.27) is shown in the range
of 0< VIt-tminl £ 0.8 GeV. The agreement is reasonable.
However, the VMD meets serious difficulties in the explana-—

tion of the experiments on pion photoproduction by linearly
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Fig. 18 The VMD comparison for single pions produced by
unpolarized photons. (From Ref. 26).
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polarized photons.

With definitions

one readily obtains

de, =p, dG +p,, dG

aoy :(_/ou ] (4.31)

A= dG1 -den _ Jo{-/
a6, +dey T LPu

where O61(n) is the pion production cross section by li-

nearly-polarized photons with the polarization vector E}i

or |l to the reaction plane (If, for example, the reacti-
on plane is the x - z plane, then EI = 4{0, I, Og’

€y = {1, 0, of ).

Table 7 summarizes the comparison of the VMD formula

J)H
A(nten) = 1 (4.32)
31) "o lap—pon

with experiment.

Table 7

t Geve ()7 GeV) Ay (3.4GeV) Ay (4 GeV)
-0,2 -0,06 £ 0.32 +0,62 £ 0,07  -0,28 ¥ 0.34
-0,4 -0,49 X 0.35 +0,43% 0.08 -0,43 £ 0,37

The sharp disagreement of Eq.(4.32) with data may be explai-
ned to some extent by using too low values of the photon
energies, But the main part of this disagreement is more li-

kely due to the poorly determined Pff (f°) from the re-—
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32)
action n N—2anN. The note was made, that some admixture of
d=-wave in the 7-n final state may result in a signifi-
cant changing of .,/O:I (n°p —>f>°n).

In conclusion of this section we make a few remarks on
possible application of VMD to the reactioms yA/—*JvA
and JIN—VaA.

An additional assumption is needed here about approxi-

mate equalities of the matrix element modulus connected by

s==u crossing symmetry, namely

[M(yn—=na)|=|M (AN —=Yya)] (4.33)

While the asymptotic theorems underlying the differential

cross section equality
(yN—»nA) (Jnv—»yd) (4.34)

are the direct consequences of very general properties of
local field theoryx», they are valid only in the sense of li-
mit s —+0o , Therefore, the violation of relation of the

type
"fggw’ 7 at)+ S (yn—ara)] =

=95 PP 28 (p 0" )+ o () G (M= 08 ™)
(4.35)
can always be related to insufficiently high energies, which
are needed to validate the asymptotic theorems. All the same
should be kept in mind when a comparison is made between the
K-meson photoproduction from nucleons, r'+ N—K+ Y , and

the \P°, W and | -meson production in the reactions
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K+ N—=>V + Y,

To summarize, the application of VMD to correlation of
the photoproduction data with pure hadronic reactions leads
at least to the qualitative agreement with experiment. This
fact means, that the photon behaves in the "hadron-like" man—
ner in its interaction with the hadron matter. We have seen,
that such general features as dips, peaks, slopes etc. of
the photon reactions are very similar to those of the corres—
ponding vector-meson production reactions., However, the pre-
cise quantitative test of VMD hypothesis is damaged heavily
by present difficulties in separating the genuine resonance

rho-production amplitudes from the non-resonant background.

5. BEHAVIOUR OF FORM FACTORS IN ELECTRON-NUCLEON SCATTERING.

5.1 Kinematics.

We begin the discussion of the high energy electron-—
nucleon interaction with definition of kinematics of the ge—

neral inelastic ep - scattering

e + p—~ D + anything. (5.1)
The Feynman diagram of this process is shown in Fig. 19
PR p’
Y

Fig. 19 Kinematics of inelastic electron-nucleon scattering.
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The matrix element for the reaction presented in Fig. 19 is

4nX 457p (5.2)
T =15 gz <plj (o)llo><pnIT/J(0)|p> (27) J/P”'q-p”)

We consider the case when the inelastically scattered elect-
ron only is detected. The differential cross section avera-—
ged over the initial proton and electron spin and summed over

all final hadronic states is of the form

Ter S aienns ) e O

The tensor structure of W/‘v (an average over the nucleon

spin is understood)
Wiy = (29)° Z <P1Tpl0)|Pn>< Pn| 5y (0) p>8TPeq-py) (5.4)

by Lorentz and gauge invariance can be written as

‘1;/ %

W/”=W'<~g,uv )1‘ W, (P ——% )(P Pq?)‘(m

5.5)

where W; = W¢ (v,qz) (i = I,2) are the functions of only

two scalar quantities

26 (5.6)

= =&-&' Z.‘_.P
Ved,=EE =4
-q -'(P P) 6 307—2— .

We shall neglect everywhere the lepton mass: mi<xléi
=2 2/=>2 ' 2
P, =&°(p/ =¢& ).
€ ¢ 34)
After substitution of Eq.(5.5) into Eq.(5.3) we have

d%6  _ 4x°
d&d®’ g4

'2[\,1/2(1;, z)cos 8 . 2w, (, q2) sin® 9] (5.7)



- 245 -

Let us choose the frame of reference specified by P =
(M, 0, 0, 0) and Qy = (4o 5 0, 0, q, ) and define the ex-
citation cross sections of nucleon by the transverse and lo-—

ngitudinal virtual photons through equations

N3
GL =6t = 4’;:0‘ Wx :f_A__O‘ Wy (5.8)
Oy = iJArjz We g (5.9)
= w2 pm2 (P+g)3- ‘A
K o r 5 A7 = )}-r—g——/\j/ (5.10)

where K 1s the equivalent photon energy for photoproducti-
on with real photons of the final hadronic state with inva-—
riant mass of W.

From the definitions (5.5), (5.8) and (5.9) it follows

(5.11a)
W1 471% S—é )
9° K
2 vi-q? "7 %A (G, +0s), (5.1Ib)
(12
Gs = - N Gy = 6, (5.1Ic)
35)
and, finally, the Hand's representation
d%6 r (5.12)
=T, (G¢ + € Gs) .
gean: = e (O :
with
R S
le =55 T E T (5.13a)
-4

:[/+2(1 v¥q?){an’ 5 , (5.13b)
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In the case of the elastic scattering = Mz} or excitation

. 3% . .
of the nucleon resonance with mass of M, the kinematical

variables v and q2 are related to each other
2 My = - g2 (5.1
5.14
2 My = - g% + M - N2

The corresponding differential cross sections are obtained
from Eqs.(5.3) and (5.4) with the replacement [ Pn>—=|NV¥>
and evaluation of the one-particle matrix elements of e.m.
current. In general, the transition matrix element N*:ZIPJ

is described by three form factors

£p(qY) ~ <N* X1 Tpl0) [N, A=12 >, (5.15)

\p:+,-—0‘

T+ =--L (73 21 Ty). 5.16
1z
To = R Iz (5.17)
[
where A and A are the helicities of nucleon and the

nucleon resonance. (In Eq.(5.I7) we have taken into account
the current conservation requirement (1/,_,‘7}: 290%“];9—220 D.
The transverse form—factors fi, can be expressed in
terms of the eleetric and magnetic multipole amplitudes while
f, describes the longitudinal (Coulomb) transitions.
We write down the explicit form only for the elastic

scattering cross section

' 2 2
ds _ 4% ¢2. E[GE +T6m 28, TGy, Sin? Y I
do- e e[ GELER cos +2TGn sin 8] (s.1®
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where Gg and Gy (qz) are the nucle%n charge and magnetic
form factors, respectively, T = -— i/4M2. The relati-
2 2 .
d F
on between Gg g (q°) an I,2<q ) is

2
GE (q2) :FI ‘qZ) +1/"%’2 Fz(q?)

Gu (9% =F(q%) + Fa(g?)

)

(5.19)

5.2 Experimental data.

" S S D cat S (U S e

The studies of elastic elegtron—nucleon scattering have
36
dicovered two important facts:

a) The nucleon form factors GE and th satisfy approxima-
tely the "scaling law"
p p N o2
Ge =1 g (q2)=_LGM( ) =G, (g%
Hp M ZaE R (5.20)
2
@ (%) =0

b) The universal form factor Gp (qz) is closely approxima-—
ted in a large region of 0 < -q2é= 25 GeV2 by the dipole
fit

6yt g <[ 1 - 97071 Gev?]”? (5.21)

The departures from the scaling law (5.20) and the dipole
- formula (5.2I) do not exceed * I0 = I5% in some particular

2 37)
intervals of ¢°“.

In Fig. 20 the ratio  d6;,.¢ (ep—>eN*)/d6(ep—~ep) 1is
shown for the excitation of nucleon resonances near I236 MeV,
1525 MeV, I690 MeV and 1950 MeV. These ratios rise at small
threshold momentum transfer and stay approximafély constant
at ® 3 T cevd D

Thus, we see, that both elastic cross section and that



.Amﬂ.mwmaonmv.udmsmum\w pei1zo1d (do « QQVHmbv\A«zm <« amvawcﬂbw jo oriey 0z ‘81

- 248 -

ol

~3\>03~a 0S op og u:\>t.:.v 02 ol 00
0S ov o] 02 [o]] 00 T T T T T T T T T vO!
i T 1 T T T T T T
1. 01 4
iy 1
, = R
/ g For
] 3
NOILONGOHOIOHd ¥ 1
(803 Woud) v & S
NOLLONGOHAOLOHd w
- ot
(0g61) N 2 s 0
9
(s2sl) N 1S
s
g i &
] 3,0%
3 - “
- w \
] oszwuzﬁ\\\ ]
= £ 3 o
(3/A99),b (3/A%9),b
o . oz 0o 0e % o ol 004,
T T T 01 T T T T T T €~
D
d 1
! 7
N -
NOLLINAOHAOLOHd m - 4,0
ws @ M o NOLLONGONJOLOHd & B
1,00 ~ ] X
(8891) N ) 2 < LAl % E .pw
! > B e
T < 1 =
i = (9g2h N 1 5
w. ,0! 2 4,01
ER
] [



- 249 -
for the nucleon resonance excitation decrease rapidly with

increasing q2:

gg (ep—=ep N ¥) ~ 07':5125”5 G'Dg"- qis <C%2§)Ns (5.22)
where (dG/dQ2 )NS stands for the elastic cross section
for the point-like structureless proton.

'The most interesting and exciting results were obtained
in recent studies of the deep inelastic e-p scattering,
when V and qz take the large values?ﬂ)

Fig. 21 shows, that in the region of W > 2 GeV the ra-
tio of the experimental cross section to that from the point-
like proton (the Mott cross section) goes down like 52 ins-
tead of q_8, according to Eq.(5.22).

In the experiments with only final electron detected,
one can measure the ratio ==§% , as 1s gseen from Egs.
(5.12) and (5.13). At |q2]2'I,5 GeV® the value of R is con—
sistent with zero and in any case it is less than 0,5. The
dependence of R from v and q2 is seen to be rather
weak. If one adopts, that R = 0 the value of VW, (V.Clz)

displays the scaling property being a function of only ratio

of c«):z—q’\ﬂé‘l . All the data measured at various magnitudes
of v and q2, but at fixed values of w= 2(;42\’ are situ-

ated on one and the same universal curve (see Fig. 22).

5.3 Theoretical models.

5.3.1. Elastic scattering.

It follows from Egs.(5.20) and (5.2I) that the po-

le approximation of Eq_.(4.4) of the vector meson dominance
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model, applied to the elastic form factors

-1 v
G ()22, - q7m?)" Ceam (5239

v E (M)
CE(M) = grv gVNN ,

is inconsistent with experiment at high values of q2. For

the isovector form factors

Vi » P N q% -1 P
Ge oy (4 ):é(GE(M)-GElMI)= (’",}}2) Ceim (5.24)

to decrease like q’4 it is necessary either to include into

the sum (5.23), at least one more (yet undiscovered) isovec-—
tor meson ( ~P' - meson) or to ascribe the additional q2—
dependence into vertex ng(qz) and / or 9mmv(q2>'

The fast decreasing of form factors finds more transpa-
rent and spectacular explanation within the framework of com-
posite models.‘“D

For the illustrative purposes we resort to simple exam—
ple of the two-particle bound state of structureless consti-
tuents. In the non-relativistic approximation the e.m. form
factor takes the familiar form

. > =

- T iqT
F (q"’) =Sd37 eLq P = Sd"’ze |‘|/(2)’2::
o
= 47 Sdl g(z) séng*c’ (5.25)
9 o
g(*c) ="UP2(2).
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In the limit of q%—~cx: the dominant contribution in Eq.

(5.25) gives the small values of r—=0:

" (v
F(§’2)—’ %g)_ gq_(g)+ _g__q_%ﬂ_ U (5.26)
. n
with ?(")(0) zccl{ gln
C 1=0

According to Eq.(5.26) it is possible to relate the rapid
decreasing of the form factors to behaviour of the bound
state wave function, hence, the interaction potential, at
r - 0.
For instance, the conditions
r¥¥(r) >0
(5.27)
Y (r) - const,

are satisfied, if the Yukawa potential enters the Schroedin-
ger equation.

Non-singular behaviour of the wave function at r —= 0
leads to small probability for particles in the bound state
to have large momenta. Thus, our model consideration states
an important relation between the absence of the high compo-—
nent in the momentum distribution of particles in the bound
state and the rapid decreasing of the composite system e.m.
form factors.

The relativistic consideration of the same problem on
the basis of the two-particle Bethe-Salpeter equation does

not change the qualitative behaviour of composite system
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form factors, if the interaction between particles is such
that in the non-relativistic limit it is reduced to the

Yukawa potential.

5.3.2. Electroproduction of nucleon resonances.

The composite models can be applied also to the des—
cription of the nucleon resonance excitation. The resonance
is assumed to be the (quasi) bound state of other "more
simple™ hadrons (like the pion and nucleon or pion and A-
-resonance) or the three-—quark system.

For the constituents are allowed to have their own stru-
cture, one can try to define the transition form factors in
terms of the elastic form factors of the constituents. The
meaning of the approximations often made is readily explai-

ned in TFig.24.

(Q) (%) NN
7 N \(,/J’ 4 ”,J'l
” = -+ | + \Psw»
\\x ,/'\
N N N N N N N
(8)

Fig. 23 Separation of the resonance electroexcitation into a
transition potential (b), and the resonant final state
interaction (c).
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The transition potential (Fig. 21(b) ) 1is defined by
simple pole diagrams. The form factors of the constituents
will enter just into the transition potential. The problem
of resonant final state interaction is described by some uni-
versal function of f = f (W), to be the same for all multi-
pole transitions.4°)

The total amplitude is then represented in the factori-
zed form |

M (w, ¢2) = i (w, ®) £ (w) (5.28)
where MB (w, qa) is the corresponding term in the multipo-

le expansion of the full Born term contribution.

The threshold behaviour of the multipole amplitudes

-1
El - transitiom : Megp ~ Q‘._e
Ml - transition : Mye ~ Qie (5.29)
51 - transition : Mge ~ QLZ

where Q; 1s the three momentum transfer in the rest frame

of initial proton or final nucleon resonance, results in the
enhancement of the higher spin resonance excitation as com-
pared with the elastic scattering (see Fig. 20). In Egs.
(5.29) 1 is the multipolarity of the transitions in ques-
tion. In fact, the case of elastic scattering provides a par-

ticular example of the general formula (5.29) for small

Q; = |€! l
e 2
| Mgo | = |scalar monopole| =G§(q2)= Qf: conzf 30)
\Mw ‘ = |magnetic dipole] zquﬂ(qZ): Q;

To conclude, the Born term model describes the general beha-

viour of the transition form factors fairly well, although
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further impovements in treating the final state interaction
as well as more data concerning the pion form factor are cer—

tainly necessary.

5.3.3 BExcitation of continuum in the deep-inelastic region.
Several different models were proposed for description
of the inelastic ep — scattering with large energy and mo-
mentum transfers.
We start with the discussion of the "parton" model e.g.
the model of the point - like constituents of nucleonsfz)
The large magnitude and rather weak q2 - dependence of
the inelastic interaction cross sections could be explained
if proton was composed from the point - like constituents.
We know neither the number (is it finite or infinite?), nor
the properties of partons (charge, mass, spin) and their in-
ternal motion dynamics. Concerning what follows, it is,
however, very important to assume that the average parton
momenta do not take too large values. Then, in the limit of
an infinite - large momentum of an incident electron, it se-
ems natural to apply the usual impulse approximation, having
represented the e-p interaction amplitude as a sum of the
interaction amplitudes of an electron with "free" or "long-
lived" partons, each of them having the momentum
Bﬁ = x.bu (5.31)
where x£< I, Pu is the nucleon momentum in the c.m.s.

(see Fig. 24)
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(1-x)P

P [ HADRONS
xpP

P P’

Fig, 24 Kinematics of ineslastic electron scattering in the
parton model.

The large values of the energy and momentum transfer make it
reasonable to consider the interaction time of electron with
nucleon to be much less than the characteristic time needed
for partons td change markedly their momenta due to internal
motion. Furthermore, at large transferred momentum one can
neglect the correlation between the coordinates and momenta
of various partons during the process of the electron-nucle—

on interaction and write the structure function wz(v ’ q2)

in the form

I
N -
eZWZ(\), qz)zg p(/v)_Z' ef de FN("‘W;”(V, q:{ x), (5.32)
N L= !

2 P(N) =1, (5.33)
1
j f(xydx =1. (5.34)
o

where P(N) is the probability of N partons occurring, e; =

= Qe is the 1'th parton charge, fy (x) gives the dist-—

ribution of longitudinal momenta of the partons, while ng,
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gives the contribution of a single parton to Wa(v ) qz).
During the scattering the point - like parton is keeping
its mass and charge, which enables us to write

(Ll (

2
P,anWz(\) qz) ZZICI’(D(N))CN(X) P, f)u Q; J( “’9+ %—)

(5.35)

Making use of Eq.(5.3I), one gets

qz

N 2
YWy (v.qY = P (N) (-2, Q; ) x fy (x)
. SMy (5.36)

X= -

Hence, the structure function \:wa(\;, q2) has the form

qz qz
VWZ(VQ)—F( )EF(-Q_PT}) (5.37)
which is invariant under the scale transformation
qQ — AQ » P— AP (5.38)

and is described by the universal function of one variable.

This very important conclusion gives evidence for the
absence of any "internal" parameter with dimension of mass
in the region of deep — inelastic lepton-hadron interaction.
Unlike Wg(\’ ,q?), the explicit form of W, (v, q2) depends
on the parton spin.

It is not difficult to show, that

1}

% (5.39)
0 (5.40)

2
W, (v,q%) = -‘?1‘2 V\g(v.qz) for s
for s

From comparison of Eqs.(5.39) and (5.40) with (5.II) we find
at vi> |7
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. sp - .I 0 for s =% (5.41)
T ot 1 oo for s =0 (5.42)

The data favours (5.41) which means that the partons should
be the fermions.
Within the parton model a number of interesting sum ru-

les were obtained.

By the normalization (5.34) we get

2
Solv Wz(v.qz)=[dx5,¥—’ = ZP(~)§ Q. (5.43)
N L=
° o

Assuming the symmetric distribution of longitudinal momenta
among the partons

(
S xf, (x)dx = ﬁ ) (5.44)
0
‘and making use of Eq.(5.36) one obtains
o |

N

2 >
..2%.4 S ?Wz(v_qz)zxdx F'(x).—_% P(N)#&Z, Q= 062 ) (5.45)
0 0

Numerically, the calculation of integrals in (5.44) angd
(5.45) gives

1

S E‘,i'x‘) dx = 07 (5.46a)
0,05

|

S F(x)dx =018 (5.46b)
0,05

Let us assume now that the partons are quarks. If the proton

is composed of three quarks, we would have
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3 2
ZQ{-=£’-+§'-+9L:I (5.47a)
(=1 9
— 3 2
o =33 Q=3 (5.47b)

The magnitude of (5.47b) is too big to fit the data.
Another extreme case is an infinite sea of quark-anti-

guark pairs with average charge squared equal to

—

2
3

) =

)

s
(6 g "

o|rs

~0.22 (5.48)

o

94
3

which is reasonably close to Eq.(5.46b).
If the present trend of the data will persist, then the
integral (5.43) will diverge logarithmically e.g.

W, (v.q?% ~

2
q°6¢ (v, 92 ¢
{\:) q) ~ E_O_'Z_g_ (5.49)

v
Eq.(5.49) is in accordance with the usual diffraction model,

where the Pomeranchuk pole gives asymptotically

& (0)-1
6, (V.97 —2 SV T2 p9Y) (550

To retain the scale invariance condition (5.37) we should put

Pp(q7)~ “{1‘2 (5.51)

in which case

W, (v,q?) —= const (5.52)

215> w2, 2 Wv/q° = fixed.

in the Bjorken limit of V>N , Iq
In the non-asymptotic energy region the pure hadronic

cross sections get significant contributions from the lower
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Regge — trajectories with &< I (the P',Jo y A, - trajecto-
ries).

What is their role in the total electroproduction cross
sections?

At this point we shall make contact with presently po-
pular duality hypothesis.

" In particular, we shall assume, that

a) in the sense of the finite energy sum rules the t-—
channel contributions of "usual' Regge — trajectories (PHJO,
1&2 etc.) are built from the nucleon resonance contributions
in the S - channel.

b) the Pomeranchon is built from the non-resonance back—
ground in the S - channel.

As we have seen in the precedent section, the nucleon
resonance excitation decreases rapidly with increasing qz.
The point (a) just adopted leads to a similar fast decrea—
sing of the residue functions Fi(qz) of "usual' Regge - tra--
jectories at large qz.

The non-resonance continuum excitation decreases much
slower, approximately like q—2. Hence, the q2 — dependen—
ce of P (qz) should be the same (see formula (5.5I) ).

These considerations form the base for a number of in-
teresting predictions4?)

I. At large q2 the absorption cross section of virtu—
al photons by hadrons should be pure diffraction one even at
relatively moderate energies. The deviations from constant

cross section should decrease rapidly with q2.
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The ratio R = OS¢, should also be constant.
2, The difference between Syp (v, q2) and Cﬁqv(v.qz)

is defined presumably by the Az,’ trajectory contribution.

Hence, it should decrease rapidly with increasing q2.

3. The q2 ~ dependence of the amplitude for specific
inelastic channels should be different for diffraction and
non-diffraction processes. For example, the cross section

%E? ( ep —oeffp ) , which includes the Pomeranchon contri-—
bution should display much more weak qz—dependence in com-
parison, say, with %% (ep— en*n ), which should, likely,
vary with q2 similar to the nucleon form factors.

All these predictions can be tested directly by the cor-
responding experiments.

In summary, the elastic and inelastic electron-nucleon
scattering will serve as the extremely valuable source of
information on the internal structure of hadrons, on the pro-—-
perties of e.m. current operator and dynamics'of photon~had-
ron interactions. Especially important and interesting fea-—
tures, discovered recently, are the scale invariance of the
lepton-hadron interactions at deep inelastic region, and the

2 2

evidence for dynamical dominance at q25> M-, vzx> il of

the current structure, built from the fermion fields.
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6. ANNIHILATION OF LEPTON PAIRS INTO HADRONS AND PAIR PRO-

DUCTION IN HADRON REACTIONS.

6.1 Kinematics and definition of the spectral functi-

on_§ (qz) .

The elastic and inelastic hadron form factors may be
studied in the time-like region of q2> 0 wvia the pair an-
nihilation processes

et + ¢ —= hadrons (6.1)
or in the lepton pair production reactions
(7',Jr, Nyeeod) + A —=e¥ + ¢~ + hadrons (6.2)
We consider first the annihilation reactions, which are in-—
tensively explored presently in the colliding et - ¢~ beam
experiments.

In the one-photon approximation the matrix element of

reaction (6.I) takes the form

T (e¥e™~hadrons) = ZL]—'CT%‘ £ Pn| T (0)] 0>20[ ju 0P P->,

(6.3)
qQ = P+ + P- =Pn,

where P+ and fL‘ are the leptonic momenta, P is the fi-
nal hadronic state momentum.
As in the precedent section we define the tensor W

Wiy = (221)°Z <01 Tp10) Pa>< P13, (0105 “Yq - Pa) =

- 9 uqv
B _(g’”’——!‘i—z—)f(qZ) (6.4)

which is gauge-invariant and contains all the dynamics concer—
ning the conversion of virtual photon into hadrons. Eq.(6.4)

defines the spectral function f)(qz) which is the very impor-
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tant quantity of the theory of e.m. interactions. Being con-—
nected with the vacwum polarization (see Fig. 25a) by the
strong interactions, it enters many expressions for the phy-
sically interesting quantities, like, say, the anomalous mag-
netic moment of leptons (Fig. 25b), the Feynman diagrams for

the lepton scattering (Fig. 25c) etc.

Sl Sk

(a) (6) (c)

Fig. 25 Feynman graphs of the vacuum polarization.

Furthermore, the integral

(q2)

is related to the equal-time commutator

(6.5)

. K - wm. _em. . } (4)
S(xex)( [T, ®,T ]y =-1C23.0 (x-x) (6.6
k" i 2 3 vaguum !
= ) )
which plays the central role in the current algebra theory.

The definitions (6.5) and (6.6) state the close connec—
tion between the current algebra models and asymptotic beha—
viour of P (q2) at qz-»oo,

Therefore, it is a very important and advantageous cir-
cumstance that \p'(qz) can be measured directly, since it

enters the total cross section of lepton annihilation into
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hadrons

6{°{(e+e'———hadrons): @(;T-o(zﬁ(qzj (6.7)

6.2 Scale invariance hyvothesis and asymptotic behaviour

of _ 0(a%).

The conjecture on the scale invariance of the tensor
(6.4) results in an interesting conclusion concerning the asy-—
mptotic behaviour of ﬁ(qz) 44).

In the system of units in which the dimensionalities of
mass, enexrgy, momentum and the inverse of length are the sa-—

me, we have for the current dimensionality

Using Eq.(6.8), it is not difficult to find:
[W,uv] = m? (6.9)

Hence, under the scale transformation q — ) 4, Wuv  Dbeha-

ves as follows:

Wy (AQ) = A? Wpw (9) (6.10)
and we get finally in the asymptotic region of ¢ — oo
ﬁ(qz) =3> const « q2 , (6.11)
+ - const const
Giot(e e — hadrons) ~ —-—q-?— ~ =5, (6.12)
where E = E4 + E_ is the energy of colliding leptons in

the ce.m.s.

According to Eq.(6.II) the constant C in (6.6) diver—
ges linearly. Just such a kind of divergence was found to oc-—

cur if the equal-time commutator is calculated with the help

45)

of the quark model » Where the e.m. current is of the form
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Tux) = eqo)yu@q

p 2 0 O
q"_". n , Q: -é- D ‘, O (6;13)
A 0 0 -l

with p,rw.h denoting the members of the quark triplet.

6.3 Asymptotic SU(3) — symmetry and the spectral sum rule.

Using the sU(3) - properties of the hadron e.m. current

fixed by Eq.(3.6), we can write for f)(qz)

33 38 2
2) = 2 L
pl@p=pgh 5 p () (6.14)
Now we make the assumption that the SU(3) symmetry - becomes
exact in the asymptotic region Qq-—woo, SO that the constants

3

C” and 08, defined analogously C in Eq.(6.6), are equal

to each other

¢ -¢c° =0 (6.I5a)
which means
o 33 ., 88 >
(9%) - P 97) 4,2
i L B dq” =0 . (6.15D)

Eq.(6.15b) may be written also as

©0 o<
ﬂ sG(ete—=I=1)ds = S SG (e*te”=1=0)dS (6.16)
4m? 9my;

where & (ete-—1 = 0,I) are the annihilation cross secti-
ons into hadronic states with fixed values of the isospin I.
At s = L‘qz = m% (v = P, w,®? ) the cross section & (s)

has the resonance behaviour, approximated usually by the
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Breit-Wigner formula

S(s) = 127 . m2 M(v—=e*e™) Meot (V)
S (S-m2\2+ mZT2, (v) ’ (6.17)

After substitution of Eq.(6.I7) into (6.I6) and evaluation

of the corresponding integrals in the narrow width approxi-

nation, we get the well-known sum rule for the leptonic

widths of ﬁ°,u), ¢ —mesons46)
é-mﬁf'f-mwf'w-—m.pl"m =0 (6.18)
where
4
— -\ — 2 me
ry =r(v—e'e )—%gndmv*()(r;;q) (6.19)

Note, that in the current literature other definitions of the

photon-vector-meson coupling constant are also used

Ipv = _____V"g”“ = V‘]’CJ"" = V;;O‘ (6.20)
\% v v

6.4 Experimental widths of p.wW.% mesons from the colli—

ding beams data.

The study of the resonance characteristics (like the
form of the excitation curve and the values of the cross sec—

tion in the maximum) of the reactions

e+e- ——>ﬁ° — Jatn-
e+e— —_— W — ntn~n°
KTk~

e+e — L? — Ko Eo

nt " pe
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provides an important information on the mass and widths of
the neutral vector mesons. Table 8 shows the data concerning
the ~P°JLL(P widths, obtained from the storage rings experi-—-

47)
mentse.

Ta ble 8

Experimental values of the P°' w ,\¢ widths.

v P w @
Pr(v—e*e) kev 7.4%0.5 0.94%0.18 1.58%0.13
9y /4m 1,99%0,1I I4.9%2.8 1I.5%0.9
Mot (V) Mev 12074 12.2%1.3 4.24%0.28

Inserting the masses and the leptonic widths of V° — mesons

into the sum rule (6.I8), one finds
S=4dmplp-myly-myle=-044+0,24 Mev?  (6.2I)

which satisfactorily agrees with Eq.(6.18).
The contribution of the neutral vector mesons in the mu-—
on anomalous magnetic moment according to the Feynman diag—

9)

ram in Fig. 25(b) was found to Dbe

(ACl/u) tP:(6,5i‘0,5)X10-8= (5.01'0.4‘2(—:
P'w' J] (6.22)

Numerically, the value (6.22) is 5 times less than the ex—

perimental errors in measuremnent of a u

6.5 Rho dominance and the pion form factor.

With the definition of the pion form factor in the time-

like region of q2> 0 |
—4

<0l Ty ()7 (K+),n(r<-)>=(2n)'3(4f<z ko) 2K, _\/“F,,(qz) (6.23)
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one can obtain the formula for the lepton pair annihilation

cross section into two charged pions

6’(6’1'6’——'71*'71’) = %;Ps , F:n(qQH 2

- 2__an2 Y2
F-:I::J:(q q2n>. =K, +K.=2K .

Having introduced the coupling constant

(6.24)

gfmﬂ y that defi-

nes the width of decay j)—v2:n

Y2
Fipam=nap =1 o (mbotims) oz

mp®
we note from a comparison of Eqs.(6.I17) and (6.24)
4
m p
F (g2 JOJ'LTI) ’
Q)l ( Q,P ($2_mﬁ +m2,—-2(ﬁ) (6.26)

The form factor Ft (qz) should meet the normalization con-
dition

Fn(o) =1, (6.27)
In the zero — width approximation (Q.n{(f)_’OD we would have

as a consistency condition of Eqs.(6.26) and (6.27)

gf:im :gﬁ . (6.28)

The last equality is in striking agreement with experiment

v 9
(?ﬁ’ﬂ) =01202 = ( f’) =199+ 0,11
exp exp

47 (6.29)

The rho-meson dominance for the pion form factor
2
2, _ __Mp

implies the following value for e.m. radius

(6.30)
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Y , s
<< rz,2>_,,> = (-6 Fn (0)) :%i: 06fm, (6.31)

which is less than the nucleon isovector radii
1, l
2 v\ v A\

(<> ) =(-6G¢ (0) "=0.82¢m

/ I/
(<225Y)% =(-6 £V 19) = 074 §m (6.32)

and also somewhat less than the magnitude

(¢2%2)"% = (0.8 20,1 fm (6.33)
obtained from an analysis of the reaction ep—'eﬂ71 at
small energies48).

The explicit form of the finite width corrections to
Eq.(6.30) depends on the model assumptions about the -7
phase — shift energy dependence as well as some additional
assumptions concerning the analytic properties of the form
factor (such as the absense of zeros etc.)

0f great help there would be a direct measurement of the
pion radius in a process of the pion scattering from the
atomic electrons in the multi — GeV region. The high energy
pion beam is necessary since the maximum invariant square of
the momentum transfer to the target electron is

omeE. oy ] (190 ev)? for B, = 50 GeV
1+m3 /2mgE, () {(630 MeV)® for E, = 400 GeV

kmax



- 271 -
6.6 Problem of the W-% mixing and the storage rings data.

It is of considerable interest to compare the experimen-—
tal values of 9,'s with the broken SU(3) symmetry predic-—
tions,

The classic Gell-Mann—-Okubo mass relation is well known

to define the mass me of the isoscalar member entering the

vector meson octet

mg 2[%(4mx2* - mp ]1/2 =928 Mev (6.34)
which equals nelther m, = 782 MeV, nor me = 1020 MeV.

The hypothesis was put forward about the mixing of the
unitary singlet state o, and the octet state Wy due to the
SU(3) symmetry breaking.

One can introduce the symmetry breaking terms in the in-—

itial SU(3) symmetric Lagrangian of vector meson field

Leym =" % F:v Fa - J§m§ Vi Va (6.35)
a =1, 2,0048
in two different ways : either into the "mass term" (the se-
cond term in Eq.(6.35) ) or into the "kinetic term" (the first
term in (6.35) ).

In the first case we have the mass formula

2 2 o2
é(llm,f* -mp)= m?, cosB+m, Qn°6 (6.36)

with the mixing angle 6=40° , while in the second case one

can obtain the Coleman-Schnitzer mass formula49)

2g; . 2.
4 _cos 8inv  sin®@inv
R R R
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with 6, = 28,6.

Phere is a beautiful possibility to formulate the sing—
let—octet mixing conjecture within the framework of the vec-—
tor meson dominance model and current - field identity of
Eq. (4.5) °0),

Evidently, with using Eq.(4.5 ) we can write

2 2
S
Tpm(x)z_nli” b )+ T2 @, 0=4 Y ux)=
’ 9e dw
A 2050y P (X)-rnzsin&{w (x)

(6.38)

where Y, is the hypercharge current, gY, is the univer-
sal coupling constant of vector mesons with the hypercharge
current, Oy is the corresponding mixing angle, introduced
without any reference to a particular model of the su(3)
breaking.

For the baryon current BF(X) we have

Bﬂ(x)zé_s(m‘zPS<n65Qﬂ(X)+mi C0365 w}l(x)) (6.39)

In general, the mixing angles 8y and ®84 are different.
“e consider below two particular models of the SU(3) brea-
king:

a) the "mass mixing" model, which is specified by the
equality 6y = 6g = & and by the mass formula of Eq.(6.36)

b) the "current mixing" model, specified by the relati-
on

fanS(nV:r-:‘—%{qnGB:%{m@Y
(6.40)

and by the mass formula of Eq.(6.37).
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It follows from the definition (6.38) and Egs.(6.I9),
(6.20) that

Friw—e*e’) _ mw ,2
= tan OY
My —-e*e) My (6.41)

With the help of the data, listed in Table 8, we find

|8y | =416°+30°. (6.42)
The magnitude of the "intermediate" angle 6

128 = tan Oy tan 64 (6.43)

can be obtained in a model-independent manner from the reac—

tion eTe™ — @ — ¥k,

Indeed, using Eqs.(6.17), (6.19), (6.20) and (6.25)

with evident replacement f)—sLP s n— K, where needed, we get

2
2
2 o2 dme2 Jexs (6.45)
G mma- (S =Mp) = A8 (1 Ame T2 dorn :
ete"=k*K 3[;:’{((4!) me ] gfp
We recall the definition
1 _ cosbBy

In accordance with the main dynamical assumption of VMD on
the smoothness of the vector current form factors, we put
2 2 +, = > _
= = = 0)| K =0)> =
Goxe (M0 =G0 = my< K*(F =0)|Bp (0| K*(P=0)

_ 1
" Co3 (8y- By)

9y cos s
cos (6Y-0g) (6.47)

[37{ cos Bg <K Y (0)] K*> +0g Sin By <K*| B/,(o)x‘s)
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In Eq.(6.47) we have used Eqs.(6.38), (6.39) to define
in terms of Y'L(x) and Brk(x), and the normalization of the

hypercharge and baryon currents

<k*(F=0)Ypu (K (F=0)> =1,
. - (6.48)
<Kt (p=0)| Bu(0) KT (P=0)> =0 .
At last, using Egs.(6.47), (6.46) and (6.45) we find
' 2 _qno? cos’B | 4 m& Y2
G 5y 2 SE AT
tot ¢
Comparison of Eq.(6.49) with the data gives 47)
\e| = 3I,5° (6.50)

which agrees better with the current - mixing model of Egs.

(6.40) and (6.37).

6.7 Photoproduction of lepton pairs from the hadron_targets.

Consider the process
y + A—1t + 17 + 4 (6.51)
where A represents either a nucleus or a nucleon. The di-
agrams which might contribute to the process (6.51) are shown

in Fig. 26.
g ” p

p——-——'p+

P- P

P

A A A A
(q) (8)

Fig. 26 (a) Diagrams for the Bethe-Heitler production of
lepton pairs.

(b) Diagram of the "Compton' contribution.
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In general, the cross section will include the interfe-

rence between two types of Feynman diagrams

2
IM, 1% = Mgyl + [Mc| % 2Re (MG, M)

2
tot | (6.52)

Since the pure quantum electrodynamic Bethe-Heitler matrix
element Mg, has no imaginary part in the lowest order in L,
the interference term in Eq.(6.52) measures the real part of
the "Compton"™ matrix element Mco

Therefore, the measurement of the difference

—_ - — — *
A =dG (P, P) ~dG (P =2 P )~ 4laMaM) (6.53)

by observing asymmetrically photoproduced lepton pairs yields
the value of Re M, or, equivalently, the phase difference
between the Bethe-Heitler and "Compton" amplitudes.

With the definition of the phase angle difference A

M{o{,’:MBH "'MC:MBH +i,exp(iA).'Md (6.54)

51)
it was found, that A is consistent with the zero-value
A=15° T 25° (6.55)

which means, that the "Compton" amplitude in photoproduction
of the electron-positron pairs from carbon is almost imagi-
nary one at 5 GeV 51).

At the symmetric kinematics ( l§:|=lﬁi|.9-=’e+ ) the
leptonic parts of diagrams (a) and (b) in Fig. 26 have the
definite and opposite in sign charge parity. Hence, there
is no interference between Mgy and Me (the Furry's theorem).

In this case we can subtract the Bethe=Heitler contri-—
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bution (to be computed theoretically with high precision)
from the total excitation curve to study further only the
virtual Compton amplitude.

In the region of (P+P- )2 = mav , (v=p, w0 ), the
Compton process (Fig. 26(b) ) is dominated by the sum of
two diagrams for the coherent j0° and w production with
subsequent decay into lepton pairs

p-|- P+
P w

Fig. 27 Diagrams for coherent production of vector mesons
with decay into lepton pairs.

It is clear, the shape of the mass spectrum of final
pairs should display the ‘P-*O interference pattern. This
interference was observed recently in the experiments with

high mass resolution (Amn=%5 MeV). The reactions in ques—

tion were
pEsY22): r(&IZGev)+Bg—re*+e‘+ Be (6.56a)
Daresbury52): ]’(4( Gev)d-CQ~*’e+4-e"4-C'2 (6.56Db)

As an example, the experimentally measured lepton mass spec-
trumzz) is shown in Fig. 28. The peak at the place of w —
meson is clearly seen.

One cannot yet make definite conclusion on the relative
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" %00
Mee (MeV)

850

\

S

Lepton pair mass distribution measured in the

+ Be® at 5 GeV.

reaction y + Be® » et + ¢

(From Ref. 22).

Fig. 28
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phase of the .P and W production amplitudes, for va-

rious groups give different values for that quantity

AfQ(DESY) = (22 £ 25) deg , (6.57a)
Aew(Daresbury) =(100 f‘gg ) deg . (6.570)

6.8 Lepton pair production in hadron collisions.

The reactions of the type
+ -
(ny Ky Nyuuo) + A—a't*t + hadrons (6.58)
are of interest for many reasons.

In fact, in the process

a+p = Vot — et +eT+n (6.59)

first studies were made on the leptonic decays of the neut-
ral vector mesons53’54).

The reaction (6.59) may serve as & complementary tool,
as compared to the pion electroproduction, for studying the
hadron e.m. form factors in the time—-like region of q2:> 0.
The preliminary results were quite recently obtained55)
on the deep inelastic process

239_* /_L++ /_‘_ + anything (6. 60)

p (22 + 30 GeV) + U
which was shown to decrease rapidly with invariant mass of
M —pairs. In the region 2 GeV < m/,+/‘- < 6 GeV the cross
section of (6.60) falls by three orders of magnitude.

So, we have seen in this section, that the study of the
lepton pair annihilation and pair production in the hadron
reactions is presently at the beginning stage. However, it

will serve undoubtedly as one of the important tools in ex-

ploring both the dynamics and symmetry aspects of the ele-—
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mentary particle interactions.
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