CROSS-SECTIONS FOR THE REACTION $\overline{p}p \rightarrow K\overline{K}n\pi$ (n = 3,4) BETWEEN 1.50-2.04 GeV/c

Glasgow-Liverpool-Lausanne/Neuchâtel-Paris (IPN) Collaboration

V. Vuillemin and S. Vallet*)

(Presented by V. Vuillemin)

Experimental sample

Film was exposed in the CERN 2-meters HBC in an experiment undertaken by the Glasgow-Liverpool-Lausanne/Neuchâtel-Paris (IPN) collaboration.

The cross-sections presented in this paper concern only the part of the data analyzed at Lausanne and Neuchâtel; this sample represents about a quarter of the total statistics for the collaboration. The beam was set up successively at 8 different incident momenta : 1.50, 1.56, 1.68, 1.75, 1.80, 1.86, 1.93, 2.04 GeV/c.

The film was double-scanned for strange-particle decays (V^{O} topology). The scanning efficiency was 98.5 % (ref. 6). The events were processed through the standard THRESH-GRIND-SLICE chain of programs.

The number of events for the most abundant 3- or 4-pion channels are :

- (a) $K_1^0 K_1^0 \pi^+ \pi^- \pi^0$ 202 events (b) $K_1^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$ 361 events (c) $K_1^0 K^{\pm} \pi^{\mp} \pi^+ \pi^- \pi^0$ 221 events

The cross-sections for reactions (b) and (c) (fig. b and c) present no structure in this domain of energy. Only reaction (a) (fig. a) has a bump in the U mass region.

Reaction $K_1^0K_1^0\pi^+\pi^-\pi^0$

The variation of the cross-section for this process as a function of momentum was parametrized in two ways : - a linear function; - a superposition of a linear background and a Breit-Wigner.

We obtain :

- linear background :
- $\chi^2 = 24/19$
- linear background + Breit-Wigner :
- $\chi^2 = 16/16$

^{*)} Now at the Mc Gill Univ., Montreal 110, Quebec, Canada.

The improvement in the goodness of fit seems to be significant. The parameters of the resonance are found to be:

$$M = 2362 \pm 13 \text{ MeV}$$
 $\Gamma = 45 + 18 \text{ MeV}$

The reaction $K_1^\circ K_1^\circ \pi^+ \pi^- \pi^\circ$ contains 19 ± 2 % of ω° 's. One can ask if the bump in the reaction (a) comes from an effect in the $K_1^\circ K_1^\circ \omega^\circ$ channel. The percentage of ω° production, for the various momenta, is the following:

P inc	√ Ş	% of ω ^O
1.56 GeV/c	2.28 GeV	21 ± 7
1.68	2.32	19 ± 6
1.75	2.34	27 ± 5
1.80	2.36	15 ± 4
1.86	2.38	15 ± 4
1.93	2.41	17 ± 4
2.04	2.44	20 ± 6

These percentages are estimated by taking the number of events in the $\ \omega^{0}$ mass region defined by the limits : 0.74 - 0.82 GeV.

The variation of the abundance of the $K_1^\circ K_1^\circ \omega^\circ$ channel does not seem to be sufficient to explain fully the bump in reaction (a) cross-section. Futhermore the number of events in the $K_1^\circ K_1^\circ \omega^\circ$ channel is too low to decide whether there exists a direct resonance in this channel.

References

- (1) J. Duboc et al., Nucl. Phys. B 46 (1972) 429
- (2) J.E. Galletly, Ph. D. Thesis, Univ. of Liverpool (1971)
- (3) B.Y. Oh et al., Nucl. Phys. B 51 (1973) 57
- (4) J.W. Chapman et al., Nucl. Phys. B 42 (1972) 1
- (5) J. Badier et al., Nucl. Phys. B 22 (1970) 512
- (6) S. Vallet, Ph. D. Thesis, Univ. of Neuchâtel (1972)

Cross-section for the $K_1^0K_1^0\pi^+\pi^-\pi^0$ reaction. The full line represents the fit with a linear background and a Breit-Wigner Fig. a)

Fig. b) Cross-section for the $K_1^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$ reaction

Fig. c) Cross-section for the $K_1^0K^{\pm}\pi^{\mp}\pi^{\pi}\pi^{\pi}\pi^{0}$ reaction