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ABSTRACT

In the decay of the compound nucleus by fission some
effects of the doubly-humped fission barrier are discussed.
The fission penetrability is calculated in an "optical
model of fission" in which the real potential character-
istic of each saddle-point channel is assumed to be doubly-
humped. The coupling of the vibrational states in the
intermediate well to more complicated states is described
by an imaginary potential. Thus, the damping of the fission
channel states is made in the same way as in the conven-
tional optical model for particle scattering. The problem
of subsequent distribution of the dissipated flux is dis-
cussed. The theory is illustrated by the 239Pu(d,pf)reaction.
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INTRODUCTION

1
In (4, pf) experiments ), in the A=230-250 region,

resonances have been observed in the fission probability
as a function of the excitation energy of the fissigning
nucleus. Both the resonances and the fission isomers ) have
been interpreted as quasi-bound vibrational states in the
second ?inimum of the doubly humped fission potential
barrier ). These types of collective strongly deformed
states are usually referred to as class II states. Besides
the vibrational states, oneuhas observed more densely
distributed class II states ). Clearly, these states are
more complicated than the vibrational states, and they are
usually interpreted as compound states of class II.

For the analysis of data for energies near the
isomegig state, the fission pe?etrability has been calcu-
lated ' )in the channel theory )with a doubly humped real
potential barrier. At energies above the fission barrier,
the possibility of strong damping of the class II vibra-
tional statgsg?as been Eiisﬁ-into account by a two-step
decay model '.’As seen inwvthe calculated resonances (fig.l)
in the analysis of (d,pf) are more narrow and more peaked
than those observed in the experiment. Some experimentse)
have shown fine structurezgg typical class II character in
the fission resonance in Pu(d,pf). These observations
and the requirement to connect the two rather different
models for low and high energy analyses has led to the con-
struction of a model which includes both the features of
the dou?ly-humped real potential barrier and of the
damping ).

In principle, the damping could be introduced by
coupling between several fission channels. Since, however,
we know very little about the channel states and less
about the possible coupling between them, it is difficult
to obtain a set of coupled equations. Therefore, we
suggest a simpler model in which the damping of the fission
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Fig.l. Fission probability for Pu(d,pf). The figure is
taken from ref.[l].The experimental points are the fission
probability Pg(€xXp) = do(d,pf)/do(d,p).The theoretical
fission probability is calculated with the branching ratio
(2) and no damping in class II. For the details of the cal-
culation, see ref. [1].

channels is described by a complex fission barrier. We
shall briefly formulate this "optical model of fission"
and apply it to some (d,pf) data.

2.0PTICAL MODEL OF FISSION

We consider reactions in which compound states A of
spin J and parity m are populated and we assume that
these states are of normal deformation (class I states).
For simplicity, we shall assume that only y-decay is
possible besides fission. The branching ratio for decay of
the state A by fission is then

AT
53(/\.'!#) = PL (1)
2T AIn
(AT + I

f
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Its average over many levels A can be written

BIn) = _];c T;-l;. F (77) (2)

where the fission transmission-coefficient is a sum over

5
partial coefficients for the saddle-point channels K )
¥ K
K
and TJ is a corresponding y-ray coefficient. The trans-

m1551on coefficient for a channel ¢ is related to the
partial width and the compound level distance pIT™ by

J IW)
T.'= 200 2 (4)
[)TW
F(Jr) is a fluctuation factor of the order of unity.
In the compound nuclear theory, one usually calculates
the transmission coefficient from an optical model for chan-
nel ¢ for which

T = 1- lmlZ )

wherefqc is the scattering amplitude in channel c. This is
because TE is that part of the incident flux which goes to
compound nucleus formation. In our case of fission, we
want to adopt the same philosophy and thus ask: how much
flux is absorbed into the class I region in an analogous
scattering problem for a fission channel ? The Schrddinger

equation for the collective fission motion in channel JnK
is

( 232(—* + Vo (B) + € ‘E)‘i’h(,’z.EF 0 (6)

where VJ"K(B) is the complex barrier potential (fig. 2)
which is usually assumed to be independent of Jm and K.

We assume that the mass parameter B is independent of the
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deformation coordinate B8 . The energy EJ’?Kg &K+AKJ(J+1)

is the intrinsic energy of the channel state. The quantity
Ak is the gg&gfional energy constant for the saddle-point
state. For theVhumped barrier potential one may choose an
absorptive imaginary part which is located in regions I and
II. This is because it is expected that the damping occurs
locally with two essentially different strengths in the two
regions. The imaginary potential is therefore put to zero

at point A(fig.2). One now considers scattering of fission
waves in the channel. The boundary condition at large values

of B is

[ []
Yoo (B, E) = XPE kg, ) = Mg XPlikpng)
where k’ is the wave number at the distance Bmax 2 Bscission.
It is found by calculation that Bmaxcan be chosen rather

arbitrarily.
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Fig. 2. Complex fission barrier used in the discussion
of eq.(6).
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For some minimum value Bmin’ one has

YK(PMC"I )E) =0 (8)

(For the sake of brevity, we have dropped the Jm quantum
numbers). We now calculate some relevant fluxes for the
wave function YK . The ingoing flux (positive towards the
left) is defined

* A
Sk -zat (Y st = hedp T

One finds that, at the top of the second barrier (point B),
the flux is

= 41 - "’I (10)

B

At the point A, the flux is S% < SK .

which is absorbed in region 1II is

A
=S~ S, o

It is an essential feature of the model that this flux is

Thus, the flux

again distributed into region I and the continuum. At this
point, it is worth noting that the absorbed flux in class II
may have lost the K quantum number due to mixing and thuas
only "remembers" ItE and the fact that it is of class II.
We assume that the re-distribution can be made by some
distribution probabilities p for the barriers A and B.
(There could be other decay modes of the class II compound
states but we neglect them and refer to ref.[7].

In this way, we obtain the total flux transmitted
into region I, or the transmission coefficient,which can

now be used in formula (2):
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for no K-mixing

- QA g~
and one channel TK - SK + §K P? (12)

for full K-wmixing

and all channels 21;(328: + PAZ?K‘ (13)
K K

K

The redistribution probabilities could, for example, be
12

related to the Hill-wheeler penetrabilities ) for single

barriers P so that

(14a)

A

Px P+ Py

PA‘—’ by 'p: (14b)
S (P8 + PL)

Usually one deals with very strong absorption in region

I. In this case, the use of an imaginary potential gives
some extra oscillatory effects in the wave function. This
can be avoided by using, instead of eq.[81, a purely
ingoing wave and no absorptive potential in region I. 1In

this way, one has instead,ffor g= B8 where Bmi now

min ¢ n

corresponds to some value close to BI

-ikp,,- (15)
q)qﬁnﬁnaEﬁ = q%(ea l3"nn
Eq. (15) was used in refs. [1,7,14]:

RESONANCES

The transmission coefficient for y-decay, TY' is
usually a rather small number, for example of the order
of 1073 to 1072, while T,
smaller values at low energy to the order of unity at

varies strongly from much

higher energy and in the neighbourhood of resonances. We
shall investigate how the average branching ratio
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b=<3 = %‘TK (16)

%TK"E’

is varyinq by the presence of a resonance located at

E = Eo.(The fluctuation factor F(Jn) has been put equal

to 1 as an approximation).

In a one-level approximation, one can write
11,10,7]

g8 Pg(f’:* °)

K = K (17)
L 2 . {2
E-E)* + Z ¢
B A
A
S = PK r'K (18)

K

where

"

I +PB+PS (19)

lHK K K K

The spreading with Fi is a positive number which is
roughly proportional to the strength WI of the imaginary
potential in region II. For simplicity, we stick to

one K-value only (no K-mixing) and therefore omit the

K quantum number. The resonance widths r®  and rB

can be approximated by

DVl.b
N-——I P (20)
anr

where P is the single-barrier penetration factor and
DVlb the vibrational energy distance in region II. If
one uses the re-distribution factor (1l4a), one obtains the

branching ratio

rrBr e P8 T on)
(E-E)*+ £7°
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with the width

r=2irtrtr/erfer Ty 1 (22)

and the integrated area

a = gml:) dE = = r 7 = 23)
* 1. f‘;
~co "7;;#%?‘7;( r + L 7})

S

It is seen that both y and @ increase as I'" = F—(FA+FB

)
increases,or as TY decreases. This effect can be rather

large, as seen in the next section.

. COMPARISON WITH EXPERIMENT

239 ‘
In fig. 4, the experimental Pu(d,pf) fission
probability

-P(e':(,r))= d6 (d,pf) (24)
de&(d,p)

is compared with the theoretical fission probability

ol & 2 [dsy (v E6.)],, < B
f Z[ds' o(TTE6p)ay

where <B(Jr)> is taken from eqg.(2). The (d,p) part of the
cross section has been calculated as discussed in ref.[13].

(25)

The values of the various parameters used in the calculation
of <ﬂ8> are given in table 1. In the calculation, the in-
going wave boundary condition method ref.[15] has been

used.
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Table 1

Some parameters in the calculation

Real potential parameters

Energies Ey Erq Ey Ru%. ﬁu&l hu%
in MeVv 6.05 2.35 5.55 1.00 1.18 0.70

Channel energies
K7 O+ o- 2+ 1-
eK(MeV) 0 0.35 0.70 0.90

The potential has been constructed by joining smoothly
three vertical parabolas defining the barriers A and B
and the well in region II. They can be described by
the oscillatory frequencesthuwy , hwy and Awg and by the
extremum energies Ep , Erpr and Eg. The values for Ep
and ‘EwB are chosen so that they give the observed
lifetime of the isomeric state, which is 4 ns. The
y-decay width has been fixed to 0.03 eV and the level
distances D(Jn) are determined from ref.[15]. The
rotational constant was AK = 0.005 MevV.
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Fig. 3 The imaginary maximum potential strength Wiy (kev) in
the second well as a function of the excitation energy.
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In this paper, the absorption potential in region II is of
special interest. We expect that the damping of the

vibrational states increases with the excitation energy of
the fissioning nucleus. In order to describe this, we have

assumed a linear dependence of W on the energy in the

II
energy interval of interest (fig.3). To reproduce the
width of the big resonance at 5.0 MeV, we need WIIQ=70 kev.

Part of the observed width of this and the other resonances
is interpreted as due to the rotational energy. For odd

nuclei which show less resonance structure, the necessary

15
W is considerably higher ). The effect of the damping

II
and re-distribution on the fission probability is clearly

shown in fig.5. The curve without damping has
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239
Fig. 4 Fission probability for Pu (d,pf). The same data
as shown in fig. 1. The theoretical fission probability is
calculated with the branching ratio (2) with damping in
class II, The parameters used in the calculation are
different from those of fig. 1 and described in detail in
the text, table 1 and ref.[14].
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rather narrow resonances . They are considerably
enhanced and broadened by the damping, as shown in the full
drawn curve.

In conclusion, one may say that the model with
damping and re-destribution gives rise to considerable
modification of the calculated fission probability as com-
pared with calculations with no damping. In this way, it
has been possible to obtain an agreement with the measured
fission probability and to give a consistent set of barrier
parameters for a range of nuclei 1u). However, the large
number of parameters in the calculations give rise to some

uncertainty in the obtained parameters.
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Fig. 5. Calculated fission probability with and without
damping. The full drawn curve is identical to that of
fig. 4. The thin curve is calculated from a set of para-
meters identical to that of fig. 4 with the exception that
the absorption in the second well is now zero, and that
the rotational constant AK is zero for simplicity.
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