
Aspects

J.Hřivnáč
�

, LAL, Orsay, France

Abstract

Aspect-Oriented Programming (AOP) is a new paradigm promising

to allow further modularization of large software frameworks, like those

developed in HEP. Such frameworks often manifest several orthogonal

axes of contracts (Crosscutting Concerns - CC) leading to complex mul-

tidepenencies. Currently used programing languages and development

methodologies don’t allow to easily identify and encapsulate such CC.

AOP offers ways to solve CC problems by identifying places where they

appear (Join Points) and specifying actions to be applied at those places

(Advices). While Aspects can be added in principle to any programming

paradigm, they are mostly used in Object-Oriented environments. Thanks

to wide acceptance and rich object model, most Aspect-Oriented toolk-

its have been developed for Java language. Probably the most used AOP

language is AspectJ.

WHAT’S WRONG ?

OOP Limitations

In OOP, an Object is the only fundamental abstraction.
In real life, however, other abstractions are needed, e.g.
Before-after, Cause-effect or State. In OOP, Hierarchies
(is a) and Collections (has a) are the only relations. In
real life, however, other relations are needed, e.g. Master-
slave, NxM, Component-container, Interval or Element-
metadata. OOP solves this limitation using work-arounds
(Patterns, Hooks, Wrappers,...). Aspects can be the first
step of a more organic solution.

Crosscutting Concerns

Figure 1: Crosscutting Concerns.

As shown in Figure 1, besides its own Mission, classes
have to fulfill other (unrelated) tasks, like Logging/Tracing,
Authentication, Persistency, Exception handling, Contract
Enforcing, Distribution, Self-testing, etc. Those tasks are
spread over classes from different domains. OOP doesn’t
give natural tools to modularize them.

�

Julius.Hrivnac@cern.ch

Crosscutting Concerns have serious impact on source
code:

� Code Tangling

� Code Scattering (Duplicated Code and Complemen-
tary Code)

With consequences on software quality:

� Poor Traceability

� Low Reuse

� Hard Evolution

Traditional OOP (abstract interfaces,...) can’t modularize
Crosscutting Concerns because:

� Using interfaces, implementation should be defined
for each class.

� Interface can’t define which classes it should act on.

� Hooks (Publish/Subscribe, Visitor,...) must be placed
before affected class.

� Wrappers can be circumvented.

ASPECT ORIENTED PROGRAMMING [1]

Aspect Definition

Lets separate Crosscutting Concerns from the Core Con-
cern, move them from the Class into other entities, and
re-introduce them later. Lets call them Aspects. We have
just introduced a new level of Modularization (an Aspect)
and a new kind of Relationship (is an aspect of). We have
used Aspect-Oriented Methodology, which consist of As-
pectual Decomposition, Concern Implementation and As-
pectual Recomposition.

Aspect Structure

An Aspect consist in general of four components:

� Join Point, which is identifiable point, formally de-
scribed by a PointCut. It can be Method (either call or
execution), Constructor (call or execution), Field Ac-
cess (read or write), Exception throwing, Initialization
(of a class or an object) or Advice Execution itself.

� Advice, which is the code to be executed at Join Point.
It can be executed before, after (returning, throwing or
always) or around its Joint Point.

617

� Introduction, which is a modification of class code it-
self.

� Compile-time Declaration of warnings or errors.

Aspect can extend class, implement interface, extend an-
other aspect and contain methods and data. An Aspect is
analogical to OOP Class, where PointCut corresponds to
Method declaration and Advice corresponds to Method im-
plementation.

ASPECT SYNTAX

AspectJ [2]

AspectJ uses extensions to Java, so Aspects have to be
compiled by special tools. AspectJ Weaving rules are de-
fined inside Aspects. Following is as simple example of an
AspectJ Aspect:

�����������
	��������������	���������������������
���������� � ����	�������	�������� "! �#� �� �$ �%��� � ���
��	��&�	#���
� �������� $�' � �!�(����� �)� ��� $+*,���

� �������������	������#��-#.�������	#���0/132546�7� � ���8/ � ��� *9�:*;(����� �)� ��� $ 1=<�<
��	����>/ ��� ��� *9�:*9� / *�* 1�1>?

���������� � ����	������#@�������A� �B� �'
�C(����� �)� ��� $+* ��	#-D/FE#���A�����A1 ! �#� �� �$HG ��	����I	#���#� ! �����
� � 	 $�J ����� *K���

� ����������%�#@����������E�	#-#.�������	#���0/FE#���A�����L��1M2
�#@�������A� �8/N����������� �O� ��� *9�:*;(����� �)� ��� $+* ��	#-D/FE#���A�����61�1%<�<
	#�����6/���1>?

����� ����	����%��	������I��� '� ��� *K���
��� '� ���0/1P2Q��	������#��-#.�������	#���0/1��
E#-������ !R*9 ��� * ���A���������8/�ST��� '� ���LS"U�� � ����V ����W �����A1>?
X

����� ����	������#@�����������
	 ' ���#� *K���
	 ' ���#�D/1Y2Z�#@����������E�	#-#.�������	#���0/FE#���A�����L��1C�
E#-������ !R*9 ��� * ���A���������8/�S7	 ' ���#�P��	#-A�����MS"U=��1>?
X

����� . �$ � ' -=�#@�������A� � *[���
\ ��]������=	#� ��� $ /1L2Q��	������#��-#.�������	#���0/1��
��*
\ ��]������ ��]�^I��� ����� $ /1>?
��*
���#�#���#� ��]:?
X

����� . �$ � ' -_�#�#	���� � ��#��	#��� � - G
�O$ ���#�#	#���
����	��&%W��#�������������B��� � 	���	����#� *`���

$ ���#�#	#������	#���������a25����	��&b� ! ���#� ! �������
W��#�������������B��� � 	���	����#�:?
����� � $�$�c �#�����#@�� ����	��& *K���
���A� J 	#��� c �#�����#@�����	��& *9d�J �#�����#@H?
�����%e ��������#��� � G � ' �B���#�
4�	������I� ������	#��������	��&
�I$ �7����������-f���B������	 $� �' ��-�����	��&�g�	���� ��-b����B�#�#	���� *,���
$ ���#�#	#���
h���� �i2
��	����>/j����	��& * ����48/ *�* 1�1
<�<
k 46�7� � ���8/j����	��&�g�	���� ��-�UA102
S \ ����-�����	��&�g�	���� ��-b��	��_������	#��������	��&B� k S6?

X

AspectWerkz [3]

AspectWerkz shows two major differences to AspectJ:
� Aspect is a normal Java class so it can be compiled by

a standard compiler and distributed as a standard jar
library.

� Weaving Rules can be external (in XML) so they can
be applied independently, later. Weaving Rules can be
also expressed using Java 1.5 Annotations.

Other Systems

Three constructs of Aspects (PointCut, Advice and
Weaving instructions) can be written in different language:

� Target language itself

� Extension of a Target language

� XML

� (Embedded) Annotations

� Special language

� Framework/GUI

They can be all in the same unit or in different units for
different Constructs.

Following is the list of the most popular Aspect systems
(with their GoogleMark values as of 1st October 2004):

� Java (195k) which can be AspectJ (125k), As-
pectWerkz (40k), Java Aspect Components [4] (20k)
or JBoss AOP [5] (10k).

� C/C++ (4k) which can be AspectC [6] (2k) or
AspectC++[7] (2k).

� Others, like Pythius [8]/Pythonic [9] (0.5k) for
Python, Aspect for Perl [10], AspectR [11] (3k) for
Ruby or AspectC# [12] (2k) for C#.

� Some languages, like Lisp or Smalltalk, have a ba-
sic support for Aspect-like programming already in-
cluded.

Level of language support in AOP systems varies; Java is
generally well supported, C++ support is still very incom-
plete.

Weaving

Weaving (i.e. introducing of Aspects into the code) can
be done in several phases (as is shown on Figure 2). More
dynamic (load/run-time) weaving method’s are supported
only by some implementations.

GUI

Graphical User Interface is often needed (and supported)
to visualize the weaving process. GUI studios (like AspectJ
Browser shown in Figure 3) may support incremental com-
pilation and weaving.

618

Figure 3: AspectJ Browser.

Figure 2: Weaving.

ASPECTS APPLICATION

The list of domains, where AOP can be used, is
very long. Let’s name just some: Logging/Tracing,
Exception Handling, Monitoring/profiling, Unit testing,
Const (for Java) / Final (for C++), Cache Manage-
ment, Connection Pool, Contracts Enforcing, Secu-
rity/Authentication/Authorization, Distribution, Grid, Cod-
ing Conventions Checking, Web Service, Graphics, Mul-
tiple Inheritance (for Java), Mixin, Persistence, or Fine-
grained access (besides public, package, protected, private
and friend).

Patterns have a special role in AOP. They are often used
to correct problems in OO languages. In AOP, some Pat-

terns disappear (like Observer or Visitor), other simplify
(like Factory, MVC or Entity-Model-Representation).

Aspects in HEP

There are several HEP domains, where AOP can be very
useful:

� Graphics: Aspect uses core class and performs all
graphical actions for it. This approach is prototyped to
connect GraXML [13] display to external framework.

� Fine-Grained Access Control: Aspect checks that
only allowed relations are used.

� Cache: Around advice stores all results in a cache.
Cached result is returned if it exists

� Connection Pool is analogical to Cache.

� Web Service: Aspect wraps serving class in a Web
Service. Around advice forwards service request
through Web Service.

� Persistence: AOP can be used in several ways to
provide persistence to Objects. Aspect introduces
read/write functions. Field access advice performs
reading/writing when necessary. Aspect makes class
JDO [14] PersistenceCapable (this is used in JOnAS
Speedo [15]). (JDO) PersistenceCapable aspect con-
nects to a core class and handles its persistence (it has

619

been prototyped for AIDA [16] FreeHEP [17] JDO-
based persistence).

� Factory: Around advice returns unique Object on all
Constructor calls. Compile-time declaration checks
that objects are not created directly, but by a Factory.

� Singleton: Around advice on Constructors returns
single Object, if it already exists; creates it otherwise

DEVIL’S ARGUMENTS

The are certainly problems with AOP, some just reflect
its immaturity, others are more fundamental.

Immaturity
� Aspect syntax is not standardized, there are several

incompatible approaches.

� AOP Theoretical Foundation is not yet very solid.

� AOP Methodology is still very primitive. UML syntax
for Aspects is not yet standardized

� PointCuts rely on naming conventions, they use just
(a bit better) regular expressions and pattern matching
(with weak grammar).

Fundamental problems
� AOP breaks encapsulation. (Yes, but in a controlled

way. Otherwise, equivalent functionality would re-
quire more serious break.)

� AOP improves locality of Concerns, but destroy lo-
cality of Control Flow. Control Flow of program with
Aspects is difficult to understand. Tools are neces-
sary. (But that is true for Object Oriented Program
compared with Procedural Program too.)

� Aspects can change program behavior without origi-
nal author being aware (and what about copyright ?).
(But this is what we want.)

� AOP programs can be hard to evolve as they rely on
(coding) conventions. Objects depend on Aspects,
but Aspects depend on Objects’ structure. (This is
not much more serious that pre-AOP dependencies in
OOP.)

HEPASPECTS [18]

HEPAspects is a package hosting some Reusable As-
pects (incl. examples from this talk). It’s not yet very big,
but its is growing. It contains also Ant tasks for AspectJ
management and scripts to allow a simple Aspects weav-
ing into user jar-libraries.

CONCLUSION

Object Oriented Programming abstractions are not rich
enough to capture actual Use Cases. In particular, Cross-
cutting Concerns can’t be expressed. Various ways have
been invented to fix that problem (OO Patterns, etc.). Those
solutions are too complex and fragile as they are not native
to existing (OO) languages (they manifest an Abstraction
Leak). Aspect Oriented Programming offers organic way
of modularizing Crosscutting Concerns. AOP (in Java) is
solid, easy to use and powerful (maybe too). It is, however,
in a rapid evolution and its impact on Architecture is not yet
clear. There are several fully functional AOP systems, the
most popular is AspectJ. Many HEP Crosscutting Concerns
can be easily separated with AOP. AOP (in Java) is ready
for Development and optional Production Aspects.

REFERENCES

[1] Aspect Oriented Software Development (http://aosd.net)

[2] AspectJ Project (http://eclipse.org/aspectj)

[3] AspectWerkz - Dynamic AOP for Java
(http://aspectwerkz.codehaus.org/)

[4] JAC - A Framework for Aspect-Oriented Programming in
Java (http://jac.objectweb.org)

[5] JBoss Aspect Oriented Programming
(http://www.jboss.org/products/aop)

[6] AspectC (http://www.cs.ubc.ca/labs/spl/projects/aspectc.html)

[7] AspecC++ (http://www.aspectc.org)

[8] Pythius (http://pythius.sourceforge.net)

[9] Pythonic CherryPy (http://www.cherrypy.org)

[10] AOP for Perl (http://search.cpan.org/ eilara/Aspect-
0.10/lib/Aspect.pm)

[11] AspectR - Simple aspect-oriented programming in Ruby
(http://aspectr.sourceforge.net)

[12] AspectC# (http://www.dsg.cs.tcd.ie/index.php?category id=169)

[13] GraXML - Framework for manipulation and
visualization of geometrical objects in space
(http://home.cern.ch/hrivnac/Activities/Packages/GraXML)

[14] Java Data Objects (http://access1.sun.com/jdo,
http://www.jdocentral.com)

[15] Speedo - ObjectWeb Implementation of JDO
(http://speedo.objectweb.org)

[16] AIDA - Abstract Interfaces for Data Analysis
(http://aida.freehep.org)

[17] FreeHEP - HEP Components and Tools for Java
(http://java.freehep.org)

[18] AspectJ HEP Aspects
(http://home.cern.ch/hrivnac/Activities/Packages/HEPAspects)

620

