CASTOR: OPERATIONAL ISSUES AND NEW DEVELOPMENTS

O. Barring, B. Couturier, J.-D. Durand, S. Ponce, CERN, Geneva, Switzerland

Abstract

The Cern Advanced STORage (CASTOR[1]) system is
a scalable high throughput hierarchical storage system
developed at CERN. CASTOR was first deployed for full
production use in 2001 and has expanded to now manage
around three PetaBytes and 26 million files. CASTOR is a
modular system, providing a distributed disk cache, a
stager, and a back end tape archive, accessible via a global
logical name-space.

This paper focuses on the operational issues of the
system currently in production, and first experiences with
the new CASTOR stager which has undergone a
significant redesign in order to cope with the data
handling challenges posed by the LHC, which will be
commissioned in 2007.

The design target for the new stager was to scale to
another order of magnitude above the current CASTOR,
namely to be able to sustain peak rates of the order of
1000 file open requests per second for a PetaByte disk
pool. The new developments have been inspired by the
problems which arose managing massive installations of
commodity storage hardware. The farming of disk servers
poses new challenges to the disk cache management:

— request scheduling; resource sharing

partitioning,

— automated configuration and monitoring,

— fault tolerance of unreliable hardware

and

Management of a distributed component like CASTOR
system across a large farm provides an ideal example of
the driving forces for the development of automated
management suites. Quattor[2] and Lemon[3] frameworks
naturally address CASTOR's operational requirements.

in CASTOR
fffffffffffffff

and Prod Taps Usags (hutes)
o
@

aaaaaa

111111

— |

= =1 o1
Jan

o1
Jan an

ECEE ECEE] 2eB4
Generated Oct 11, 2804 CASTOR (s CERN/IT/ADC/CA

TOTAL Prod Size ——
TOTAL Prod Taps Usage ——

TOTAL Prod Tape Usage Uithout Reduocd Copy ——
TOTAL Prod Mb Files ——

TOTAL User Hb Files

Figure 1
CASTOR CURRENT STATE

The production version has reached significant storage
capacity; around three petabytes of data spreaded over 25
million files, as showned in the figure 1.

There are two main subsystems in this version:

— The central services, like a name server, dacmons
managing tape information and request queuing,
and the tape servers

— Diskservers, hosting onec or more filesystems,
managed by a stager.

All data moving and control is done using the Remote

File Input/Output (RFIO) layer.

There no direct access to tape: the data is always cached
on disk both for read and write. That is, a user wanting to
read a file will have to wait for its availability on one of
the filesystems, and a user creating a file is doing so on a
filesystem as well. The stager is responsible of the
consistency over all the filesystems, launching recallers
and migrators as neceded, freecing space with garbage
collectors.

In contrary to central services that are using an
RDBMS, the stager daemon uses a home-made database
and suffers from its architecture, made of layers added to
layers every year — leading to some hardly removable
features like having an internal copy of its catalogue in
memory.

This configuration worked fine until the number of
diskserver at CERN started to grow causing the stager
catalogue size to exceed the physical memory available.

1221

PROBLEMS WITH CURRENT CASTOR
SYSTEM

The management flexibility provided by the current
version has become a problem and, in particular its lack of
fault tolerance. For instance, if something goes down, or
worse becomes very slow, the whole system suffers. This
has to do with the stager daecmon design, which is not
doing true request scheduling or throttling. Instead, it is
guessing what is a good matching resource candidate
using simple algorithms based on the its internal
knowledge of previous assignments rather than the actual
system load. A side effect is that the diskservers are not
casy to manage individually. For instance, no facility is
provided for draining a disk server in preparation for an
upcoming intrusive maintecnance intervention. As a
consequence a large number of administrative scripts have
been developed around the stager dacmon but the
management is still not robust and fault tolerant.

Independently, the increase of the number of disk
servers and/or filesystems at CERN pushed the system to
its limits:

— scalability problems

— performance hickups

— needs of a proper resource sharing

— internal catalog of the stager daemon limitations

— sub-optimal use of resources

- etc...

Right now, the number of different instances of the
CASTOR stager dacmon has considerably increased (~50
these days), but the more instances of it, the more idle
resources, as soon as a dedicated stager daecmon is not
used , for example during one month.

It has been acknowledged that the current system do fit
well the LEP experiments way of working — but LHC
experiments will have very different requirements. For
instance, proper security mechanism (for grid access in
particular), access policies, ctc...

Concrete requirements of LHC era are for example:

— CASTOR should scale up to 500/1000 requests per

second (a request is a file opening)

— 4 Petabytes of disk cache

— 10 Pectabytes to tape per year

— 10000 disks

— increased number of small files

- ctc...

The conclusion is that the production version currently
running at CERN must change, or the CASTOR product
will not meet the LHC requirements — in contrary it will
become a bottleneck.

VISION FOR THE NEXT CASTOR
GENERATION

With clusters of hundreds of disks and disk servers, the
automated management faces more and more the same
problems as Computing (not storage) resource sharing for
CPU clusters:

— Resource management

— Sharing

— Scheduling

— Configuration

— Monitoring

So the vision for the next CASTOR is Storage
Resource Sharing Facility.

ARCHITECTURE OF THE NEXT
CASTOR GENERATION

The following components are new (sce figure 2):

— Request Handler

— Resource Monitoring Agent

— Resource Monitoring Manager
— Scheduler

— Policy Engine

— Security layer

— Distributed Logging Facility

— Expert System

The following has been disassociated from the
production version, acting now as stand-alone processes:

— Migrator

— Recaller

— Garbage Collector

These components has been substantially upgraded:
— Tape Mover

The code development methodology has changed. All
algorithms, database schemas, flow charts are done in the
UML[4] style, and in particular the Database Interfaces
are generated using the UML schemas — we add by hand
private methods whenever needed (in particular in case of
methods accessing several tables).

The main design concepts are:
— Database Centric Architecture
— Requests States are stored in a relational
database (RDBMS)
— This will allow very big catalogs
— Locking, transactions will be handled by
the database
— The CASTOR services on top of the
database are stateless, which facilitates the
administration

1222

— We benefit from standard (hot) backup
procedures that comes along with a well
administered RDBMS

— The system will scale at the same rate as
the database and if necessary Database
clustering could be used for optimal
scalability

— Externalized Scheduling

— We believe that a complete scheduling
system is not trivial to write from scratch.
Indeed, schedulers are often offering
features like:

— fair share
— backfilling
— reservation
— statistics and accounting facilities
Therefore we decided to take advantage of
existing extendible scheduling systems and the
first candidates were LSF[5] (in production at
CERN), and MAUI[6]. Other schedulers has not
yet been integrated.
— Improved Security
— Policies and Rules

— We will use a true policy engine, CLIPS
[7], to express all policies. CLIPS
integrates well in C programs, but we
neverthless install an explicit expert
service, where all CLIPS rules are
grouped. The goal is to let administrators,
and experiment responsibles, modify the
policies.

stored in a incoming table of a database. This component
is designed to handle hundreds of requests per second.
Another component, which we still call the stager, will
asynchronously retrieve the requests and process them.

Resource Monitoring Agent

This is lightweight process doing the same as most of
the usual monitoring agents: cpu, disk space, processors,
i/o, etc... information is sent with UDP packets to a central
Resource Monitoring Manager.

Resource Monitoring Manager

It receives all monitoring information from all the
agents. It means that we have a global view of the whole
cluster by querying the resource monitoring manager.

This component is also doing more: some schedulers,
like MAUI, can work with an external resource manager,
polling it regularly to get all the metrics that have a
meaning for them. This is what is happening: the
Resource Monitoring Manager has an explicit interface to
the MAUI scheduler, answering to “give me all the nodes
you know” and “give all the jobs you know” commands.
In return, the MAUI scheduler might decide to schedule,
in which case it will use the same interface to say “start
this job”. In the MAUI terminology, these three protocols
are called GETNODES, GETJOBS, STARTJOB
respectively.

The MAUI scheduler does not really start the jobs but
the Resource Monitoring Manager will do so when it
receives the STARTJOB order.

New Architecture

MIGRATOR

STAGER

MONITORING sc‘,’u ‘FP“""’MONITORING

, RECALLER
_}GARBAGE

~IQOLLECTOR

Figure 2

Request Handler

This is how we handle the throttling into CASTOR. All
incoming requests are not processed as they arrive, but are

Some other schedulers will work the other way round.
For example LSF will start the job itself. In such a case, a

1223

CASTOR job will subscribe itself to the list of running
jobs to the Resource Monitoring Manager.

The Resource Monitoring Manager also provides
another function needed by the MAUI interface: Jobs
Monitoring Manager. This component regularly checks if
jobs are alive and updates its knowledge correspondingly.

Scheduler

Two schedulers are curently integrated:
- LSF

— This scheduler offers a built-in plugin facility. A
shared object providing well-defined entry points
is provided.

— Version 5.1 of LSF was succesfully tested, with
the price of some hacks to bypass internal
limitations of the knowledge that the plugin has.
Our plugin showed also few deficiencies in this
version of LSF, which has been overcome in the
new version 6.x of LSF thanks to an open and
very fruitful collaboration with the LSF
developers.

— Version 6.x of LSF is almost ready, waiting for
remaining minor modifications of the LSF master
scheduler

— LSF has a built-in Resource Manager collecting
information using a special syntax. Our Resource
Monitoring Agent supports the LSF syntax, and
reports the information to LSF as well as our
Resource Monitoring Manager.

— Jobs are started by LSF itsclf.

- MAUI

— The CASTOR plugin for MAUI has to be
explicitely linked with the scheduler binary.

— A fruitful collaboration with MAUI developpers
allowed to have a satisfactory version based on a
development version of the next MAUI
scheduler generation, called MOAB.

— MAUI tells when to start a job, and we execute
the order.

Thus, both LSF and MAUI schedulers provide the
functionality we need.

Policy engine

We prefer to give up with rules and policies that 'look
like' dynamic, when in reality there are not at all: in the
production version of CASTOR, for example, algorithms
are hardcoded in the services, and only some parameters
can be changed on the fly. The administrator can change
the behaviour of a given algorithm, or choose another one,
but cannot create its own policics.

Having a true support for policies implies a component
designed for that.

A market survey concluded that the best compromise
between:

— Policy Engine

— Cost to our daemons or machines

is the widely used CLIPS product (sce [7]). It integrates
casily in a C program, and can be tested on the fly using
manual commands, and it is lightweight.

So basic policies and rules has been written for Garbage
Collection, Recallers and Migrators.

In particular the Migrator rules are very important: we
use them to decide what is the best file to migrate to
tertiary storage (tapes, for instance) at any time.

Security Layer

We use strong authentication, and do not plan to use
encryption once the connection is established. This is
because encryption would seriously hamper the data
movement performance.

We have developed a plugin system, based on the
GSSAPI supporting the following mechanisms:

- GSI

— Kerberos V

— Kerberos IV is added by hand for backward

compatibility with current CERN architecture, but
is likely to disappear in the near future

— This has an impact on the machines configuration:

need for service keys, in particular.

Distributed Logging Facility

A clear disadvantage of a distributed system is when we
want to synchronize information to do a request survey
over the whole system.

Alternatives based on a concept similar to the netlogger
[8] product are promising, and we wrote our own
component, capable of storing requests in an RDBMS,
with predefined members like a Universal Unique Id.

Using this new logging facility, any process has the
possibility to continue local logging as usual, and at the
same time to send the log to a service that will store it to
the database.

Expert System

In order to centralize all policies and rules, and because
CLIPS is not thread-safe, we wrote a lightweight dacmon
that is executing CLIPS rules and return the output to the
client.

This daemon accepts facts that are given to CLIPS.
These facts will also call for the policy engine to run.

Migrator, Recaller

Migrators and recallers are services living on top of the
database, flagging files as candidates to tertiary storage
access. Those services act on behalf of the users.

In the prototype version, migrators and recallers are

explicitely instanciated when needed:

— a user wanting to read a file not yet available will
provocate internally an explicit recall of the file
onto the filesystem for which it has been scheduled

— auser creating a file will internally cause the file to
be flagged as an cligible candidate for migration.
Nevertheless, the CLIPS rules for migration will
decide the optimal time when the file is to be
physically transferred to the tape mover and written
to tape.

1224

Garbage Collector

The garbage collector works quite similar to the
migrator and the recaller: this is a component that is living
on top of the database, getting a list of files candidates for
migration.

Neverthless, garbage collection is usally a more
sensitive subject because it is related with the lifetime of
files on the disk cache. So it has an immediate impact on
the user's job performance.

As for the migrator and the recaller, garbage collector
will be driven by policies and rules. This is where an
experiment administrator will explicitely put its own
preferences.

Tape Mover

The production version of the tape mover has been
modified to circumvent a known deficiency in older
versions of CASTOR;

A stream, i.c. an aggregation of files to be read or
written to tape, could never be modified as soon as the
request was starting on tape servers.

The immediate consequence is that, if another stream
was to use the same tape, this was seen as two different
processes, not being able to share the same tape device at
the same time. The best that could be done was then to not
unmount the tape, but a rewind was still needed for
technical reasons.

This inefficient way of dealing with tapes has been
addressed, and we implemented the possibility to append
to an existing tape stream a unlimited number of requests.

TESTING

We put together all the ready components and built a
prototype of CASTOR, that will be used for the Alice
Data Challenge at the end of year 2004.

The diskservers used in the tests were not very well
tuned for CASTOR. They consisted of RAID arrays
presenting a single XFS filesystem, with h/w level 5 and
s/w level 1. The servers were tuned to give very good
performance for streams in same direction. However, for
competing streams in opposite direction, the read
performance dropped substantially while the write
performance stayed constant (see figure 3).

An application like CASTOR has a different
requirement, in particular it expects one read and write
strecams to have a similar rate when they are alone on a
machine. This has to do with performance for migration to
tape (read from disk) together with performance of
production (write to disk).

Nevertheless, it was an uscful exercise to sec how
CASTOR would perform with such suboptimal filesystem
tuning.

Another tuning of the diskservers is an iteration process
between us and our filesystem experts, the results are not
yet ready.

Goal

We want to test the full chain, i.e. involving memory,
network, disk and tape. So the measurement is the rate
when writing to tape.

We use 5 disk servers, where the nominal write speed
through RFIO (involving network, memory and disk) has
been measured around 25-30 MB/s.

The read-from-disk speed is the same if there is not
other competing write stream, otherwise around 5 to 12
MB/s.

45000

—e— rfcp to /dewnull on tpsnd58

A0000 ;‘E‘\ —=— Data producer 1 (memory on [xs5039)

35000

Data producer 2 (rmermory on [x5038)

30000 \
25000 ,Jvﬁw%-ﬁﬁ L]
20000 - ’l 'r
N \
!

15000 \ }
| Al e

KBis

10000 u\ o
5000 e et —*
a T T T T
9:50:24 10:04:45 10:18:12 10:33:36 10:48:00 11:02:24
Time
Figure 3

We scheduled six producers, so that the probability to
always have one producer per machine was high.

Only time windows introduced by the scheduling
decisions could lead to a machine with no producer in the
case it is idle.

The produced data was written to tape (i.e. read from
disk) using two streams to 9940B drivers, for which the
nominal speed is around 25 to 30 MB/s. The network
overhead does not matter too much in our case because
the CASTOR tape mover handles the network and tape
I/O in parallel provided there is enough data in the
mover's internal buffers for continue streaming the tape.

To make sure that CASTOR would migrate fine in a
non-hostile version of that environment, we made sure
that there was no data producers running concurrently at
the very beginning and and the end of tape stream.

As shown in the figure 4, when there was no producer
the rate when writing on tape was good as expected. The
interesting case is in the middle: it was guaranteed that
globally read-from-disk performance is bad — neverthless,
thanks to the migration policy rule, written in CLIPS, the
system always selected the best filesystem at any time.

1225

= Gnupiot [el=1=1

Jobid S036Gtpsrv058, “ 191 Gb transfered, last updated: 27/09/2004 at 06300

MB#s 191 files on PL1201

30
No Pr : No Producer: Optimal

T

Hean (<> = 20,1 MB's) s

09/26 09,27 09427 0a/27 09427
23300 0000 01300 02:00 03:00

Figure 4

We got into the small time windows when nothing was
scheduled. In such a case, the remaining producers not yet
scheduled did not go to the machine where we were
reading from disk, because the monitoring agent said to
the Resource Manager there was activity, and the
Resource Manager forwarded this information to the
MAUI scheduler, used in this test.

Thanks to the request scheduling and the just-in-time
selection of the best files to migrate, the system managed
to perform better than what one would expect from the
measured filesystem performance.

Next step is of course to re-run the test in a completely
different environment, hopefully more in favour of
CASTOR.

MANAGEMENT

The CERN Operational Team took over the totality of
CASTOR service management since end of year 2003.

This triggered the adoption of the Lemon and Quattor
frameworks for monitoring and configuration the castor
services.

In Lemon, monitoring metrics are added to handle our
s/w survey, together with specific h/w survey (tape drives
for example).

Quattor is used to maintain the s/w in synchronization

across the machines, maintaining and distributing
consistent configuration information from central
definitions.

CONCLUSION

A hybrid (with some old pieces left) stager prototype
has been sctted up for the Alice Mock Data Challenge.
Despite of a suboptimal filesystem tuning the first results
with this prototype are very promising.

We expect the meet the goal of 450 MB/s aggregrate
rate.

The final new stager system has its design ready and the
implementation of the remaining components of the
central framework has started.

REFERENCES

[1] http://cern.ch/castor

[2] http://cern.ch/quattor

[3] http://cern.ch/lemon

[4] http://www.uml.org

[5] http://www.platform.com/products/LSF
[6] http://supercluster.org/maui

[7] http://www.ghg.net/clips/CLIPS.html
[8] http://www-didc.1bl.gov/NetLogger/

1226

