

JOB INTERACTIVITY USING A STEERING SERVICE IN AN
INTERACTIVE GRID ANALYSIS ENVIRONMENT

Arshad Ali4, Ashiq Anjum4, Julian Bunn1, Richard Cavanaugh5, Frank van Lingen1,
Richard McClatchey3, Harvey Newman1, Conrad Steenberg1, Michael Thomas1, Ian

Willers2 , Muhammad Adeel Zafar4

1California Institute of Technology
Pasadena, CA 91125, USA

Email: {fvlingen,newman,conrad,thomas}@hep.caltech.edu,
Julian.Bunn@caltech.edu

2CERN, Geneva, Switzerland
Email: Ian.Willers@cern.ch

3University of the West of England
Bristol, UK

Email: Richard.mcclatchey@uwe.ac.uk

4National University of Sciences and Technology
Rawalpindi, Pakistan

Email: {arshad.ali, ashiq.anjum,zafar.adeel}@niit.edu.pk
5University of Florida, USA

Email: cavanaug@phys.ufl.edu

Abstract
Grid computing has been dominated by the execution

of batch jobs. Interactive data analysis is a new domain
in the area of grid job execution. The Grid-Enabled
Analysis Environment (GAE)[1] attempts to address this
in HEP grids by the use of a Steering Service. This
service will provide physicists with the continuous
feedback of their jobs and will provide them with the
ability to control and steer the execution of their
submitted jobs. It will enable them to move their jobs to
different grid nodes when desired. The Steering Service
will also act autonomously to make steering decisions on
behalf of the user, attempting to optimize the execution of
the job. This service will also ensure the optimal
consumption of the Grid user’s resource quota. The
Steering Service will provide a web service interface
defined by standard WSDL.

In this paper, we have discussed how the Steering
Service will facilitate interactive remote analysis of data
generated in Interactive Grid Analysis Environment.

INTRODUCTION

The gr id couples a wide variety of geographically
dis tributed computing resources. This includes storage
and computational systems which are heterogeneous in
nature, are owned by different individuals and
organizations, and have their own policies with different

access and cost models. Users of the interactive Grid -
Enabled Analysis Environment (GAE) will have defined
quotas to access these resources in the grid. Large data
collections are stored and replicated on distributed
resources to enhance storage capability and efficiency of
access. Grid systems today are mostly used as batch
processing systems. Grid users submit batch jobs
composed of many atomic tasks, where the dependencies
between tasks is known in advance. One significant
difference between interactive analysis and batch analysis
is that in the in teractive session the execution of one task
is based on the results of the previous task, such that the
dependencies between tasks in the final job structure is
not known in advance. This is in contrast to the case of
batch analysis, where the task dependencies are known in
advance.

Grid Analysis Environment

The Grid -Enabled Analysis Environment (GAE) as
described in Figure 1 is an end to end system for scalable
distributed multi user (batch and interactive) analysis .
Clarens [2] web service hosts are the backbone of this
GAE. Clarens offers a consistent framework for hosting
the GAE web services, for providing common set of
services for authentication, access control, and for service
lookup and discovery. It will enable users and services to
dynamically discover other services and resources within
the GAE through a peer-to-peer based lookup service.

1022

Figure 1: Different services within GAE being developed

by Caltech and its collaborators

Need for Steering Service

The heterogeneous and distributed nature of grids
makes it much more difficult to perform interactive
analysis than on a single machine. A single dataset may
be replicated in many locations. Competition for
resources is much more apparent. It is much more
difficult, if not impossible, to take a “snapshot” of the
current state of the Grid, making the best choice of how
and where to execute a task difficult to determine.

For these reasons it is necessary to have a grid service
that is able to make reasonable choices among a range of
possible job execution strategies, autonomously or
interactively, while a job is running. Decisions made by
these services will be based on a more complete range of
information about the current and predicted future grid
‘weather’.

RELATED WORK

The concept of Monitoring, Steering and Optimization is
used by different projects but has never been
implemented as a single generic Grid Service. The
noteworthy efforts include MonALISA [3] which is
currently being used to perform Monitoring, Steering, and
Optimization for the VRVS [4] reflector network. G-
Monitor [5] is a web portal that allows a user to monitor,
control, and steer the execution of application jobs on
Global Grids. G -Monitor does not provide an interface for
Applications to interact with the system. Falcon [6], from
the College of Computing, Georgia Institute of
Technology Atlanta, was created to steer parallel
programs through online monitoring, allowing
Monitoring and Steering but not Optimization. The goal
of the project is to enhance the end -user’s insight into the
application level behavior of the high-performance
program under study. In order to steer the execution of a
program using Falcon, the program has to be coded using
the steps described by Falcon system. The Vase System
[7]is another effort which focuses on the steering of

applications by human users. This project lacks
autonomous decision-making and algorithmic program
steering. NetLogger [8] is a Toolkit for Distributed
System Performance Tuning and Debugging. This project
provides methodology to get the detailed end-to-end
application and system level monitoring and tools for
visualizing the log data and real-time state of the
distributed system.

STEERING SERVICE

The Steering Service is one of the components of the

GAE architecture that allows users to interact with
submitted jobs. The Steering Service will be hosted on the
Grid Service host Clarens. This service provides users
with the real-time control of their job submissions,
allowing users to kill, restart, or reschedule their jobs. The
MonALISA [3] Monitoring Service continuously collects
job information and sends it back to the client.

INTERACTIVITY

The Steering Service provides one way for users to

interact with their submitted jobs. Listed below are the
types of interaction a client can have with a job.

Job Feedback

Users need responsiveness in an interactive Grid
Analysis environment. To satisfy this need the user’s jobs
must be continuously monitored, and the monitoring
information must be relayed back to the user in real-time.
A job may contain multiple tasks and each task may be
scheduled on a different site. The Steering Service will
collect the monitoring information from all of the
monitors of a single user job and will send this
monitoring information back to the client.

Figure 2: Collection of monitoring information from

various monitors

User-Driven Directions

The Steering Service provides a set of APIs for sending
commands to running tasks in order to tune the operation
of the entire job. The tuning can be in the form of moving
a running task from one execution site or replicating data
to sites so that it can be made immediately available to
more execution nodes. This is done to speed up the
execution time or to reduce the resource usage for a user

1023

so that they don't exceed their resource quota. While the
grid scheduler attempts to optimize the initial job plan,
the Steering Service is used to make adjustments to the
job plan after the job has started running. The user will
submit requests to the Steering Service specify ing actions
to be taken, and on which jobs/tasks actions will be
performed. The Steering Service interacts with the
Execution Service to perform these actions on behalf of
the user. The Steering Service will respond back to the
client with the status of their steering request.

INTERACTION WITH CLIENT

The client will be able to interact with the Steering
Service in two ways: through the use of a graphical user
interface and through the use of a Web Service API.

User Interface
A user interface (UI) will be provided which will

contain a list of all jobs that are to be steered by that
Steering Service instance for a particular client. This UI
(a part of it is shown in Figure 3) will also provide a way
to interact with all the tasks of a job. This UI will als o
provide a progress bar for each job with detail progress of
each task in that job. Since the Steering Service has the
estimate of the total time the job / task will take to
complete, this progress bar can be displayed based on this
estimate and the time the job has taken at that point in
time. Moreover, this UI contains the list of actions that a
client may take on a job. Complete job monitoring
information including job status, failure notifications, job
redirection alerts and submission failure, will be
displayed directly in the GUI.

Figure 3: Steering Service Job Control Panel

API

The Steering Service will provide a Web Service API
for monitoring information retrieval and job control.

API for Job Monitoring
The API for Job Monitoring will allow the client to get

information regarding the submitted jobs such as job

status, remaining time, elapsed time, estimated run time,
queue position, priority, submission time, percentage
completed, execution time, completion time, CPU time
used, amount of input IO and output IO, owner name,
environment variables, and any normal and error output
produced by the job.

API for Job Control
The API for Job Control will allow the client to kill a

running job, kill a queued job, hold a job, resume a held
job, and change priority of a job, move job to specific
computing element and change the optimization
preference of a job.

API for interaction with Scheduler
The API for Scheduler Interaction will allow the

Scheduler to give a copy of the job plan to the Steering
Service. It also provides a method to contact the scheduler
to reschedule the task to a specified Computing Element.

ARCHITECTURE

Figure 4 shows the different components of the Steering
Service and its interaction with other services in the GAE.
The Steering Serv ice is a web service that is hosted on
Clarens.

Figure 4: Steering Service (in green)

IMPLEMENTATION AND TEST
RESULTS

The Steering Service currently is in the development

phase at NUST in collaboration with Caltech and CERN.
The current development of the Steering Service allows
the user to get the constant feedback of the job on a
webpage (and through the web service API as well),
control the job, move the job to a specific site during
execution, and set optimization preferences. The Steering
Service c reates backups of the jobs as specified by the job
plan and optimize s the resource quota and execution of
job autonomously . The backup is created by storing the
job executables with the steering service so that in case of
failure, the job may be resubmitted. We have provided the

1024

web service API that will be used by Scheduler and the
Client / UI of the Steering Service.

The Steering Service finds the cheapest site when
specified by the user to do so and then recommends the
scheduler to submit the job on that site. Currently the
mechanism used by Steering Service is to “kill the job on
site A” and “resubmit on site B” when it is moved from
Site A to Site B. The current implementation of the
Execution Service supports Condor as the job execution
system. If the support of flocking (Condor-specific
feature) is enabled between site A and site B, it will no
longer be needed to manually kill the job at A and
resubmit it on B while moving the job from A to B. Also
for “checkpoint-able” jobs, the problem of restarting the
job from its start will be solved and the job will be started
from the recent checkpoint. In case of optimization of
slow running jobs, tests and results have shown that even
if the job is restarted from the beginning, it can complete
faster as compared to its current slow execution.

The following graph shows the completion time of the
jobs at different scenarios.

The blue line shows the job completing as estimated.
Currently this estimate is calculated by running the job
many times on different machines which have negligible
CPU load. The estimates come out to be 283 seconds;
hence ideally the job should complete in 283 seconds.
The purple line shows the job that is running on site A
under significant CPU load. The Steering Service has
monitored the progress of this job and has decided to
move this job based on its slow execution rate. This job
has been rescheduled on some new site B and has
completed before the original job as indicated by the
yellow line. For testing purpose, the job was allowed to
continue running on site A .

Estimated Runtime 283 seconds
Time taken at Site A 452 seconds
Time taken at Site B 369 seconds

The job can be completed even quicker than 369

seconds if it is checkpoint-able and the flocking is
enabled between site A and Site B. A critical factor that
affects the job completion time is the time at which the
decision to move the job is taken. The quicker the

decision is taken, the better the chance that it will
complete quicker. Another important factor is the time
taken to transfer the data files needed by the job. All of
these factors must be taken into account when deciding
whether a job should be transferred or allowed to run to
completion.

CONCLUSIONS

In this paper, we have discussed the ways in which the

Steering Service provides interactivity in GAE. Besides
discussing different ways, the architecture of the Steering
Service in GAE was discussed by highlighting the role of
different components within the Steering Service.
Different components of GAE allow the user to monitor,
control and steer the execution of their jobs and provide
users with fine control over their jobs. The Steering
Service is one of the services that will help achieve a self-
organizing grid and autonomous behavior of grid
services. The Steering Service will also have the ability to
make decisions on behalf of the user. Based on the
information provided by the Monitoring Service and the
policies for that particular job, the Steering Service may
make decisions to move individual tasks or even an entire
job to some other computing nodes to optimize the
resource usage quota of the user as well as the execution
of the job.

REFERENCES

[1] Proposal for: a Grid Analysis Environment Service
Architecture Authors: Julian Bunn, Dimitri Bourilkov,
Rick Cavanaugh, Iosif Legrand, Harvey Newman, Suresh
Singh, Conrad Steenberg, Michael Thomas, Frank van
Lingen
http://ultralight.caltech.edu/gaeweb/gae_services.pdf
[2] The Clarens Web Services Architecture
Authors: Conrad D. Steenberg and Eric Aslakson, Julian
J. Bunn, Harvey B. Newman, Michael Thomas, Frank van
Lingen http://clarens.sourceforge.net/index.php?docs
[3] MonALISA (MONitoring Agents using a Large
Integrated Services Architecture)
http://monalisa.cacr.caltech.edu/
[4] Virtual Room Videoconferencing System
http://www.vrvs.org
[5] G-Monitor : A Web Portal for Monitoring and
Steering Application Execution on Global Grids
http://www.gridbus.org/papers/gmonitor.pdf
[6] Falcon: On-line Monitoring for Steering Parallel
Programs
w.cc.g atech.edu/systems/papers/schwan/GuCPE.pdf
[7] D. Jablonowski, J. Bruner, B. Bliss, and R. Haber.
VASE: The Visualization and application steering
Environment. In Proceedings of Supercomputing '93,
pages 560{569, Portland, OR, November 1993.
[8] NetLogger : A Toolkit for Distributed System
Performance Tuning and Debugging
http://www-didc.lbl.gov/NetLogger/

1025

