
INFORMATION AND MONITORING SERVICES WITHIN A GRID
ENVIRONMENT

A. J. Wilson, R. Byrom, L. A. Cornwall, M. S. Craig, A. Djaoui, S. M. Fisher, S. Hicks, R. P.
Middleton, J. A. Walk, CCLRC - Rutherford Appleton Laboratory, UK

A. Cooke, A. J. G. Gray, W. Nutt, Heriot-Watt University, UK
J. Magowan, P. Taylor, IBM

J. Leake, Objective Engineering Ltd., UK
R. Cordenonsi, Queen Mary, University of London, UK

N. Podhorszki, SZTAKI, Hungry
B. Coghlan, S. Kenny, O. Lyttleton, D. O'Callaghan, Trinity College Dublin, Ireland

Abstract

The R-GMA (Relational Grid Monitoring Architecture)
was developed within the EU DataGrid project, to bring
the power of SQL to an information and monitoring
system for the grid. It provides producer and consumer
services to both publish and retrieve information from
anywhere within a grid environment. Users within a
Virtual Organization may define their own tables
dynamically into which to publish data.

Within the DataGrid project R-GMA was used for the
information system, making details about grid resources
available for use by other middleware components. R-
GMA has also been used for monitoring grid jobs by
members of the CMS and D0 collaborations where
information about jobs is published from within a job
wrapper, transported across the grid by R-GMA and made
available to users. An accounting package for processing
PBS logging data and sending it to one or more Grid
Operation Centres using R-GMA has been written and is
being deployed within LCG. There are many other
existing and potential applications.

R-GMA is currently being re-engineered to fit into a
Web Service environment as part of the EU Enabling
Grids for E-science in Europe (EGEE) project.
Improvements being developed include fine grained
authorization, an improved user interface and measures to
ensure superior scaling behaviour.

OVERVIEW OF R-GMA
R-GMA is an implementation of the Grid Monitoring

Architecture (GMA) [1] proposed by the Global Grid
Forum (GGF), which models the information
infrastructure of a Grid as a set of Consumers (who
request information), Producers (who provide
information) and a single Registry (which mediates the
communication between producers and consumers). R-
GMA imposes a query language (a subset of SQL) on this
model - so producers publish tuples (database rows) with
an SQL insert statement and consumers query them using
SQL select statements. R-GMA also ensures that all
tuples carry a time-stamp, so that monitoring systems
(which require time-sequenced data) are inherently
supported.

R-GMA presents the information resources of a Virtual
Organisation (VO) as a single virtual database containing
a set of tables. As well as providing Producer and
Consumer services R-GMA provides a Registry Service
and a Schema Service, both of which will be replicated
and each VO will have its own logical registry and
schema. A registry contains a list, for each table, of
producers who have offered to publish (provide data for)
rows for the table. A schema contains the name and
structure (column names, types and settings) of each
virtual table in the system.

A full description of the R-GMA specification is
contained in the Information and Monitoring Service (R-
GMA) System Specification [2] and a full description of
the architecture is contained in the EGEE Architecture
document [3].

R-GMA COMPONENTS
The Producer Service

There are three classes of producer: Primary, Secondary
and On-demand. Each is created by a user or middleware
application and returns tuples in response to queries from
other applications. As figures 1a-c below show, the main
difference is in where the tuples originate.

The Producer Service in these figures is a process
running on a server on behalf of the user code. In a
Primary Producer (figure 1a), the user code periodically
inserts tuples into storage maintained internally by the
Primary Producer Service. The Producer Service
autonomously answers consumer queries from this
storage. The Secondary Producer Service (figure 1b) also
answers queries from its internal storage, but it populates
this storage itself by running its own query against the
virtual table: the user code only sets the process running;
the tuples come from other producers. In the On-demand
Producer (figure 1c), there is no internal storage; data is
provided by the user code in direct response to a query
forwarded on to it by the Producer Service.

The tuple-storage maintained by Primary and
Secondary Producers can either be in memory, in a file, or
in a real database table. Producers that use non-database
storage are optimized to answer simple queries quickly,
but they can support complex queries too (e.g. by creating

895

an in-memory database on the fly). In an On-demand
producer, tuple-storage (if any) is the responsibility of the
user code, but may also be in a real database.

Figure 1a. Publishing via a Primary Producer

Figure 1b. Publishing via a Secondary Producer

Figure 1c. Publishing via an On-demand Producer

The Consumer Service
In R-GMA, each consumer represents a single SQL

SELECT query on the virtual database. The request is
initiated by user code, figure 2, but the Consumer Service
carries out all of the work on its behalf. The query is first
passed to the Registry service to identify which
producers, for each virtual table in the query, must be
contacted to answer it. This process is called mediation.
The query is then passed by the Consumer Service to each
relevant producer, to obtain the answer tuples directly.
Note that there is no central repository holding the
contents of the virtual table; it is in this sense, that the
database is virtual.

There are four types of query: continuous, latest,
history and static. The set of queries that a particular
producer supports is recorded in the registry. All query
types except static can take an optional time interval
parameter.

A continuous query causes all new tuples that match the
query to be streamed into the consumer’s tuple storage, as
soon as they are inserted into the virtual table by the

producers. Streaming continues until the consumer
requests it to stop. If a time interval is specified, the
consumer will additionally receive any tuples which are
already in the virtual table when the query starts, and
which are no older than the time interval. There is no
guarantee that tuples are time-ordered. All Primary and
Secondary producers support continuous queries but On-
demand producers do not.

Figure 2. Querying

Latest and history queries are one-time queries: they
execute on the current contents of the virtual table, then
terminate. In a history-query, all versions of any matching
tuples are returned; in a latest-query, only those
representing the “current state” are returned, where
current state is the most recent versions of tuples which
have not exceeded a user defined time period known as
the LatestRetentionPeriod.

In both cases, a time interval may be specified with the
query, to limit the age of the tuples returned. Primary and
Secondary Producers may optionally support one-time
queries but On-demand producer do not.

Static queries are only supported by On-demand
producers. They are one-off database-like queries and do
not contain R-GMA time-stamps. The primary purpose of
an On-demand producer is to allow very large data
structures to be accessed through the R-GMA
infrastructure, without the overhead of copying tuples into
a Producer Service.

JOB MONITORING
The role of job monitoring is to enable grid users to

monitor the progress of their own jobs and for VO
administrators to get an overview of what is happening in
the grid. The problem is that the jobs are likely to run
remotely behind a firewall and so are not accessible. A
solution to this is to use the Producer and Consumer
Services of R-GMA to provide transport across firewalls.

There are two approaches to Job Monitoring. A wrapper
script can parse the outputs and publish information based
on patterns in the output or the user code can be
instrumented directly to publish what it is doing.
Logically these are the same; it just depends on how the
“job” is defined. The job simply wants to announce that
something has happened, without being aware of whether
or not anything is listening.

User
Code

Consumer
Service

Consumer
API

Tuple
Storage

tuples tuples

Producers

Consumer

Registry
Service

query
list of
producer

query query

User
Code

Producer
Service

Producer
API

User
Code

control only

queries

tuples

Consumers

On-demand Producer

SELECT * tuples

User
Code

Producer
Service

Producer
API

Tuple
Storage

control and
inserted tuple

queries

tuples

Consumers

Primary Producer

User
Code

Producer
Service

Producer
API

Tuple
Storage

control only

queries

tuples

Consumers

Secondary Producer

Other
producers

SELECT * tuples

896

The Wrapper Approach
We will now describe a generalised method for job

monitoring based on the work done by members of the
CMS and D0 collaborations. The basic requirement was
to be able to monitor the standard out and standard error
of running grid jobs.

A wrapper script containing the user’s code and calls to
R-GMA is submitted to the grid. Upon execution the
wrapper script uses the Producer Service to create an R-
GMA Primary Producer resource on the local R-GMA
server with an in-memory tuple store, which is
lightweight and fast. The wrapper script then executes the
user’s code. Output to standard out and standard error
from the user’s code is then intercepted by the wrapper
script that makes this data available across the grid by
publishing it using an R-GMA “insert” statement. The
data is transferred to the Primary Producer resource on the
local R-GMA server where it is stored in the in-memory
tuple store. This data remains in the tuple store even after
the application code has terminated for a period
dependent upon a user definable variable,
RetentionPeriod. After this period has elapsed the data
will be discarded from the tuple store.

No prior knowledge of where the job will run is
required, data is published from wherever the job lands
within the grid. This results in numerous Primary
Producers running across the grid, all publishing to the
same virtual table. In order to optimize queries and to
ensure that a permanent record of the data is kept a
Secondary Producer, using a database tuple store, is used
to aggregate all tuples published to the virtual table. This
Primary Producer – Secondary Producer hierarchy is
illustrated in figure 3.

Once the Secondary Producer resource has been created
it contacts any existing relevant Primary Producer
resources and initiates streaming. As new relevant
Primary Producer resources appear they are also

automatically contacted to initiate streaming. As new
tuples become available in tuple stores of the Primary
Producer resources they are automatically streamed to the
Secondary Producer resource. Thus the Secondary
Producer resource is able to maintain an up to date view
of the entire virtual table. Queries across the virtual table
are then directed to the Secondary Producer resource by
the mediator. This helps minimise the load on the Primary
Producers. If the load on the Secondary Producer
becomes too high additional Secondary Producers can be
set up.

Instrumenting the Code
This may be done by making use of an existing logging

service or by instrumenting the code directly with calls to
the Producer Service

Logging Service
Within a Java application, the natural way to do job

monitoring is with the java logging service or log4j[4].
Following the success of log4j, facilities supporting
applications in other languages have been developed and
now we see a new Logging Services[5] activity within
Apache which “is intended to provide cross language
logging services for purposes of application debugging
and auditing.” A tool, Chainsaw[6], is also part of the
Apache logging service project. This is able to pick up
logs and visualise them.

Rather than have users instrument their code with calls
to R-GMA we are developing an interface to be used with
the Apache Logging Services. We are currently
developing an appender (an interface) for the Logging
Service. When the output of the Logging Service is
directed to this appender, it will be automatically
published via the Producer Service. In order to make this
as light-weight as possible Primary Producer resources
with in memory tuple stores will be used. As with the
existing method of job monitoring, Secondary Producer

User
Code

Producer
API

control and
inserted tuple

Primary Producer

User
Code

Producer
Service

Producer
API

control and
inserted tuple

Primary Producer

User
Code

Producer
API

User
Code

Producer
Service

Producer
API

Secondary Producer

SELECT *

tuples

Consumer
API

Consumer
Service

User
Code

tuples

tuples

Consumer

query

query

SELECT *

tuples

Figure 3. A Primary Producer, Secondary Producer Hierarchy

control only

control and
inserted tuple

Producer
Service

897

resources will be employed to aggregate the data and
provide a long-term storage facility within a database
tuple store.

From an application point of view, a message – a single
unstructured string is published using the normal logging
API which publishes the data via R-GMA. The set of
attributes which can be published will follow the Apache
Logging Services specification. As indicated, the Logging
Service messages are unstructured. If structure is required
then R-GMA should be used directly.

Facilities to make the data available to Chainsaw (or
equivalent) will also be provided for visualisation.

Instrumenting with R-GMA
There may well be cases when a user does not wish to

use the generic data structure provided by the Logging
Service but wishes to make use of more complex user
defined data structures. If this is the case then the user can
use the Schema Service to define tables for use within the
virtual database. Once the tables have been registered
with the Schema Service then user code instrumented
with R-GMA insert statements can be used to populate
these tables.

The R-GMA web-based browser can then be used to
view the contents of these tables or code can be written to
use the Consumer Service to examine the contents of the
tables.

THE PERFORMANCE OF R-GMA
Extensive performance testing of the R-GMA

components has recently been conducted. The
measurements indicated that they have good scaling
behaviour.

A single Registry Service resource coped with 125
consumers per second being created and destroyed. The
addition of a second, replica, Registry Service resource on
a separate machine showed perfect scaling behaviour
within the accuracy of the measurements.

The ability of a Consumer Service resource, posing a
continuous query, to process different tuple sizes was
measured and it was found that individual tuples could be
process in a time of 1400µs + 1 µs/byte. It was also found
that a single Consumer Service resource was able to
consume data from 3200 producers, with no indication of
an approaching limit.

A full description of the performance testing along with
all of the results can be found in The Relational Grid
Monitoring Architecture: Mediating Information about
the Grid [7]

PAST, PRESENT AND FUTURE
R-GMA was developed and deployed as part of the EU

DataGrid project and it has recently been deployed as part
of LCG. It is now being taken forward as part of the
EGEE project. This includes re-engineered and work to
convert R-GMA to web services. A WS-I compliant
implementation will be available in the very near future.
Work is also in progress on providing multiple VO

support and replicating the Schema Service, this requires
a different mechanism to the Registry Service replication
which has already been implemented.

SUMMARY
R-GMA is a grid information and monitoring system

that provides Producer, Consumer, Registry and Schema
Services for use by grid users and other components. It is
based on a powerful data model and provides the ability
for users to define their own schema and to provide and
request information using an API based on a subset of
SQL. Recent performance measurements demonstrate that
it has good scaling behaviour. The system has been
deployed within LCG and is now being re-engineered as
part of the EGEE project

ACKNOWLEDGMENTS
This work was funded through contributions from the

European Commission program INFSO-RI-508833
through the EGEE project and by PPARC through the
GridPP program.

REFERENCES
[1] B. Tierney et al. A Grid Monitoring Architecture.

http://www-didc.lbl.gov/GGF-PERF/GMA-
WG/documents.html, GGF, 2002.

[2] JRA1-UK. Information and Monitoring Service (R-
GMA) System Specification.
https://edms.cern.ch/document/490223/, EGEE,
2004.

 [3] JRA1 Design Team. EGEE middleware architecture.
Technical Report
https://edms.cern.ch/document/476451/, EGEE,
2004.

[4] Apache Software Foundation. log4j.
http://logging.apache.org/log4j/.

[5] Apache Software Foundation. Logging Services.
http://logging.apache.org/.

[6] Apache Software Foundation. Chainsaw.
http://logging.apache.org/log4j/docs/chainsaw.html.

[7] A. Cooke et al. The Relational Grid Monitoring
Architecture: Mediating Information about the Grid.
Submitted to Journal of Grid Computing.

898

http://www-didc.lbl.gov/GGF-PERF/GMA-WG/documents.html
http://www-didc.lbl.gov/GGF-PERF/GMA-WG/documents.html
https://edms.cern.ch/document/490223
http://logging.apache.org/log4j/
http://logging.apache.org/
http://logging.apache.org/log4j/docs/chainsaw.html

