
A SCALABLE GRID USER MANAGEMENT SYSTEM FOR LARGE
VIRTUAL ORGANIZATION

G. Carcassi, T. Carter, Z. Liu, G. Smith, J. Smith, J. Spiletic, T. Wlodek, D. Yu, X. Zhao,
Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract
We describe our work on GUMS, a site tool for Resource
Authorization (AuthZ) and Grid User Identity Mapping.
We will first define the scope of the work, and describe
the general direction we are taking. We will describe the
current functionalities provided to BNL, such as the
ability to have a flexible site policy controlled by a single
XML file and the ability to integrate with site databases.
We will then describe the current work being done for
OSG, which includes the use of account pool, a GT3/4
based service and role based authorization using VOMS
extended proxy credentials.

OVERVIEW
GUMS (Grid User Management System) is a site tool

for resource Authorization that addresses one function:
mapping grid certificates to local identities (i.e. UNIX
account).

Grid Identity Mapping Service
A job comes to a site with a GRID credential (the proxy

certificate). The site resources might not use GRID
credentials natively, and will use some different
mechanism to identify users, such as UNIX accounts,
Kerberos principals, and the like. The gatekeeper will
need to map the GRID credential to the site credential.
GUMS is a service that provide this type of mapping: tells
you which site user the GRID user should be using.
Notice that it doesn't authenticate for you: it doesn't 'su', it
doesn't retrieve Kerberos credentials. It just tells the
gatekeeper which site credentials should get. The
gatekeeper is still in charge of enforcing the site mapping
established by GUMS.

Past, Present and Future
GUMS was first designed by Rich Baker and Dantong

Yu at BNL in the first half of 2003. A first implementation
was provided by Tomasz Wlodek and Dantong Yu.
Gabriele Carcassi took over the project in March 2004
and brought the system into full production at BNL in
May 2004. Between June and July the code was
consolidated to allow the business logic to be called either
from command line or a web application, which allows a
GT3/4 service implementation.

Current work is going toward a web application that
would provide both a web interface for the administrator
and a web service that implement the OGSA AuthZ

interface. This is done within the Privilege Project, a joint
project between USCMS and USATLAS.

CURRENT FEATURES
GUMS is being used in production at BNL, proving it’s

a viable tool to managed account mapping and resource
authorization.

We here describe the main functionalities GUMS
provide to our facility.

Policy based mapping
GUMS allows to have a single, site-wide policy for

user mapping. This means that a single XML
configuration file controls how different gatekeepers will
map Grid credentials to local accounts. The resource
administrator is able to assign different mapping policies
to different group of users. He can also define groups of
hosts on which these mappings will be used.

For details and XML syntax you can refer to the online
manual [1]. Here we describe a couple of examples,
inspired by our production system at BNL:
• First, we define the “usatlas” mapping at our site.

It will consist of all the members of the usatlas
group within the ATLAS LDAP VO. We will map
these users according to a special mapping table
provided by a database, which allows to handle
special cases. If no entry is found, the mapping
will use an account from a generic pool of pre-
created accounts; the account information is stored
in another database. If the pool of accounts is
exhausted, we will map the user to a generic
account “usatlas”.

• We can go on and define other mappings, for
example the “star” mapping. It will consist of all
the users within the STAR VOMS server. We will
map these according to a special mapping table we
have on a database, which allows to handle special
cases. If no entry is found, we will try to map to a
local account by using name and surname from the
certificate. If no precise match was found (i.e. no
exact name/surname, more than one account
returned), no mapping is done, and the user won’t
have access to the resource.

• Now we define a first group of hosts with a
wildcard: “star*.mysite.gov”. On these hosts we
will use the “star” mapping, and nothing else. We
also define the “atlas*.mysite.gov”. On these hosts
we will the following lists of mappings: atlasProd,

876

usatlas, atlas, cms and ligo (we assume all the
other mappings were defined). GUMS will look
for the mapping for a user in the first group; if
none is found it will proceed to the second group
until either the list is exhausted or an account was
returned.

GUMS allows to combine group definitions, mapping
policies and host groups at runtime by changing the XML
configuration file. It also allows to create your own
policies or group definitions from scratch.

Open architecture for site integration
Most components, like mapping policies or groups, are

identified by Java interfaces whose implementations are
chosen at runtime in the configuration file. GUMS was
designed so that any resource admininistrator can wrap
some code, with very little knowledge of GUMS itself, to
integrate into their systems. In fact, it is crucial for
GUMS to be able to integrate with existing site schemes
since it’s meant to be a site tool.

For example, a site might have a policy of storing all
the access information in a specific database, or LDAP.
GUMS must allow, and it does allow, storing all its
information on such a system.

The manual [1] will provide instructions on how to do
that, as well as examples taken from the actual code. In
fact, most of GUMS components are implementations of
those interfaces.

Components
The components being used in production include the

following.
Persistence layers:
A persistence layer is responsible to read/write all the

information that GUMS uses. To use a site database and
information systems, one only need to create his own
layer.
• MySQL. We currently provide a simple

persistence mechanism to MySQL. This can be
used in production. A site probably wants to
integrate with their systems.

Groups:
Groups are used to define a series of users that are

going to be mapped according to a specific policy
• VOMS and LDAP groups. Groups of users can be

specified in GUMS by referring to groups defined
in VOMS or in the lcg LDAP VOs.

• Manual groups. A group of users can be manually
defined by a table provided by the persistence
layer.

Mapping Policies:
Mapping policies define how to map a grid certificate

to a local account
• Group account: all the users are mapped to the

same account
• NIS mapping: the certificate name is compared to

the gecos field to find a match for the user
account. This is meant to be a best effort policy,

and its output should be supervised by the resource
administrator.

• Account pool: the certificate is mapped to a
generic account taken from a pool. We’ll talk more
about this in the following section.

• Manual mapping: the mapping is done according
to a table provided by the persistence layer.

• Composite mapping policy: combines a list of
policies with a fallback mechanism; if the first
policy doesn’t return a mapping for the user, the
second is used. It returns the user selected by the
first matching policy.

CURRENT WORK
Work on GUMS is continuing, with an emphasis on the

following areas:
• Account pool
• Grid Service implementation
• Role based authorization

Account pool
The requirement to allow auditing on grid jobs can be

solved by the use of a pool of pre-authorized accounts.
When a user comes in with a job, he is assigned an
account from the pool. This way all process and files
created by the job can be audited through standard tools.

We won’t address the problem of account recycling at
first for the following reasons:
• To recycle an account the system must be sure that

all the processes and files created by all the jobs
submitted by the user are eliminated. Currently,
this is a difficult problem.

• The number of accounts that can be created on a
Unix system is sufficiently large that account
recycling is not critical.

One of the problems we do have to face is to guarantee
different file permissions within and outside VO
membership. We envision solving this problem using
Unix groups.

When an account is assigned to a user, depending on
the VO membership, a group is also assigned. This means
integrating GUMS with the site systems, such as NIS and
LDAP. We will provide all the necessary hooks for a site
to perform such integration, and create an implementation
for BNL which can be used as a prototype.

The account pooling managed by GUMS is already in
production in a test environment at BNL, which will
allow members of Grid3/OSG to test their applications.

Grid service implementation
GUMS business logic is implemented in a way that

allows it to be called from different presentation layers,
such as command line and web. The core library consists
on a series of methods designed to be called from any
environment, and the web or command line module is
built on top of that. Therefore, even though GUMS started
as a command line tool, it is evolving into a web service
application with a web service interface. We are

877

developing on top of the Globus Toolkit v3.x, and we
expect to port it to v4.x once a sufficiently stable release
becomes available.

Within the Privilege Project, a joint project between
USATLAS and USCMS, we are developing the protocol
that will be used between the gatekeeper and the
authorization service. GUMS is an implementation of this
protocol. The interface definition is lead by Markus Lorch
[2] [3] [4] and is being discussed within GGF [5].

Work is also being done to investigate the scalability
and performance issues of developing a Grid service for
the Globus Toolkit 3.x.

Role based authorization
Another functionality being pursued as part of the

Privilege Project is role based authentication. This means
using the extended proxy credentials created by a VOMS
server to decide which account will be used at local site.

The user, though the ‘voms-proxy-init’ command, will
ask his VO to create a proxy specifying a role, a group
and/or a capability. The VOMS server will create this
type of proxy, sign it, and give it back to the user. Once a
job is submitted, the gatekeeper forward the information
inside the proxy to GUMS, which can use that
information to return a different local user depending on
vo, group, role, capability or any combination of them.

For example, a VO could have an “application
manager” role, which allows the user to install/remove
VO application from the site. GUMS would map users
coming in with that role to a different user that has special
privileges.

This work requires the Grid service implementation. In
fact, the protocol between the gatekeeper and the
authorization service is being designed with these
requirements in mind.

CONCLUSION
We discussed GUMS, a resource authorization tool to

perform grid user identity mapping. GUMS is currently

being used in production at Brookhaven National
Laboratory, and the development is

If you need a tool to manage grid user identity mapping
within your facility, which allows integration with your
site information services, GUMS might be the tool for
you.

REFERENCES
[1] http://grid.racf.bnl.gov/GUMS.
[2] Markus Lorch, Dennis Kafura, "The PRIMA Grid

Authorization System", submitted to the Int. Journal
of Grid Computing, July 2004
http://zuni.cs.vt.edu/publications/jogc-prima-
july2004.pdf.

[3] Markus Lorch, David Adams, Dennis Kafura, Madhu
Koneni, Anand Rathi, Sumit Shah, "The PRIMA
System for Privilege Management, Authorization and
Enforcement in Grid Environments", Proc. 4th Int.
Workshop on Grid Computing.

[4] Grid 2003, 17 November 2003 in Phoenix, AR, USA.
http://zuni.cs.vt.edu/publications/PRIMA-2003.pdf.

[5] OGSA Authorization Working Group:
https://forge.gridforum.org/projects/ogsa-
authz/document/Use_of_SAML_for_OGSA_Authori
zation_with_Obligations/en/1

[6] Alfieri et al. "VOMS: an Authorization System for
Virtual Organizations" 1st European Across Grids
Conference, Santiago de Compostela, Feb. 13-14,
2003

[7] V. Sehkri, I. Mandrichenko, D. Skow, "Site
Authorization Service (SAZ)", Computing in High
Energy and Nuclear Physics (CHEP03), La Jolla,
CA, USA, March 2003, available from
http://arxiv.org/pdf/cs.DC/0306100

878

