
JOB MONITORING IN AN INTERACTIVE GRID ANALYSIS ENVIRONMENT 
 

ArshadAli4,Ashiq Anjum4,Julian Bunn1,Richard Cavanaugh5,Frank van Lingen1,Richard 
McClatchey3,Harvey Newman1,Waqas ur Rehman4,Conrad Steenberg1,Michael Thomas1,Ian Willers2 

 

1California Institute of Technology 
Pasadena, CA 91125, USA 

Email: {fvlingen,newman,conrad,thomas}@hep.caltech.edu, Julian.Bunn@caltech.edu 
2CERN, Geneva, Switzerland 
Email: Ian.Willers@cern.ch 

3University of the West of England 
Bristol, UK 

Email: Richard.mcclatchey@uwe.ac.uk  

4National University of Sciences and Technology 
Rawalpindi, Pakistan 

Email: {arshad.ali, ashiq.anjum,waqas.rehman}@niit.edu.pk 
5University of South Florida, USA 

Email: cavanaug@phys.ufl.edu
 

Abstract 
The grid is emerging as a great computational resource but 
its dynamic behavior makes the Grid environment 
unpredictable. Systems and networks can fail, and the 
introduction of more users can result in resource starvation.  
Once a job has been submitted for execution on the grid, 
monitoring becomes essential for a  user to see that the job is 
completed in an efficient way, and to detect any problems 
that occur while the job is running. In current environments 
once a user submits a job he loses direct control over the job 
and the system behaves like a batch system: the user 
submits the job and later gets a result back. The only 
information a user can obtain about a job is whether it is 
scheduled, running, cancelled or finished. Today users are 
becoming increasingly interested in such analysis  grid 
environments in which they can check the progress of the 
job, obtain intermediate results, terminate the job based on 
the progress of job or intermediate results, steer the job to 
other nodes to achieve better performance and check the 
resources consumed by the job. In order to fulfill their 
requirements of interactivity a mechanism is needed that 
can provide the user with real time access to information 
about different attributes of a job. In this paper we present 
the design of a Job Monitoring Service, a web service that 
will provide interactive remote job monitoring by allowing 
users to access different attributes of a job once it has been 
submitted to the interactive Grid Analysis Environment [1]. 

 
 
 
 

INTRODUCTION 
Grid computing provides a mechanism of sharing the 

heterogeneous computing and storage resources of 
organizations and individuals distributed across the globe to 
form a massive computing environment through which 
complex and large scale problems can be solved. The aim is 
to create an illusion of a large and powerful virtual 
computer with immense computing power. The great 
computing potential of grids has proven to be so significant 
that scientists working to solve many of the difficult 
scientific problems have started to utilize these systems to 
solve complex scientific problems . Physicists working with 
the Compact Muon Solenoid (CMS) at European 
Organization for Nuclear Research (CERN) are making use 
of computational and data grids to perform complex and 
time consuming data mining operations. Current grids tend 
to be used to perform unattended batch analysis jobs. The 
use of grids for performing interactive data analysis is a 
relatively new concept which is currently being 
investigated. 
 
Interactive Grid Analysis Environment 

Grids have emerged as a next generation computing and 
analysis platform. As the grid concept matures, people are 
moving towards interactive grid environments. Interactive 
grid environments will enable users to harness 
heterogeneous collections of computer components to form 
massive analysis environments while giving them full 
control over their jobs. Users in such an environment will be 
able to monitor their jobs while they are executing, to direct 
the execution of jobs to different nodes to increase the 

746



performance, and to communicate directly with the job 
while it is running. But in order to fulfill these requirement 
for interactive analysis certain applications and services are 
needed that can support job submissions, job scheduling, 
job monitoring and job steering. Fig. 1 describes the set of 
interacting web services that comprise one such analysis 
environment currently under development, the so-called 
interactive Grid Analysis Environment (GAE). 

 
Figure 1: Grid Analysis Environment 

  
The GAE focuses on the construction of an infrastructure 

that allows scientists to interactively perform the analysis 
and to submit small jobs in quick succession, depending on 
the output of previous jobs, instead of submitting one large 
batch job. Clearly it is not as simple to run interactive 
analysis on the Grid as it is on a single machine. The same 
data may be replicated in many locations, competition for 
resources may be much more complex, the number of 
higher-priority tasks that one owns may not be 
automatically known, and therefore the best choice of how 
and where to execute a task is hard to determine. For these 
reasons, new forms of Grid services that are able to make 
reasonable choices among a range of possible job-execution 
strategies, autonomously or interactively, are needed. 
Decisions made by these services will be based on a more  
complete range of information about the current Grid 
‘weather’ and ‘weather forecast’.  

In such a complex environment it will be difficult for 
users  to manually ‘steer’ the usage of resources. Instead, the 
selection and allocation of resources will have to be 
automated to optimize their usage. At the same time, 
constant monitoring of resources will have to be done to 
avoid overloading or underutilization of Grid resources. 

Need for Job Monitoring 
Large distributed systems such as Computational Grids 

require a large amount of job monitoring data for a variety 
of tasks such as fault detection, performance analysis, 
performance tuning, performance prediction, and 
scheduling. The ability to monitor and manage distributed 
computing components is critical for enabling high-
performance distributed computing. As Computational 
Grids become bigger, more complex, and more widely 
distributed, it becomes important that this monitoring and 
management be automated. CMS has also identified the 
need to monitor the large numb ers of jobs that are being 
executed simultaneously at multiple remote sites. Our 
approach to this need for job monitoring problem is to 
develop a job monitoring service which is designed for use 
in a Grid Analysis Environment and it provides monitoring 
information that will enables other services within the Grid  
Analysis Environment to optimize the resource utilization 
and throughput. 
 

JOB MONITORING SERVICE 
The interactive Grid Analysis Environment consists of an 

ensemble of web services cooperating to form an analysis 
environment. The GAE is based on service oriented 
architecture. The Job Monitoring Service is also 
implemented as a web service. The purpose of the Job 
Monitoring service is to provide real-time job monitoring 
and status feedback to a steering service while operating in 
close interaction with an execution service, such as Condor, 
to provide interactivity, fault tolerance and error detection. 

Job Monitoring Services will monitor a single job that has 
been submitted for execution in the interactive Grid 
Analysis Environment and provide an easy-to-use API for 
retrieval of job monitoring information such as job status, 
remaining time, elapsed time, estimated run time, queue 
position, priority, submission time, execution time, 
completion time, CPU time used, amount of input IO and 
output IO, owner name and environment variables.  
 
Architecture 

The architecture of the Job Monitoring Service is based 
on XML-based open standards, such as the Web Services 
Description Language (WSDL) and the Simple Object 
Access Protocol (SOAP). The Job monitoring service will 
be implemented as a web service which will be hosted on 
the Clarens [2] web service framework.  It will interact with 
the execution service to collect monitoring data and then 
this data will be stored in the data store. Monitoring data 
will be provided to the clients such as the steering service 
once it has been requested. The monitoring data will also be 
published to a MonALISA server for statistical summaries.

747



 
 

Figure 2: Job Monitoring Service Design 
 

Design 
The interaction of Job Monitoring Services with other 

components within GAE is shown in Figure 1. Once a job 
has been submitted in GAE users can interact with a 
steering service to obtain monitoring information and steer 
the execution of job. The Steering service will access the 
Job Monitoring Service to provide monitoring information 
to the user. The Job Monitoring Service will continuously 
monitor the jobs that have been submitted and whenever the 
state of a job changes the Job Monitoring Service will 
update the repository and MonALISA [3]. The main 
components of the Job Monitoring Service and their 
interaction are shown in Figure 2. 
 
JMExecutable 

JMExecutable is the main interface of the Job Monitoring 
Service. JMExecutable is implemented as a web service    
module within the Job Monitoring service. All of the clients 
that require the monitoring information will access the 
published methods of JMExecutable. The requests of clients 
will be forwarded to JMManager by JMExecutable. 
 
 Job Information Collector 

The role of the Job Information Collector module is to 
monitor the different jobs that have been scheduled. The Job 

Information Collector interacts with Condor and provides 
real time job monitoring information. The Job Information 
Collector functions in two ways 

• It monitors the job execution and whenever the job is 
completed or terminated due to an error, it sends an 
update request to the DBManager for that job. 

• It provides the monitoring information of the running 
jobs to the JMManager when requested. The 
JMManager requests the information from the Job 
Information Collector if it does not find the required 
information in the database    

A separate module for information collection increases 
the performance and also allows the flexibility of changing 
the execution service by incorporating minor changes in Job 
Information Collector. 
 
 JMManager 

The JMManager is the most important component of the 
Job Monitoring Service. The JMManager handles the flow 
of information within the Job Monitoring Service. It 
provides transparent access to monitoring information to the 
JMExecutable. The JMManager gets the monitoring 
information either from the DBManager or from the Job 
Information Collector. It first queries the DBManager and if 
the information is not found in its repository the request is 

748



forwarded to the Job Information Collector. On successful 
retrieval the information is forwarded to the JMExecutable. 
 
DBManager 

Each Job Monitoring Service instance has a database 
repository. The access to this repository will be controlled 
by the DBManager. The DBManager will update the 
database local to each Job Monitoring Service instance and 
will send the updated info to the MonALISA server also. 
All the queries that are destined for the database are handled 
by the DBManager. Deploying a separate module that 
controls the access to the database allows flexibility of 
having multiples types of the databases. 
 
Job Monitoring Database 

Each Job Monitoring Service has a local database that is 
being used to store the job information. This database is 
maintained by Clarens. Clarens has been designed to be able 
to use any database for storing its ACL’s, proxy certificates, 
and other information. For this implementation Clarens was 
configured to use the MySQL database which will be shared 
by the Job Monitoring Service. 
 
MonALISA Server Module 

The DBManager also publishes the job monitoring 
information to MonALISA. For this purpose a job 
monitoring module has been integrated with the 
MonALISA server. This module intercepts the information 
published by each Job Monitoring Service instance and 
formats it into a form that can be stored in MonALISA 
repository.  
 

IMPLEMENTATION 
Currently the Job Monitoring Service is in the 

development phase at NUST in collaboration with Caltech 
and CERN. The current implementation of the Job 
Monitoring Service allows the user to get the real-time job 
monitoring information through the web service API. The 
Job Monitoring Services is hosted on Clarens web service 
framework. The Job Monitoring Service is also publishing 
the monitored values to the MonALISA server. In order to 
publish job monitoring information to the MonALISA 
server, a new monitoring module named JobInfo has been 
developed that runs on each MonALISA server and 
provides the job monitoring information to the MonALISA. 
JobInfo provides the mechanism to collect the values from 
each Job Monitoring Service instance, to parse the output 
and to generate a result object.  
  

RELATED WORK 
Grid information systems such as Globus MDS [4] and R-

GMA [5] provide some monitoring but they do not support 
all monitoring scenarios. To overcome these limitations 

application monitoring solutions have been proposed such 
as NetLogger[6], OCM-G[7], Autopilot[8] and Nimrod. 
Application monitoring has been done in the CMS 
production tools IMPALA , BOSS[9], and McRunJob [10]. 

 
CONCLUSIONS 

In this paper, we have identified the need for a Grid 
analysis environment to perform interactive analysis. 
Besides discussing the need, the architecture of the Job 
Monitoring Service in the GAE was discussed by 
highlighting the role of a Job Monitoring Service within the 
GAE. The Job Monitoring Service provides an API that 
allows the clients to access the job monitoring information 
of their jobs.  

REFERENCES 
[1]   Proposal for: a Grid Analysis Environment Service    

Architecture (Authors: Julian Bunn, Dimitri Bourilkov, 
Rick Cavanaugh, Iosif Legrand, Harvey Newman, 
Suresh Singh, Conrad Steenberg, Michael Thomas, 
Frank van Lingen) 
http://ultralight.caltech.edu/gaeweb/gae_services.pdf 

[2]   The Clarens Web Services Architecture (Authors:  
Conrad D. Steenberg and Eric Aslakson, Julian J. Bunn, 
Harvey B. Newman, Michael Thomas, Frank van 
Lingen)  http://clarens.sourceforge.net/index.php/docs  

[3]   MonALISA (MONitoring Agents using a Large 
Integrated Services Architecture). 
http://monalisa.cacr.caltech.edu/ 

[4]   K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman: 
Grid Information Services for Distributed Resource 
Sharing.   Proc. 10th IEEE International Symposium on 
High Performance Distributed Computing, San 
Francisco, California, August 2001  

[5]   S. Fisher et al. R-GMA: A Relational Grid Information 
and Monitoring System 2nd Cracow Grid Workshop, 
Cracow, Poland, 2003. 

[6]   B. Bali´s, M. Bubak, W. Funika, T. Szepieniec, R. 
Wism¨uller: An Infrastructure for Grid Application 
Monitoring. Proc. 9th European PVM/MPI Users’ 
Group Meeting, Linz, Austria, September/October 2002  

[7]   Zoltan Balaton, Gabor Gombas: Resource and Job 
Monitoring in Grid 

[8]   Anand Natrajan, Michael P. Walker: Monitoring 
Remote Jobs in a Grid System 

[9]   www.bo.infn.it/cms/computing/BOSS 
[10] www.uscms.org/scpages/subsystems/ 

DPE/Projects/MCRunjob/McRunjob.html   

749


