
BUILDING THE LCG : FROM MIDDLEWARE INTEGRATION TO
PRODUCTION QUALITY SOFTWARE

Marco Serra (INFN-CERN),Louis Poncet (LAL-IN2P3), Jean-Philippe Baud (CERN),
David Smith (CERN), Piera Bettini (INFN-CERN), FrederiqueChollet (LAPP-IN2P3),

Gilbert Grosdidier (LAL-IN2P3) , Maarten Litmaath (CERN),
Carlos Osuna (University of Granada), Di Qing (Academia Sinica), Zdenek Sekera (CERN).

Abstract

In the last few years grid software (middleware) has be-
come available from various sources. However, there are
no standards yet which allow for an easy integration of dif-
ferent services. Moreover, middleware was produced by
different projects with the main goal of developing new
functionalities rather than production quality software.In
the context of the LHC Computing Grid project (LCG)
an integration, testing and certification activity is ongoing
which aims at producing a stable coherent set of services.
Here we report on the processes employed to produce the
LCG middleware release and related activities, including
the infrastructures used, the activities needed to integrate
the various components and the certification process. Our
certification process consists of a continuous iterative cy-
cle that also involves feedback from the LCG production
system and input from the software providers. The archi-
tecture of the LCG middleware is described in Ref.[3], in-
cluding additional components developed by LCG to im-
prove scalability and performance. Other associated ac-
tivities include packaging for deployment, porting to dif-
ferent platforms, debugging and patching of the software.
Functionality and stress tests are performed via a large test-
bed infrastructure that allows for benchmarking of different
configurations.

CREATION OF THE CANDIDATE
RELEASE

The Certification and Testing team obtains software from
different sources, currently mainly from the EDG and VDT
projects . We also develop middleware components that are
urgently needed and cannot (yet) be obtained from other
sources. We also use external software maintained by other
groups. To create a release a strict release cycle is followed
as described below and shown in Figure 1.

Define desired features.

Before beginning the integration of new parts of the mid-
dleware we define the scope of the next release. The re-
quirements are defined by experiments and by bugfixes
supplied by our internal debugging team and external
groups. At any step in the certification process bugs can be
reported and corrected before the release. We try to create

incremental releases without too many changes at a time.
The target is to permit experiments to adapt their code eas-
ily to new releases. This method permits us to have a new
release about once per month. Each release is made avail-
able to the Infrastructure team, who decide if the release
is useful to deploy. By this method the LCG functionality
steadily increases without long pauses.

What are the different parts of the middleware?

The middleware of a grid is generic. We need job man-
agement, data management, an information system, ac-
counting and monitoring. These functionalities will be pro-
vided by EGEE and VDT software. EGEE will replace the
EDG software being used today. The target of the mid-
dleware is to be compatible with the most important batch
systems and storage systems already installed in comput-
ing centres. We also have to provide open source solutions
for centres without any batch or storage system. The VDT
distribution of Globus still is the heart of the system. We
collaborate with the VDT team, reporting and fixing bugs.
We also try to increase the interoperability with other grids.
A good connection between LCG and other grids would be
an elegant way to increase the potential storage capacity
and calculation power for each participating grid.

CERTIFICATION OF THE RELEASE
ITSELF.

We use a certification test-bed supporting various config-
urations at the same time. A certification process is defined
by five different series of tests:

• Installation.
• Basic functionality.
• Certification Matrix (intensive test).
• Special tests for new functionality, not yet included in

the certification matrix).
• Experiment-specific tests (on the Experiments Inte-

gration test-bed).

All supported configurations are certified by the LCG
Certification and Testing group.

Batch systems :

• OpenPBS.

703



Figure 1: Certification process.

• LSF.
• Condor.
• Torque
• ...

Storage systems:

• Classic SE (simple GridFTP server).
• dCache SRM.
• CASTOR SRM.
• ...

Installation test

Currently the main platform still is RedHat 7.3, but we
are moving toward other platforms, in particular Scientific
Linux 3, compatible with RedHat Enterprise Linux 3. The
RedHat 7.3 certification testbed is mostly installed through
the LCFGng fabric management system. The LCFGng
configuration files serve as a starting point for the man-
ual and Quattor installation methods described later in this
document. We ensure we can both upgrade nodes from
the previous release and reinstall them from scratch with
the new release. Currently the Scientific Linux 3 test-
bed is installed manually. We use the manual installa-
tion guide for the previous release and provide a docu-
ment with the differences for the new configuration. The
package lists are managed in cpp format, like for LCFGng.
We create a set of scripts to download and install pack-

ages or manage an APT repository. As soon as possible
we will switch to the Quattor fabric management system
(http://quattor.web.cern.ch/) and share our experience with
EGEE. LCFGng cannot easily be ported to Scientific Linux
and cannot cooperate with other fabric management sys-
tems already in use in computing centres.

The certification matrix.

Every night 22 series of tests are run on the test-bed.

40% of them are functionality tests for various types of
job submission, data registration, replication, copy, andre-
moval. 60% are stress tests to assess the limits of the sys-
tem. Today those tests are simple job storms, 3 types of
data storms, a very intensive GridFTP storm, and Match-
Making storms for 2 protocols (letting Resource Brokers
match jobs to sites, with constraints on input or output
data). The certification matrix is regularly extended to test
new functionalities and stress them. We may include spe-
cial tests created by the developers of the software or by the
Integration team. A web page is automatically produced
showing the results of the tests. Examples can be found on
the testing group website Ref. [4]. The test matrix is not
fixed, but evolves with the middleware.

704



Tagging of the release candidate

When the certification matrix results confirm we have
reached the targets for a new release, we tag the middleware
and configuration template versions that have just been cer-
tified on the test-bed. A release is a set of LCFGng files
listing all RPMs to be used, configuration file templates for
LCFGng modules, and examples. On our website we cre-
ate download pages for the RPMs.

DISTRIBUTION PROCESS

All the middleware is distributed through CVS and the
Web. Our website contains all the required information for
deployment of the middleware.

• The release page provides CVS commands to down-
load all required files for each release.

• Download pages provide all required packages for all
releases.

• Documentation pages provide information on how to
use our tools in general. Specific documentation for
the middleware installation is in the tag given by the
release page.

• The CVS repository allows browsing of RPM lists,
configuration templates, and source code.

• Problems can be reported in the CERN Savannah
tracking system for bugs, patches and tasks.

• There are links for grid users, experiments, and com-
puting centre system administrators.

We provide a ready-to-use solution for centres without
any tools to do fabric management. Today we are using
LCFGng for RedHat 7.3 and we will use Quattor for Sci-
entific Linux. We also provide documentation for manual
installation, to permit centres to adapt the installation to
their local fabric management software.

CREATION OF THE FINAL RELEASE

Experiments Integration test-bed.

The Experiments Integration team installs the candidate
release on the experiments integration test-bed, thereby
first testing the installation procedure itself. Next they test
their latest tools for the installation of experiment software
and invite the experiments to test the release candidate. Ex-
periments certify that their own software runs with the new
middleware, and report bugs that must be corrected before
the new release is put on the production system. Only on
the production system will the middleware be subjected to
fully realistic conditions, and any problems observed are
reported back to the Certification and Testing team for cor-
rection in future releases.

Creation of the final release

After corrections, if any, the candidate release is given
to the Infrastructure team, who will remove all CERN-
specific settings and packages, and adapt the middleware

to the experiments’ requirements (VO settings). Then
they create manual installation scripts, documentation for
LCFGng and manual installations. They test themselves
the manual installation procedure.

MANAGEMENT OF THE PROJECT

Bug reporting, task management and software
maintenance

We use the CERN Savannah tools and central CVS ser-
vice. Bug reports are tracked by the bug report system of
Savannah. We manage all our middleware tasks with the
Savannah task manager. The distribution is done through
a deployment CVS server supplying the LCFGng configu-
ration templates and various scripts. The use of the central
CVS service and tracking system allows the certification
and deployment teams to focus on issues with the middle-
ware itself.

OUR MAIN PROBLEMS

What is the boundary between the system and the
middleware ?

This is an important problem for the distribution and the
certification. The middleware has important dependencies
on standard tools and libraries provided with the operat-
ing system. Do we have to provide a ready-to-use OS or
a list of required packages? Either solution has shortcom-
ings. An LCG worker node may not be fully dedicated to
LCG, but used for other purposes as well. LCG software
may then require a version of a particular library that is in-
compatible with other software that needs to be able to run.
We provide a ready-to-use configuration for LCFGng with
operating system and standard tools included besides the
middleware. A manual installation is supported providing
only the middleware, in which case it is the responsibility
of the computing centre to ensure compatibility with their
OS and standard tools.

How to support multiple architectures and oper-
ating systems on the same grid?

A binary that runs on RedHat 7.3 is not sure to run on
Scientific Linux 3, and for completely different architec-
tures or operating systems it is not even an option to take a
binary not specifically compiled for the worker node where
it shall run. The binary could be compiled on the fly, but
that requires the presence of a compiler and set of libraries
and tools that have been certified by the experiments. Such
tools could all be installed in a dedicated area per experi-
ment, but that may pose maintenance problems. These is-
sues are under investigation.

705



How to convince people to change their code to
fit grid requirements ?

Generic interfaces to grid services are still being devel-
oped. In the meantime complex and obsolete mechanisms
have to remain supported. Experiments are not yet pre-
pared for the new types of failures that can occur on a grid,
compared to local batch systems and storage facilities. For
example, they may submit jobs assuming that each job will
at most run once, whereas on a wide area grid it is hard to
guarantee such desired behavior.

CONCLUSION

The LCG grid deployment group tries to merge all re-
quirements in incremental releases, steadily creating a very
large grid able to satisfy the data processing needs of the
experiments. Today LCG has around 8 000 CPUs con-
nected.

REFERENCES

[1] Grid Deployment website
http://cern.ch/grid-deployment/

[2] LCG website
http://cern.ch/lcg/

[3] LCG-2 architecture
https://edms.cern.ch/cedar/plsql/\
doc.info?documentid=498079

[4] Testing process results
http://cern.ch/grid-deployment/cgi-bin/\
index.cgi?var=tstg/validation

706


