
Automatic Procedures as Generated Analysis Tool 
    

Karen Abrahamyan, Galina Asova, Stefan Weisse, Michael Winde
Pedro Castro-Garcia, DESY, Hamburg and Zeuthen, Germany 

  
ABSTRACT 

The photo injector test facility at DESY Zeuthen 
(PITZ) was built to develop, operate and optimise photo 
injectors for future free electron lasers and linear 
colliders. In PITZ we use a DAQ system that stores data 
as a collection of ROOT files, forming our database for 
offline analysis. Consequently, the offline analysis will be 
performed by a ROOT application, written at least partly 
by the user (a physicist). 

To help the user to develop safe filters and data 
visualisation (graphs, histograms) with minimal effort in 
an existing ROOT framework application, we provide a 
GUI that generates C++ source files, compiles and links 
them to the rest of the application. We call these C++ 
routines “Automatic Procedures” (AP).  

Standard filter conditions and data visualisation can be 
generated by click or drag-and-drop, while more complex 
tasks may be expressed as small pieces of C++ code. 
Once compiled by ACLiC, an Automatic Procedure may 
be reused without repeated compilation. E. g. the injector 
shift crew will run a number of ROOT applications, 
controlled by APs in regular intervals. Alternatively every 
AP can be read in and loaded to the GUI for further 
improvement.  

A number of APs can run in a logical sequence, 
parameters can be transferred from one AP to another. 
They can be selected by picking a point from a graph. 

The GUI was constructed with Qt. 
Keywords: ROOT, ACLiC, Automatic Procedure, Data 

Analysis, Data Visualisation, GUI, Qt 

INTRODUCTION 
PITZ is a Photo Injector Test Facility at DEZY-Zeuthen 

for research and development of laser driven electron 
sources for Free Electron Laser (FEL) and elector 
colliders.  

Corresponding to the primary ideas of the facility, the 
PITZ Data Acquisition System (DAQ) is storing data in 
ROOT [1] files. These data represent the status of the 
facility at any moment and provides for offline analysis of 
single parts and correlations between different 
components as well.  

In order to provide an easier and common way to 
access the data, we developed the DAQ browser daqbr. 

The basic idea of this tool is to perform these tasks: 
• to select data from the data-base 

• by the time this data was generated 
• according to filter conditions 

• to derive new data (to perform calculations) 
• to visualise results in the form of graphs and 

histograms  

• to store the selected and derived data as a sequence 
of ROOT or text files for further usage by other 
applications 

Additional tasks for daqbr are: 
• to help physicists to safely develop sophisticated 

filters and routines for data visualisation on-the-fly 
• to help physicists to create re-usable analysis code 

in a standardised way.  
 

ARCHITECTURE AND DESIGN 
Rich from the point of view of physics analysis tools 

(with its classes for storing, retrieving, processing and 
data visualisation) and being object orientated, which 
provides convenience in extensibility and maintenance, 
ROOT is used as a main tool in our offline analysis 
applications. Its framework orientation gives us the 
possibility to use parts of the existing code and to adjust 
them to our specific needs by inheritance.  

On the other hand programming a complex GUI with 
ROOT is somewhat troublesome. Therefore we 
developed the major part of the Graphical User Interface 
with the tools provided by Qt [2]. 

Data analysis in PITZ is done mainly on SuSE Linux 
8.2 machines, therefore daqbr was developed for this  
platform. 

Principal Structure 

Figure 1:  Principal structure of daqbr 
As in any program, the user has to specify some 

parameters. To be able to code the calculations and 
decisions, daqbr in addition can manage user written 
snippets of C++ code. The parameters are specified via a 
graphical parameter editor, the code pieces via a text 

637



oriented, context sensitive code piece editor. The 
parameters and the code pieces are sent to a code skeleton 
generator that creates an “Automatic Procedure” (AP) in 
the form of a C++ source file. This file is then compiled 
and linked by ROOT’s compiler and linker ACLiC.  

The Graphical User Interface 
The GUI is separated into different tabs (Time, …, 

Filter, Plots and Histos, Output) according to the tasks 
one would like to define, although there is not a unique 
one-to-one correspondence between a tab and a task for  
daqbr. Filling the fields in the different tabs, the user 
specifies what should be done by the AP.  

The first setting the user should make is to select the 
time period - when were the interesting data generated. It 
can be selected in two ways – absolute (defined beginning 
and end) or relative (one or both limits are set relatively 
to the time of running the application). The later one is 
useful e.g. in a shift’s summary when we already have 
once created an AP and the only difference is the moment 
the physicists are interested in – no changes are necessary 
(Figure 2). 

 

 
Figure 2: Selecting the last  8 hours before the AP runs 

 
After the user has selected the time range, he will 

specify other filter conditions. Each event which falls in 
the time period will be tested whether it fulfils the 
conditions. 

The names of all data stored are shown in an 
alphabetically ordered hiera rchical list in the upper part of 
the GUI (Figure 3). 

We distinguish standard (Figure 4) and C++ coded 
(Figure 5) filter conditions. An event passes the filter if it 
fulfils all standard conditions (need only values and 
names as parameters, are implicitly AND-ed) and C++ 
coded conditions (need calculations in addition). To 
perform these calculations one can use any C++ 
operations including OR (as shown in Figure 5). There 
are also some predefined functions, which can be 
achieved by clicking a button. A template of the 
respective function call together with its parameters will 
be inserted into the text. This way we tried to avoid that 
the user has to get special programming skills to manage 
the tool. It's enough for him to stick to two rules: 

• get a value from the data base by specifying its 
DAQ name 

• keep in mind to return false when filter tests  fail 
See Figure 4 and Figure 5. 
 

 
Figure 3: Structure of the GUI 

 
 

 
Figure 4: Standard checks 

 
 
The DAQ name can be added to list of standard checks 

by drag-and-drop from the list of parameters in the upper 
part of the GUI. From, To, Start Channel and Number of 
channels, if they are necessary, must be inserted by hand. 
Drag-and-drop also works to the text field for the 
additional checks. 
 

 
Figure 5: Additional checks – TempEndCap and 
TempOutSurface are names of variables stored in the 
data base, the test passes if at least one of them is in the 
range (OR) 

 
 

638



The same techniques - drag-and-drop into tables and 
C++ text fields - are used in the other tabs to specify 
graphs, histograms and output.  

The GUI provides saving and reloading of files. A 
reloaded file can be modified in the same way as it has 
been created. 

DAQ variables versus DAQ properties 
All the data in the data base are stored as so called 

properties - objects which contain information about their 
name, value, timestamp, size, etc. To hide these details 
from the user we introduced DAQ variables. A DAQ 
variable appears to the C++ code as  an ordinary C++ 
variable. Suitable overloading of operators and functions 
provides for that.  

DAQ variables also allow to smoothly manage ”bit 
properties” (where an integer value is used for a number 
of status bits) – all the necessary masking and dealing 
with bitwise operators is done out of the user’s awareness 
only once for an AP.  

As a side effect we gain quicker execution of the 
program as well as a context sensitive code piece editor.  

Why Automatic Procedure? 
The GUI passes all parameters and user written 

snippets to a code skeleton generator which, according to 
a template, creates a C++ source – the AP itself. The code 
generator changes some names, inserts function calls, 
slightly modifies the snippets and inserts them at suitable 
places in the source. Once this file is created, it is 
compiled by ACLiC and linked to the rest of the 
application. Any warnings or errors are shown in the GUI 
itself. Code, complied and never changed, will only be 
linked when the same AP is being run for the next time. 
Here comes the term Automatic from.   

The code skeleton generator does not lead the user too 
down to the source level and keeps him aside from any 
comple xities. It also serves as an auxiliary tool for the 
physicists, as it indirectly makes them create their 
programs in a common way and enforces some coding 
rules. 

Structure of an AP 
In each AP My.C the code generator creates two 

classes : TMyFilter defining the filters and the data to be 
stored and TMyPartialPlot defining the plots. These are 
derived from two classes – TAPFilter and TPartialPlot 
inside of the framework. TAPFilter and TPartialPlot are 
based on classes provided by ROOT – base and histogram 
classes, tree and container classes. It is worth to mention 
the usage of dCache [3] and ROOT’s TDCacheFile which 
saves a lot of efforts and time for the user.  

Every My.C, created by the code generator is still 
readable by the user, even if he is an occasional C++ 
programmer. All APs have the same structure and the 

programmer will easily find what he has written 
originally in the GUI. 

The aim of filtering-storing is to get a file of 
manageable size for further processing. It is possible to 
extract meaningful data of an array.  So the size of an 
array may vary in the output for different events for both 
ROOT and ASCII formats.  

Plotting options concern history and correlation plots, 
1DIM and 2DIM histograms simultaneously for standard 
and additional plots. All of them can be drawn on as 
many canvases as the user has defined. Special cases are 
interlock plots – a number of graphs is drawn on one pad. 

A lot of tasks  are error-prone, especially plot drawing 
and user coded parts. To reduce showing wrong results, 
daqbr widely uses  C++ exceptions. The most important 
case and also hard to understand for the user, is  that some 
of the data is not available for some time simply because 
it was not taken by the DAQ for that time . It is important 
to know why the problem has occurred during the data 
access but not everything depends on the user. His 
intervention is reduced to several actions depending on 
the severity of the error and its influence on the result. 
Error message like “File cannot be opened for reading” is 
the only case when he has to choose if he wants to get the 
full information from dCache, which is time consuming, 
or he would like to skip that period.  

WHAT DID WE LEARN? 
While the standard input options were quickly accepted 

by the users, the coded ones were still hard to manage for 
them. So we improved them in some steps, finally 
resulting in the context sensitive editor and the concept of 
DAQ variables.  

There also were a lot of questions to be solved - how to 
generalise the original users’ requirements so that a lot of 
tasks can be done; how to go through the data as fast as 
possible; what is the price in increasing the statistical 
output and so on. 

ACKNOWLEDGEMENTS 
We would like to thank Rasmus Ischebeck and 

Christian Lackas for the original implementation of the 
DAQ system at TTF, the PITZ team for the fruitful 
discussions and their support, the DOOCS and VUV-FEL 
teams. We would like to extend our thanks to the ROOT 
team for providing their excellent framework. 

 
 
References: 
[1] ROOT framework and RooTTalk Digest 
http://www.root.cern.ch 
[2] Qt references 
http://www.trolltech.com/  
[3] dCache  
http://www-dcache.desy.de/

 

639


