
THE TAG COLLECTOR – A TOOL FOR ATLAS CODE RELEASE
MANAGEMENT.

Solveig ALBRAND, Johann COLLOT, Jerôme FULACHIER, Fabian LAMBERT
Laboratoire de Physique Subatomique et de Cosmologie,

CNRS - IN2P3 / Université Joseph Fourier, 53 ave des Martyrs,
38026 GRENOBLE, France

INTRODUCTION
The Tag Collector is a web interfaced database
application for release management. It was
designed and implemented during the summer of
2001, for ATLAS software in response to a near
crisis situation. Until this time the ATLAS librarian
constructed a build of the software release after a
cascade of e-mails from developers;
communicating the correct CVS code repository
version tag of their respective packages. This was
subject to all sorts of human errors, and inefficient
in our multi-time zone environment. In addition, it
was difficult to manage the contents of a release. It
was all too easy for a prolific developer to
introduce a well-intentioned change in his package
just before a build, often with unsuspected border
effects. Developers were also asking for regular,
and frequent builds for integration testing.
The tool is interfaced with CVS, and also with
CMT, the configuration management tool [1].
Developers can interactively select the CVS tags to
be included in a build, and the complete build
commands are produced automatically. Other
features are provided such as verification of
package CMT requirements files, and direct links to
the package documentation, making it a useful tool
for all ATLAS users.
The tool has proved extremely successful, and
features that are outside the scope of the original
design have been requested. It was decided to treat
the initial software as a prototype, and follow a
classic software development cycle, resulting in a
completely new design of the application. The new
version will be more flexible and easier to maintain,
and will include a large number of new features.
This article lists some Tag Collector functions and
how they are used for release management within
ATLAS. The new features, which will be
implemented in Tag Collector II, are described. Tag
Collector II will be based on the AMI generic
database management software also developed at
the LPSC Grenoble [2]. Finally we discuss some
other possible applications of the Tag Collector
application.

SOME RELEASE MANAGEMENT
CONCEPTS USED BY ATLAS

Release and release cycle:
A release is a set of components that have been
built together.
ATLAS Software Development utilizes a 4-tier
hierarchy of releases:

− Nightly Releases
− Developer Releases
− Production Releases
− Bug-fix (or Patch) Releases

 Management sets goals [3] for production releases,
and determines the steps to be taken to attain them.
In general, there is a linear progression from one
release to the next, and several developer releases
are needed to get from one to the next. However, in
some cases it has been found advantageous to build
a branch release for bug fixes. Typically when a
release contains a few bugs in a reduced number of
packages. The corrected branch release will become
the recommended release for production, bur all
developers can continue to work on the main
release development implementing the new features
required.

Package:
A package is a set of software components (such as
applications, libraries, tools etc.) that are to be used
for producing a system. Several persons may
participate in the development, and one of them is
responsible for coordinating the complete package.
Package membership and structure may be
determined physically, for example by the directory
hierarchy, or logically. ATLAS software currently
uses uniquely the physical location of a package to
determine package membership.

Container or Group Package:
This is a type of package that may contain some
other packages like leaf or other container
packages.

Leaf Package:
This is a type of packages that may not contain
other ones. These packages contain the source code.

531

The complete package name of a leaf package
includes its package group name.

Requirements File:
The configuration management tool constructs the
make file for the component libraries of the system.
So it needs to know which other packages are
"used" by the code, and are needed for the
compilation, and which sub packages make up the
package. The mechanism used by CMT is a text file
called the "requirements file" contained in each
package. For a container package the file contains
the name and the exact tag of contained packages.
For a leaf package the file contains the complete
package name and the version tag for packages that
are needed by the leaf package for compilation.

DEVELOPER INTERACTION WITH
TAG COLLECTOR

Developers check their software into the repository
and give it a tag, following the policy laid down by
ATLAS management. If the newly tagged software
package is to be included in an Atlas release, then it
must also be declared to the Tag Collector.
Using the web interface the developer selects the
function "Add a New Tag". Tag Collector obtains
the list of available tags for the package from CVS,
presenting the most recently found tag by default. It
is not possible to declare a tag which does not exist.
When a developer enters a new tag for a leaf
package, Tag Collector marks the container
package as needing a new tag. The package
manager must gather the tags of the leaf packages
under his responsibility. This list must be placed in
the CMT requirements file. Tag Collector can
suggest the correct requirements file for the
container package. The manager can copy and paste
this into the file and retag it in the repository.

THE ROLE OF THE RELEASE
MANAGER

Release policy is determined by ATLAS software
management, and enforced by the release manager.
Since 2001 6 release managers have successively
occupied the function, each one working for 6
months. It is an arduous task, and requires juggling
the many conflicting priorities and personalities of
a large project; on the other hand it has greatly
facilitated dissemination of knowledge of ATLAS
software. The rapid turnover of release managers
has been very productive for Tag Collector
development, because each new manager has
brought fresh ideas for new features.
The release manager can control the locking and
unlocking of parts of the release using the functions
of Tag Collector. Locking means that developers
cannot add new tags to the release without prior
approval from the manager. In particular, core
software is required to be stable for a certain time

during the run up to a production release. This gives
developers of non-core software time to integrate
and test the new features of core software, using the
developer releases.
Selective locking and unlocking is also useful for
controlling bug-fix releases. Only those packages
with bugs are unlocked, so this prevents other
developers from "sneaking" in changes to their
packages without proper time for testing for those
packages that may be affected by the change.

THE ROLE OF THE LIBRARIAN
The librarian has a technical role in the building of
releases. Tag Collector helps by providing a list of
all the packages which have been declared in the
correct format for the configuration management
tool. They can simply be copied and pasted into the
configuration file. The librarian and the release
manager have the same set of privileges for Tag
Collector, in fact they are often the same person.

BUILDING A PRODUCTION OR
DEVELOPER RELEASE

These releases of ATLAS software are built in a
hierarchic manner. Tag Collector provides a list of
all the top container packages and versions to be
included in the release. The person building the
release, usually the librarian, pastes this file, into
the requirements file for the special package called
AtlasRelease, and then checked into CVS. After
logging on to a build machine, the librarian invokes
the configuration management tool to check out the
complete set of files needed to build the release by
a recursion in the requirements file for the release.

BUILDING A NIGHTLY RELEASE
ATLAS uses a system called NICOS [4] (NIghtly
COntrol System), a tool that automates nightly
builds of large software projects on UNIX-like
platforms. Several releases, with different options,
are constructed on a regular nightly basis. They
have a validity of one week. One of the purposes of
nightly releases is to allow integration testing and
migration. Thus is not normally expected that
nightly releases will be fully functional.
Tag Collector was an essential step for the success
of using regular nightly builds within ATLAS
because it provides a text file to NICOS containing
a list of the most recent tags submitted to Tag
Collector. Thus, nightly releases ignore the
package hierarchy. In this way a developer can
verify that his package builds correctly without
waiting for the package manager to update the top
package files.

532

IMPLEMENTATION OF TAG
COLLECTOR

The first version of Tag Collector was implemented
in PHP, and uses a mySQL database. It is tightly
coupled to CVS and to CMT.
Tag Collector has become an essential part of
ATLAS software development. Since 2001, many
extensions have been requested. Although the use
of PHP allowed very rapid development, the
resulting code is difficult to maintain. Therefore it
was decided to rewrite Tag Collector using the AMI
generic database management software[2]. The new
version of Tag Collector will benefit from the
complete set of generic software in AMI such as the
Web service interface.
It is worth noting that the development of Tag
Collector has enriched AMI because some of the
new Tag Collector features have been implemented
in a generic way. A good example is the AMI user
management described in [2]

TAG COLLECTOR WEB INTERFACE
To access the Tag Collector as a guest, logon to
http://atlasbkk1.in2p3.fr/athena/ with user name =
"demo", and no password.
Figures 1 to 4 show some screen shots of the Tag
Collector web interface.

Figure 1 The top page for release 9.0.0, open for
new user tags.

Figure 2 The details of the Database package.

Figure 3 Searching for a package manager.

Figure 4 Selecting a tag from those found in
CVS

NEW TAG COLLECTOR FEATURES
Tag Collector II followed a classic SW
development process. We first opened a
requirements gathering phase, during which the
many users of Tag Collector could propose new
features. The resulting requirements review was
reviewed in December 2003 [5]. Tag Collector was
then completely redesigned.
The first version of Tag Collector II will be
released in November 2004. It will have many new
features:
• The tightly coupled links to CVS and CMT

have been replaced by "plug-in" modules, so
that other tools can be used by Tag Collector,
so that use of the tool is not restricted to the
choices made by ATLAS.

• It will be possible to define package groups in
a logical manner, as well as by their physical
position.

• It will be possible to break the main release
into sub-groups. So, instead of each release
implying a complete make of all the software,
parts of the system can be built and frozen
independently. Development on these froze
parts can continue, with developers benefiting
from the Nightly release. Other packages

533

http://atlasbkk1.in2p3.fr/athena/

would continue to build against the frozen sub-
release.

• There will be improved support for branch
releases.

• There will be a higher resolution of user roles.
• The Release Manager functions will be more

flexible.

CONCLUSION
Tag Collector has become an essential part of
ATLAS software. It is a central to release
management, and is also used by developers as a
source of information on package structure as it is
easier to navigate within Tag Collector than within
the repository.
The first version of Tag Collector is very ATLAS
specific, but the new version will be adaptable to
other experiment's configurations.
Tag Collector could be easily adapted for
applications other than release management. Many
evolving systems require coordination between
independently developed parts. We are at present
considering the best way to continue our
development and support of Tag Collector in a
wider context.

REFERENCES

[1] http://www.cmtsite.org/
[2] ATLAS Metadata Interfaces (AMI) and

ATLAS metadata catalogs, Solveig Albrand,
Jerôme Fulachier. This conference.

[3] http://atlas.web.cern.ch/Atlas/GROUPS/
SOFTWARE/OO/Release/Policies/main.html

[4] http://www.usatlas.bnl.gov/computing/
software/nicos/

[5] http://atlas.web.cern.ch/Atlas/GROUPS/
SOFTWARE/OO/Development/qa/Reviews/R
eports/TagCollector

534

