
 
 

 
 

 

ATLAS METADATA INTERFACES (AMI) AND ATLAS METADATA 
CATALOGS 

Solveig Albrand, Jerôme Fulachier. 
 LABORATOIRE DE PHYSIQUE SUBATOMIQUE ET DE COSMOLOGIE, IN2P3-CNRS/ 

Université Joseph Fourier, 53, avenue des Martyrs, 38026 Grenoble Cedex, France. 

Abstract 
The ATLAS Metadata Interfaces (AMI) project 

provides a set of generic tools for managing database 
applications. AMI has a three-tier architecture with a core 
that supports a connection to any RDBMS using JDBC 
and SQL. The middle layer assumes that the databases 
have an AMI compliant self-describing structure. It 
provides a generic web interface and a generic command 
line interface. The top layer contains application specific 
features. Several such applications exist. The principal 
uses of AMI are the ATLAS data challenge dataset 
bookkeeping catalogs, and the Tag Collector, a tool for 
release management.       

INTRODUCTION  
The "Atlas Metadata Interfaces" (AMI) project [1] 

started in the spring of 2000 with the requirement to 
provide an electronic notebook for the Atlas Liquid 
Argon sub detector test beam acquisition. Other database 
applications were rapidly requested from the same 
developers for projects with very similar requirements. In 
particular, the interface requirements are often almost the 
same; all projects require an efficient web interface for 
searching; many projects require a command line 
interface or a C++ or Java API. Evidently, it makes sense 
to reuse as much work as possible, and this implies that 
the architecture of the software must allow development 
to be generic. 

This paper describes the architecture which we have 
chosen, the functions which the AMI software currently 
provides, some future plans, and we discuss the main 
applications. We have now gained sufficient experience 
to be able to offer some reflections on the advantages and 
disadvantages of adopting a generic approach. 

 In the second part of the paper we describe our 
experience following the introduction of an AMI Web 
Service in December 2003. This has been globally 
positive, but some performance problems were 
encountered. 

 AMI ARCHITECTURE 

Principles 
The principles that guided our choice of architecture 

were: 
• A relational database should be used. 
• The software should be independent of the 

particular RDBMS used, 

• It should be possible to manage database schema 
evolution. 

• The system should support geographic 
distribution, 

• The interfaces should be as generic as possible, 
• The software should not depend on a particular 

operating system. 
 

It is important to remain independent of a particular 
relational database, for several reasons. Free databases 
allow very rapid prototyping. Our initial use of mySQL 
facilitated the very rapid development of a web interface. 
However this database lacks, or lacked at the time we 
began the project, many useful features.  It is not certain 
that free databases such as mySQL or Postgres, are 
scalable, when compared to the  power of Oracle. 

Large computing centres that own licenses and have 
knowledge of, and manpower to support, a database such 
as Oracle, are unwilling to diversify into providing 
support for another database. On the other hand, smaller 
will not be able to use a tool which depends on buying an 
expensive license and having expert support, and 
physicists working off-line will not want to install a 
database server at all, but will need some kind of file 
management system. 

AMI Architecture not only permits different RDBMS 
to be used, it permits them to be used within the 
application by the same operation. 

Each AMI compliant database contains its own 
description, in terms of the entities it contains, and their 
relationships. All our interfaces are designed to exploit 
these descriptions. 

The software is implemented in JAVA, a choice which 
was motivated by our desire for a multi-platform 
application, and which has also greatly facilitated the 
introduction of a web service. 

 

Three Layer Design 
 Figure 1 shows a schematic view of the architecture of 

AMI. The lowest software layer is JDBC which handles 
the database connections. Only three databases are shown 
in the figure, but currently 6 projects use the AMI base 
classes. The three main applications are described below.   

The middle layer contains two parts. BkkJDBC is a 
package which wraps the basic SQL requests. It contains 
light RDBMS specific plugin modules. AMI uses only 
mySQL at present, the Oracle and Postgres modules are 
currently under developement . The middle layer also 
containsm packages that manage the AMI compliant 

494



databases in a generic way, using database descriptions 
which are within the database itself.. In this layer, no 
assumptions are made about the names of "databases" 
("schema" in Oracle terms), their contained entities or the 
relations between the entities.  Databases can be grouped 
together, as shown for the Atlas Production Bookkeeping 
application. 

The outer software layer has application specific 
software. The application specific software in most cases 
consists of a specialized web page, built on the generic 
functions. . 

 
 

 

Figure 1: A Schematic View of the Software Architecture 
of AMI 

 
 

The AMI deployment model 
Figure 2 shows the deployment of the AMI compliant 

databases on different servers. The client software 
connects firstly to a router database which is a mechanism 
for the redirection of client connections to an application 
database.  No AMI software should ever assume that a 
particular application database will be stored on a 
particular server. Application databases may be 
distributed geographically, and may be running with 
different RDBMS. Client software only needs to be 
configured for a connection to the router database, and 
addresses the databases with an application semantic. In 
this way a database schema can be updated in a 
transparent way for the user. The client keeps open a 
connection to the router database, and a number of 
connections to different databases as required.  

AMI Clients 
The AMI core software can be used in a client server 

model as shown in Figure 3. There are 3 possibilities for 
the client: 

• A Web Services client (SOAP). 
• From a browser (HTTP) using the AMI web 

search page. 
• By installing the AMI core software on the client 

side. 

Geographic distribution 
Geographic distribution is a desirable feature in any 

tool provided for the Atlas collaboration, which is, of 
course, itself widely distributed. Our tools should be 
available at all times in a robust, reliable way. We need to 
bear in mind that if a tool is to be adopted successfully 
within Atlas, all features must be able to be scaled up. We 
have decided to work towards the "data warehousing" 
model [2] – with several source databases, allowing 
concurrent input, and central read-only databases updated 
automatically, which permit complex requests, without 
affecting the writing efficiency. Such a model has other 
advantages, for example, individual users may wish to 
download a database snapshot to their laptop, and may 
wish to update information whilst working offline. A 
production site could have complete access rights on a 
part of the database, and declare that it is ready for 
uploading to the main database, only when the data has 
been validated. It should also be pointed out that in this 
model, different schema could be employed in the source 
database and the central database. A source database 
schema should be optimised for the simplicity of input, 
whereas the database to which queries will be addressed 
will be optimised for the efficiency of these queries. We 
are closely following the developments of Grid 
middleware tools for database distribution, as it would be 
desirable to use the same mechanisms. 

 
Figure 2 : Redirection of Database Connections 

 

Schema evolution 
Schema evolution is a complex database problem to 

which it is impossible to do justice in this short article. A 
note describing how AMI software manages various 
possibilities of schema evolution [3] explains that AMI 
software is backwardly compatible in terms of the 
application semantic evolution.  It is also to a certain 
extent forwardly compatible, in that old clients remain 
largely functional. It turns out that this is often an 
undesirable feature!  

 

495



 
 

 
 

 

 
Figure 3 The AMI client possibilities.   

 
 

GENERIC FUNCTIONS 
AMI contains many generic functions which for use 

either as direct commands, or by servlets. 
They include the usual database functions of schema 

information, input, update and output, and also several 
functions specific to the web interface, such as the 
possibility to define a set of actions associated with a row, 
or a hyperlink associated with a field value.  

We are currently working on the implementation of an 
application level authorization mechanism, which will 
map users to database roles. 

Lastly, we have put in place a task server for the 
monitoring of coherence, and for heartbeat tests and 
logging. 

THE APPLICATION SPECIFIC LAYER 

Atlas Production 
The major user of AMI software is the application 

metadata bookkeeping for the ATLAS data challenges. 
We have evolved the schema to work with the ATLAS 
production system for DC2, leaving the DC1 and DC0 
data unmoved. Datasets are managed globally using the 
logical dataset name which must be globally unique. Web 
interfaces are provided to help in the definition of new 
datasets. This application has also been used for the 2004 
combined test beam runs. 

Support for ATLAS distributed analysis has brought 
new requirements [4], and we are currently refining the 
design which will meet these requirements with 
integration of the existing databases.  

Tag Collector 
Tag collector is a tool designed for assisting in the 

management of ATLAS software releases. Requirements 

gathering for Tag Collector II started in mid-2003, and a 
prototype built on top of the AMI generic layers will be 
release before the end of November 2004. Tag Collector 
is be presented in a poster at this conference. 

ExTra 
ExTra [5] is an AMI based application for the 

monitoring of external network traffic. It works by 
interrogating router status at regular intervals – using the 
AMI task mechanism. Results are archived, and can be 
displayed on an interactive graphical interface. It is 
currently installed on various sites within the IN2P3. 
ExTra has enabled the detection of certain types of worms 
and viruses present within the monitored sites, and also 
indelicate or illegal use of the laboratory network 
infrastructure.  

IS THE GENERIC APPROACH USEFUL? 

Advantages of the generic database software. 
The first and major gain from the generic approach to 

cataloguing is rapidity in development. Once an AMI 
compliant database is put in place, no software 
development whatsoever is needed to provide a complete 
set of commands and a web search interface. The web 
interface is totally configurable. For example if the client 
decides that a combo box should be attached to a 
parameter shown on the search page, one update to a 
database table is needed. The addition of a new field 
requires one database operation, and one AMI 
Administration command. Thus a rapid prototyping 
approach towards the correct schema for an application is 
very easy.  

As we have described above, we are able to support 
applications of a varied nature with little extra software 
development. Applications level software is able to reuse 
the generic layers. Indeed the fact that we support several 
applications has prompted enriching of the generic layers. 
A good example of this is the current development of Tag 
Collector II. Many of the features required for this 
application have a general interest, and so they have been 
designed as AMI generic software, as part of the Tag 
Collector project. 

Support for schema evolution within AMI is briefly 
described in section 0. The true database schema is 
hidden from clients; only the application semantics are 
exposed. Major schema changes of the application 
semantic are possible within AMI.  Client software is 
backwardly and, to a certain extent, forwardly 
compatible. This last feature has lead to some problems 

 Disadvantages of self-description 
Since all AMI commands must read the self-description 

tables within the database, AMI software accesses the 
database more times than non-generic software. We were 
concerned that this could cause performance problems, 
and this was one of the motivations behind setting up the 
performance metrics. However we have demonstrated that 

496



any performance loss from this is insignificant when 
compared with the use of a SOAP based web service. 

Use of generic software which aims to support several 
DBMS implies that we may not be using some of the best, 
and specific features of each particular database. One 
might argue that it is wasteful to have Oracle available, 
and not take advantage of the full set of Oracle features. 
We believe that by careful design of our database specific 
plug in modules, and careful factorisation of functionality, 
we should be able to overcome this objection  

Some users of AMI have written their own interfaces to 
AMI databases, bypassing, or incorrectly exploiting the 
generic layers of AMI. The resulting software is 
application specific, and less flexible than AMI's own 
application specific software. Paradoxically, if the 
application specific interface becomes popular, we can no 
longer modify the AMI schema, because it would hinder 
too many of our colleagues. We welcome specific user 
tools which are built on top of AMI, and we anticipate 
that this problem will disappear when an AMI specific 
management of authorization is introduced which will 
allow us to block access to the databases using standard 
mySQL clients. Lastly, we have put a lot of effort into 
providing a developer's guide and we have introduced a 
"Wiki" page to in an attempt to improve collaboration 
mechanisms.[6] 

EXPERIENCE WITH WEB SERVICES. 

Motivation 
In a distributed system, the web service paradigm is 

ideal as it allows services to be maintained while keeping 
the interface stable. AMI introduced a web service 
interface in December 2003. We use the classic SOAP 
protocol (see Figure 3). Our WSDL [7] is very simple, in 
fact no specific commands are defined. More specific 
interfaces can be implemented either as a specific service, 
or by building a higher-level client. 

Available Clients 
In theory, any user wishing to use a web service can 

generate a client for the language and operating system he 
desires from the WSDL. However, as this is a relatively 
new technology, client generation seems to be a fairly 
specialist job, in addition we have found that some SOAP 
packages used for client generation are incomplete. 

The basic AMI web service client is written in JAVA.  
Other clients have been provided and are advertised 
publicly as they are become availabl.e [8] 

Performance problems 
As it is widely known, the SOAP protocol introduces a 

heavy overhead, and so it become rapidly rather slow. It 

is almost certainly too slow for use in a distributed 
analysis environment for HEP. We have put in place a 
metric to measure AMI performance. 

In spite of this poor performance, we have no plans as 
yet to use alternative implementations. We will follow 
whatever recommendations are made by the OGSA and 
EGEE projects. [9] [10] 

A CROSS-EXPERIMENT APPROACH TO 
METADATA. 

It is generally acknowledged that dataset selection 
catalogues containing application metadata are 
experiment specific, and thus outside the scope of the 
LCG project.  The EGEE middleware group [10] has 
proposed a common interface for metadata access as part 
of the gLite package, and we plan to implement this 
interface for ATLAS distributed analysis. 

Even though each experiment has its own ideas and 
requirements about physics metadata, developers of  
bookkeeping applications for future experiments have 
much too learn from more established experiments. A 
discussion group was recently set up to facilitate contacts 
between the metadata catalogue developers of several 
HEP experiments [11] and the AMI team is an active 
member of this group. 

ACKNOWLEDGEMENTS 
We have benefited from help and support from many 

people within ATLAS, in particular from the database 
group, and from the production system. 

 Particular thanks are due to: 
Julius Hrivnac for producing the C++ Web Service 

client and Chun Lik Tan (Alvin) for providing the Python 
client. 

REFERENCES 
[1] http://atlasbkk1.in2p3.fr:8180/AMI/ 
[2] The Data Warehouse Lifecycle Toolkit, Ralph 

Kimball et al, Wiley 1998 
[3] http://atlasbkk1.in2p3.fr:8180/AMI/AMI/doc/pdf/Ma

nagingSchemaEvolutioninAMI.pdf 
[4] ATLAS Distributed Analysis  (These proceedings)  
[5] http://lpsc.in2p3.fr/informatique/reseau/extra/ 
[6] http://atlasbkk1.in2p3.fr:8180/AMI_PUBLIC_WIKI/

jsp/Wiki?AMI 
[7] http://atlasbkk1.in2p3.fr:8180/AMI/AMI/webService

/AMIWebServiceHelp.html 
[8] http://www.xmethods.net/ 
[9] http://www.globus.org/ogsa/ 
[10] http://egee-jra1.web.cern.ch/egee-jra1/ 
[11] http://www.gridpp.ac.uk/datamanagement/metadata/ 

 
 

497


