GO4 ANALYSIS DESIGN

J. Adamczewski, M. Al-Turany, D. Bertini, H.G. Essel, S. Linev
Gesellschaft fur Schwerionenforschung GSI, Germany

Abstract

The Go4 framework has been developed for Atomic
and Nuclear Physics experiments at GSI. The current
analysis design as provided by Go4 [1] is described. New
advanced requirements are reported. From a linear
organization of the analysis one wants to go to a mesh
like structured analysis with multiple data (event)
streams. These requirements can be met by a two step
upgrade. The first step adds some improvements, the
second implements a new concept of the analysis
organization.

GO4 FRAMEWORK

Go4 is based on the ROOT system. Besides the full
ROOT functionality Go4 offers additional services to
develop analysis programs. Such programs may run in
batch mode, or interactive mode, respectively.
Interactively the analysis is controlled by the Go4 GUI.

Analysis and GUI Tasks

Analysis and GUI run in separate tasks communicating
through sockets [2]. Therefore the analysis can run
permanently without blocking the GUI. It can, however,
send data asynchronously to the GUI for display. This
feature is especially useful for on-line monitoring [3].

Go4 GUI

The GUI is developed with Qt (ROOT graphics
embedded via GSlI's QtRoot interface). User written GUIs
can be plugged in. The GUI has full control of the
analysis. All registered analysis objects can be browsed.
Specific types can be edited. The full ROOT graphics is
available. User GUIs may be plugged in.

GO4 ANALYSIS
Go4 Analysis Organization in Steps

coded!

input = output

(process)
‘\

L

Intermediate 10

Figure 1: Chain of analysis steps.

The Go4 framework handles event structures, event
processing, and event 10. As shown in Fig. 1 the analysis
event loop is organized in steps: Each step has an input
event, an output event, and an event processor. To be

filled the output event calls a method of its event
processor. The event processor has a reference to the
input event. Output events may be written to files. Input
events may be retrieved from files or from previous
step(s). The information needed to create the event and
processor objects (which are deleted when the event loop
terminates) is stored in step factories which are kept in
the analysis singleton.

Analysis Control

When the analysis task is started all step, factory, event,
and processor objects are created. When started by the
GUI the following controlling mechanisms are available:
1. In the step configuration window steps can be

dis/enabled. The event 10 can be set up.

2. ROOT macros, commonly used to configure an
analysis, can be launched from the GUI. They execute
in the analysis task synchronized with the event loop
(if the event loop is running).

3. User parameter objects retrieved from the analysis task
can be edited with a generic object editor in the GUI.
When the modified object is sent back to the analysis
an UpdateFrom method is called. In this method the
user has full access to the analysis framework.

4. Conditions (window and polygon) are used in the
analysis code to check values against limits or
polygons. In the GUI condition editor not only the
limits and polygons can be set, but also the behaviour,
i.e. condition shall return always true or false. Using
"dummy" conditions one can steer the analysis code.
The execution and true counters of the conditions give
useful hints about program execution.

5. With the dynamic histogramming feature one can
create histograms and conditions on the fly and fill
them event by event (or from tree) with members of
the event objects.

NEW REQUIREMENTS

Event Stacks

Sometimes an analysis needs more than one event to
work. E.g. if the events delivered by an asynchronous
DAQ are in fact logical sub-events marked by time
stamps the analysis has to built the real event from events
of a time interval. Another example would be decay
experiments when the analysis needs to handle a set of
events following an event of a certain signature. Of cause,
all this could be handled on application layer. But if the
framework provides such a feature it saves developer
time.



Step Hieararchy

The current design of the steps is linear and oriented
towards data generations. If the experiment utilizes
several detector systems, a hierarchical approach like the
ROOT TTask mechanism would be more natural. The
execution order of such tasks is fixed and top down.

Concurrent Steps

Similarly, dealing with several detectors, it would be
more natural that the detector codes are assigned to steps
but process the same input and output events which of
cause could be complex structures.

Multiple I/0

There might be cases where the events are split into
ROOT tree branches Then a step may need event
fragments from several branches.

Analysis Mesh

Input| Multiple files, trees, branches

Output1 Multiple files, trees, branches |

Figure 2: Analysis mesh (multiple 10).

The most flexible way would be to organize analysis
steps like a mesh as shown in Fig. 2. Objects distributed
in several files (branches) may be needed by several
steps. Each step would specify the input objects it needs.
The step itself should not care if these objects are already
in memory (read or generated by some other steps), or if
they have to be read by itself.

GO4 UPGRADE PHASE |

Many of the requiremnts mentioned above can already
be met within the existing framework. Steps can be used
in two ways: for object creation (provider steps) and for
object processing (execution steps). An example setup is
shown in Fig. 3. Only execution steps might produce
output objects. These objects are never referenced directly
as input by a subsequent execution step, but only by a
(subsequent) provider step. Execution steps do never use
their own input, but only the input of one or more
provider steps.

With this strategy one can built
configurable step meshes with multiple 10.

dynamically

To be done

Currently the steps cannot share files. There must be
one file per step 10. When the file management is moved
to the framework steps could easily do 10 on branch
level. If a step hierarchy would be useful it can be easily
introduced, just by deriving the steps from TTasks. The
order of execution of the steps could be modified by an
index table. This could be done also event by event.

) Ev‘ent Provider
Praral object ‘Pstep1”
) Ev‘ent Provider
P object “Pstep2“

GetlnputEvent(*Pstep1*)
GetlnputEvent(* Pstep2*)

Execution Store Provider
“Estepl” event “Pstep3"
R

GetlnputEvent(*Pstep3*)
Execution
—-b-‘?
“Estep2“ =

L
Figure 3: Provider and Execution steps.

Still Missing

Event stacking is not supported and cannot be provided
easily, at least not with different depth on different input
streams.

Store
event

GO4 UPGRADE PHASE II

The approach of phase | gets inconvenient when too many
steps are involved. The number of steps increases because
of the provider steps. Therefore phase 1l introduces some
new and more powerful design compoments.

Event manager

inpu‘
I event event

’ Multiple files, trees, branches ‘

Figure 4: Event (10) manager.

Go4 Event Manager

A new event manager (see Fig. 4) singleton is
responsible for both the reading and writing of objects,



and for the control of the object exchange between steps
(now Go4Tasks) in a mesh (smart pointer references).
After setup the Go4EventManager can check the
consistency of the object requirements and the execution
order of the steps.

Go4 Task

A new Go4Task class combines the current Go4Steps
with the ROOT TTask. Go4 tasks register to the Event
manager. They subscribe for input objects. They register
output objects. To interface the application layer to the
framework a factory mechanism can be used.

The configuration of such an analysis mesh will be
possible by macros or interactively by the GUI. New
control GUI windows will be provided.

Autoconfiguration

Once the requirements of all tasks are known the event
manager could create and enable automatically all tasks
which are required by a specified one.

CONCLUSION

Because of the low efford the first phase can be set up
soon, i.e. sharing files between steps and modify the
execution order. A more general new design to set up
meshes will be provided by phase Il toghether with a
better GUI control.

REFERENCES

[1] http://go4.gsi.de
[2] J.Adamczewski et al., "Go4 multitasking class library

with ROOT", IEEE Trans. Nucl. Sci., vol. 49, pp.
521-524, Apr. 2001

[3] J.Adamczewski et al., "Go4 On-line Monitoring",
IEEE Trans. Nucl. Sci., vol.51, pp. 565-570, June
2004


http://go4.gsi.de

	Seite #1
	Seite #2
	Seite #3

