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I INTRODUCTION

In the study of strong interactions of elementary particles a great
variety of different final state interactions have been detected by the
observation that relative yields, momentum and effective mass distributions
of the particles deviate from the expectations from phase space. We can
mention such discoveries as the hyperon isobars, the pion resonances etc.

The calculation of phase space predictions for the particular interaction
under investigation is, therefore, often useful and even necessary in order

to extract information about the interaction between the particles in the

final state.

The purpose of these notes will be to show the derivation of the
general phase space formula for a system of n particles in the final state
and demonstrate the use of a recursion relation in the calculation of the
Lorentz invariant phase space. We will discuss the momentum spectrum of a
single random particle and the angular distribution between any two particles
in the centre of mass of the n particles. The effective mass distribution of
any number of particles can also be calculated with the help of a recursion
relation. For some special cases we will also discuss the effect of a
resonance between two particles on the effective mass distribution of any
two of the particles in the final state. We will also write down some of
the special properties of the 3-body phase spacc first used by Dalitz in his
special representation (Dalitz plot). Finally we will make some comparison

between the predictions from phase space and the experimental data on hyperon
resonances.

mSupported in part by the Air Force 0ffice of Scientific Research, OAR
under Contract AF - EOAR 63-100 with the European Office of Aerospace
Rescarch, United States Air Force.
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The concept of "vhasc space' is closely connected to the calculation
of transition rates, and to introduce and dafine th:a concevt we will there-
fore consider the cxamvle of multipion production in a nucleon nucleon

collision

v

N+ N=>N+N+nw

which was first discusscd by Fcrmi (Progr. Theoret. FPhys. (Japan) 5, 570 (1950))

in his theory for pion production.

The probability per unit time that the above reaction will take
place (the transition rate W) can be expressed by Fermi's well-known golden
rule No., 2

2
W = %§I<¢f|H'lwi>l F (1)

where ¢i and ¢f are initial and final state wave functions resepctively,
and <¢f|H’|¢i> is the matrix clement (M) for the transition from i to f
caused by a perturbation of the Hamiltonian H'. The multiplication factor
F is what we call the phase space or density of state factor. F is a
function of the total energy of the system (E) and of the masses of the

individual particles in the final state.

We can express Eq. (1) in two formally different ways as:

2
W= |® p(E) | (12)
and ‘ ‘
W= %FINW|2 R(E) (1b)

where in Eq. (1a) the matrix element is expressed in a form which is not
invariant under Lorentz transformstions, (as is the casc for matrix elements
calculated in non relativistic quantum theory). In Eq. (1b) i” is Lorentz
invariant, (as is the case for the so-called Feynman amplitudes, i.e. the
matrix elements calculated in relativistic quantum field theory by application
of the Fcynman rules.) Since W should be the seme in both cases, i1t follows
that p(E) end R(E) are different; p(E) is not invariant under Lorentz trans-

formations whereas R(E) is an invariant.
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H

he matrix clements 1 and ¥ arc in generel completely unknown,
especially for transiticns causcd by strong interactions. The purposc of

the statistical thcory introduced by Permi for calculation of transition rates,
is therefore to make certszin assumptions about the behaviour of the matrix
element. The simplcst assumption one can make, is that the matrix element

is a constant, independent of the individual momenta of the particles in the
final state (but not nccessarily independent of E).  In this case, for a
constant matrix clement, the transition rate as well as individual particle

momenta in the final state, are detcrmined by the phase space factor alone.

It may be worth while here to stress that the approximation of a
constant matrix clement may well be a crude one, and it is not a priori given

which of the approximations:

i’ = constant (phasc space not invariant)

or

M = constant (phase space invariant)

is the best one. In his original trecatment Fermi used a non invariant
phase space. Lately it has become the fashion to use a Lorentz invariant
phase spacec. The best, and perhaps only, justification for this is that
the invariant phase space is the casiest to calculate. We will in these

notes mainly discuss the Lorentz invariant phase space.

IT NON INVARIANT PHASE SPACE

a) Definition and general formula

For one particlc a definite state of motion (i.e. specified position

(x,y,2z) and momentum (px,py

dimensional phasec space. Conversely each point in phase space corresponds

,pz)) can be represcnted as a point in a 6

to a definite state of motion of the particle.

Classical mcchanics places no limitetions on the density of the
representation toints. A given value of x can be combined with any value

of P etc. It is in principle possible to make simultancous measurements
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of x and Py with infinitc accuracy and then lecalize a poilnt in phase space.
Thus classicaliy thncre will be en infinite number of coints svailable in
phase space for a varticle confined to a certain region in space and with a
certain encrgy.

guantum mechanics on the other nand rejuires the representation points
to be separated by finite distances. The uncertainty rrinciple states that
it is imposéiblc to measure position and momentum simultaneously with infinite

precision. For each pair of canonical variables

tc.

)

Ax. Ap. 2 2mh

joRy s

A state of motion can only be given with this indefiniteness and corresponds
in phase space to a finite volume, or an elementary cell, of size (2mn)> .

The number of final states Ny available tc one particle will there-
fore be finite and equal to the total volume of the phase space, divided by

the size of the elementary cell,

1 1
Ny = ——ememe dx = d a [ S a3 3 .
1 (2171’1)3 / dy 4 dPx Py b, (271’}'1)3 / x d’p

If the particle is confined to a geometrical volumc V we can write

3

.

For a particle of total energy less than or equal to E and mass m, Ny will be

the number of cells in a volume enclosed in momentum space by the sphere

2 2 2 _ 2 _ 2
Py+ gy+ E, = E-n.
Given the total number of states we now define the density in

phase space as the number of states per unit cnergy interval

Enl >—\Y
P (B) = 2 . (2)

This is for short, callecd "phasc svace" for onc particle.
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The extension to a system of n particles with energy < E i1s quite
simple. The numbcr of final states Nn will be the vroduct of the number

of final states for ezch varticle, thus

4 -\ n n
N = | s T ax, @p. .
\In [(ZWB)Z | / =1 ! Xl : Il

X.P.
lpl

Since in practice all the narticles are confined to the same geometrical

volume V = Vi = d3xi we can write
n n
\ 3
N :(;==-a? / m&p. . (3)
n | (2rh) oo 1
By

For instance in our example of multipion production, the interaction
is assumed to take place in a sphere with as radius the Compton wavelength

of the pion.

This formula gives the number of available cells in the final state
for a system of n spinless particles. If the particle i has spir Si the

above expression should be multiplied by

n
L (2si+ 1) .
1=1

Now, since the geometrical volume factor, spin factor etc. can be
included in the final normalization of the phase space integral, we will

neglect these factors here and simply put:

dNn a n
E) =T /.“ &p; -
J =1

As alrcady said this integral should be extended over all possible
. . ; = .
values of P . Now, in order to conserve total momentum (P), the n particle

momenta are not independent but constrained by the equation

’

(&)

3
Ty
1
el
1l
o
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It is usual to indicate this restriction by putting

* N1

- a ,
B = gE Ty
T sy

where one does not include particle n since the momentum of this particle is

already given by Eg. (L).
We will, however, include the restrictions Eq. (4) by the intro-

duction of the Dirac & function. We use the fact that from the definition
of the & function

n-1
3 302 _ (B e -
/dpnﬁ(pn (B- = 3,)) =1
1=1
for all integrations including
n-1
- _-1-3_ 5 ->
Pn = 2Py
i=1

(that is for momentum balance).

We also wiant to introduce the requirement of energy conservation

n
I E.-E =0.
. 1 R
1=1
Since
n
/6(2 E.-E) dE =1
. i=1 1
and

n

a n n
5 /6( R Ei—E) dE = §( z Ei-E)
. 1=1 1=1

we can replace d/dE by
$( 2 E.-E).

1

We then get the general formula for the non invariant phase space.
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(5)

n n
pn(zz) = [0 d&p, 8702

-
[ N
il
-

This formule is symmetricel in all the n varticles, and the require-

ments of energy and momentum conservation arc explicitly given.

To illustrate th:z cxplicit calculation of p(E) for one particular
reaction we will consider one simple example, namely that of two particles
in the final stzate. The formulae for 3 and L-body non invariant phase

space are given by M. Block in Phys. Rev. 101, 796 (1956).

b) Two-body non invariant phase space

Let the masses of the two particles in the final state be my and

m, and their momenta By and p. in the centre of mass. From Eq. (5) we have

p2 () = /‘dzpt d’p» 53(51*'52) 5(Eq + E, = E)

= /~d3p1 Cp. 8% (py + p2) §(Vm? + p; + Vm2 +ps - E).

In the following we will make use of some general rules for inte-

gration of & functions given in Appendix A.

Integration over p. gives

pe (E) = [d3p1 §(VmZ + p; + Vms + p; - E).

In polar coordinates we can write

2

Fpy = pi dpy Ay = p? dps d(cos ©y) dd; .

The integrations over cos ©® and & give a factor Lmw, thus

0o (8) = [ br B apy SUETE + AT - B)

. cmmea e

A
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Since

dh s + Py D4 B
dﬁ1 2‘11 E’) E1 I

and A = 0 for

{[E? - (mp+my)?] [E°- (m?___m1 )2];1/2
2E

bt =
we get by integration over p;

Lsr P4 Ey Es

Pz(E) = E

(6)

b ([ (- m)*] (B = (e m )2 B - (nh - )
E 2E LE?

This is the expression for non invariant 2-body phase space.

IIT LORENTZ INVARIANT PHASE SPACE

a) General formula

The phase space formula Eq. (5) is not symmetrical in E and p and
therefore clearly not invariant under Lorentz transfcrmations. The simplest
way to find an invariant expression for the phase space formula is to replace
d3pi in formula (5) by d?pi/ZEi. This corresponds to the relation between
non relativistic matrix elements i’, Eq. (1a) and Feynman amplitude M/, Eq. (1b).
We then get

n d3pi no_ n
- 3 - -
R (E) = /‘121 oF, 2( 42, p3-P) 8( ;2 E;-F) (7a)

which is invariant under Lorentz transformations. The factor 2Ei enters
from a normalization of the wave function in field thecry. Ve may qualitatively
understand the meaning of this normalizaticon factor as follows. In non

relativistic quantum mechanics we express the probability density of, say

one particle, as |¢|2, vhere ¢ is the wave function describing the particle
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and where Il¢‘2 dx dy dz = 1 when integrated over total space. This expres-
sion for the probability density is not a relativistic invariant. When
applied to a relativistic case, the density (probability per cm32 observed
from a moving system appears greater by a factor y = (1- vz/cz)— 2 because

of Lorentz contraction of the volume element. It is important to note,
howev~-.,, that the total energy of the particle has also changed by the same
factor y. If we therefore use as a probability density the expression
lv@ﬁ?¢l2, the density will be relativistically invariant. (The factor 2

is a convention). Introducing this normalization into formula Eq. (1a) we
can write
=202 p(s) = 2 |wle (n 2B (1 5 ) p(®)
A P R : i/ VOTE, /P
i=y 1=1 i
= constant |W |2 R(E)
where now
0
R(E) = p(E) 0 35 -
i=1 i

This formula which is also expressed in Eq. (7a) can be written in a more

symmetrical form by introducing the four vector

= (2 = 2 _ 2 _ 2
q, = (p;,E;) (pix,piy,piz,Ei) of length qf = Ej-p; .

Using the rules for integration over a 6 function given in the Appendix we
find that.

i

/ d*q 8(q® - n)

/d3p dE 5[E* - (p® +m®)] (for E > 0)

3
- Q;E 2 _ 2 2
u/ 5n for E° = p°+m

We must, however, eliminate the negative root of p® +m°, and do this by making

the convention that all integrations over E,Ei are limited to positive values.
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Similarly we introduce 0 = (B,E) and write

n no n
*(z q-9)=8(z p,-F)o(z E-E) .,
i=t © i=1 i=1
Introducing these expressions in Eq. (7a) gives
- N n
B - 4 2 2 4 - C
R (E) /11; [a*q, 8(f-m})] 6 (iz:1 9~ 9) (70)

Expression (7b) is in most literature presented as the definition of Lorentz

invariant phase space.

We can qualitatively understand the meaning of the term B(qg- mi),
since q;- mi = E;— pg- mi #will be zero for q; evaluated on the mass shell
of the particle. This term therefore essentially represents the constraint

that for all i's we must have

2 2 2
Ei =ML+ Ppyo.
(By convention we have limited Ei to positive values).

The Lorentz invariant expression given by Lg. (7) gives the total
volume in momentum space available for n particles of given masses and total
energy E. Clearly this volume Rn for a given energy E is just a number.
The knowledge of this number is necessary for estimations of cross-sections

and relative yields.

Before performing the integrations over all the momenta, pi, we may,
however, (at least in practice) regard R as a function of all p,, thus
Rn(E) = Rh(E,p1.,opn). This expression can now provide us with the differen-
tial momentum spectrum of any of the particles, k, simply by evaluation of
an/dpk' Clearly, dPLn/dpk is just the expression one obtains from formula

Eq. (7) by omitting the integration over the k'th particle.

b) Lorentz invariant two-body phase space

. . > -> .
Fer two particles of masses my and me, with momenta py and p» in the

centre of mass we get from Tg. (7b)
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R, = /d4q1 d4q2 6(q§-—m$) 5(q§-m§> 54(CL1+Q2'Q)

o[ @o @re am am o[F - (o + 5] B[ - (uk 4 52)]

/

x 63 (Dy +p2) 6(By + B - E)

By using the integration rules for a & function we obtain

= 51321 d322 32 .2 A
Ro —, 5%, DL 6(p1+pg)6(E1+Bg E)

which we could have written dovn directly from Eq. (7a). We further get

by integration over pz,

&zfﬁ?%31d%1am+&®d-E>

: ) ]
- mdﬂ d 6E --E .
/1+E1 T (pr ) v pi dpr 8(By + Fa (p1) )

Since the two particles are emitted isotropically in space the integration

over A0y gives a factor 4w. Thus integration over p; gives

2
R2_7TP1 1

“EiEe py Pt
Eq B,

and finally

- -my )? - +my )? %
R, = QEEL - % E[EF (Hh 1) gE[E? (Hh 1) ]} . (8)

We note that this Lorentz invariant expression for 2-body phase
space R, is different from the non invariant expression p, evaluated earlier.
For this special case (2-body) we also sce that

- SR
R2 - p2 . 2E1 [ 2E2 .
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We can proceed similarly to calculate Rs using the generel formula
Eq. (7). Then we will soon find however, that the expressions cannot be
integrated straightforwvardly. Instead of attempting to derive the 3-body
phase space dircctly from Eq. (7) we will first evaluate a useful recursion
relation for phase space, first given by Srivastava and Sudarshan (Phys. Rev.

110, 765 (1958)).

¢) Recursion relation

We re-wirite formula (7) for the Lorentz invariant phase space for

n particles with initial state four vector Q = (ﬁ,E) as

R,(B) - [1 (et 8(&-a)] 6" (3 9-0) - )

1=1 1=t

In the centre of mass of the n particles we can write (compare our

preceding example for 2-body phase space)

n d.3pi no_ n
- 3 -
Rn(O,E) _/.n = 8 (.z; pi) 6(.)3 E, E)

1=9 1 1=1 1=t

d.’pn n-1 d.’pi n-1 . . n-t .
- [ B 3 - (- - (E- .
-/?_E /.n 55— 8’2 p,-(-p)lslz B -(B-E)]
n i=1 i i= i=1
We seec that the last integral is the phase space:for n- 1 particles

with total momentum (—;5) and total energy (E—-En).

Thus

3

R (0,E) = / ZEP" R_[(5), (®-2)] .

Moreover, since R is Lorentz inveariant, Rn—1 must also be the same in

a system with zero total momentum vhere the total energy is

« =V(E-E))® - (-p))
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so that

R, [('E£>) (E- En>] = Rn_1 (0,€).

This gives the following recursion relation between n and n- 1 body Lorentz

invariant phase space.

I

Rn(O,E)

d3pn
/mZEn Rn_1 (0,¢€) (10)

where

2 a_m V2 L2
€ (B ﬁ,n) r, -

We will next use this recursion relation to derive the 3-body

phase space.

d) Three-body phase space

For three particles with masses my,m ,m; and momenta in centre of

mass Pp1,p2,ps formula Eq. (10) gives

d3P3
Rs (0,E) = S R (0,€)

3

where
€ = (BE-E5)® - 1§ .

From the determination of R, in the preceding paragraph we get

d3p3 .
R (0,E) = /7E=3-=- (35-)

where p’/ is the momentum of each particle in the 2-body system with energy E’

in their centre of mass.

Thus

E/' = E{ + E{ :\/m? -!-p’z +\/m§+p’2
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Since obviously ¢ = L/ we get by solving for p’

U - (mam )] [ - (m-m )

P! = = S .

2¢

Substituting this expression for p’ into the above formula for
R3(O,E) one gets

bopd dps || B2 +m-2EF; - (my ~mp )2 ] [E? +m3-2EE; - (mq +m, )2]§%‘
Rs (0,E) = / T (11)
s  2%s 2(E? +m3 ~ 2EE; )

This integral should be taken between the minimum ps(min) and meximum ps (max)
values of ps. Obviously ps (min) = 0, which takes place when particles 1

and 2 are emitted antiparallel with equal momenta. The maximum momentum

of the third particle will be obtained when the other two are emitted parallel

end with the same velocity (opposite to ;;). In this case we have

E =V + p2 (mex) +V(m +m;)? + p2 (max)

which when solved for ps(max) gives

[ - (m1+m2—m;)2] [ - (m1+nb+m3)2]}1/2
P (o) - 2F - (12)

For the general case where the three particles have different masses, Eq. (11)

is an elliptical integral.

Finally, we want to point out that the differential momentum spectrum
c? a particle from 3-body final state is given by dRs/dps which is explicitly
given in Eq. (11). We see that the momentum spectrum is a function of the

total energy E of the system and the masses of the threc particles m¢ ,mp

and ms only.
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IV ANGULAR DISTRIBUTION

2) General formula

The gencral invariant phase space integrel Eg. (7) can be used to
find an expression for the angular distribution betwcen any two particles
among a system of n particles. The distribution will be derived in the centre

of mass of the n particles.

The angle © between the two particles, say n and n- 1, can be found
from

We will in the following, interpret Rn (before performing the inte~
gration) as a function of all the momenta pi,ps .. Ps thus we can also
express R as a function of cos @, that is R = R, (0,E, cos ©). The
angular distribution function between the two particles is then given by

dr
n

d(cos @) °

Applying the same procedure as for the derivation of the recursion relation
Eq. (10), we get

d'3pn dan-« »
Rh(O,E, cos @) = /hiﬁ?% =F Rn—a (o’en—a) (13a)
n n-q
where
2 _ - - 2 - -> -> 2
€n—z - (E En En—1> (Pn+'pn-1)

il

E+m®+m® -2 (EE +EE_ -EE  +pp
n n-=1 n n-1

cos @),
nn-1  “n‘n-4

7863/p/cm



In polar coordinates, with én
and ¢ and © the direction of En_i

can write

and ©

with resoect to ;n

(see Fig. 1), we

giving the direction of Eﬁ

ey © Pig. 1
Bn 7 ! )
. '
R |
_ : >\
A ,—} S . | /
¥ T
M
X
3 _ 2 _ .2 o
d P, = Pp dpn dQn =P, dpn sin ®n an d@n
3 _ .2 _ .2 .
d Pp-y T Ppoy dpn—1 Wy = Pn-y dp,., 8in & d© @ .

The integration over dQ =

dRh(O,E, cos @) o pn pn_
d(cos ©) EE
n n-1

The integration limits of dpn__1

sin @ d@ d§ gives a factor 4w and the inte-

gration over 4% a factor 2w, so that Eq. (13a) can be expressed as

. (13b)
dp  dp _ Rn~2 (0,€ 2) (13b)
and dpn will depend on cos ®. In

general for all possible values of cos © the integration limits of P, have

to be equal to or

where

0
{[Ez - (m1+...+m

pn(min)

and

n-

+-mn)2] (B2 - (my + ...+m

-1

greater than pn(min) and equal to or less than pn(max)

-m )1}

1

p, (max)

The corresponding limits for 1

in the above equation.
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where all the first n- 1 particles are emitted with the same velocity (that

is as one body) oppositec to the particle n.

Let us now look in more detail at the integration limits as a
function of cos ®. If we first integrate over dpn—1’ we went the limits for

fixed P, and fixed cos ©.

It is easily verified that Ppey will now have its maximum value

if the momentum (Bna-gn_1) is compensated by one body of mass

n-2

This determines the maximum value of p _ = for fixed P, and cos @ to be the

positive root in the equation:

2 2 1/2 noe 2 2 2 1/2 E
B+ (>  +p2 ) +[:(.2 m )®+po4p)  +2pp _ cos®| =E.

n-1 n-1
i=1
(14)
The positive solution of this equation is
- - 2 -
. _ ap cos © + (E En)'Va Lmi_1b (15)
n-t 2b
where
n-2
- - )2 . 2 2 _ .2
a = (E Bn) (.E mi) to, TPy
i=y
- - 2_ 2 2
b = (E En) p; cos® © .

The upper limit of P, for fixed cos © can, in principle,be found
if we interchange P, and P, in Eq. (15) and determine the value of P,

for which apn/apn_1 =0.

b) Three-body angular distribution

Using formula Eq. (13b) from the preceding paregraph, we find for
the engular distributicn between particles 2 and 3 from a 3-body phase

space
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Ba(0,8. c08 ©) | [r2 B3 4 ( ¢
d(cos ©) « | £ E, o P Ri (0, €) (16)

where

2 (B~ (Be+3))7 - (;2"';3)2

m
]

We first find

Rs (0,€)

i

/d3p1 a8y 5% (30) 6(Br-c) 8[E - (g +uf)]

which upon integration over ps and E; gives
Ri (0,€) = 8(e® - mi).

Thus

dRs (0,E, cos ©) _ D2 D5
d(cos ©) E Es

dp. dps 8(€® ~mi)

—e

P C T e Ta )2 = 2o p2 o Ao 2
- /2&_2:2, dp. dps & [(\E Ez - E3)® - p3~ p5~ 2p2ps cos © m1]
N

A

Integration over p, can be done easily here because of the § function. We

calculate

22 = -2(E- Ey) - EE-z- - 2ps cos ©

for the value of p, for which A = 0. This value of p, can be found from
formula Eq. (45) if we put n = 3.

‘The integration over p. therefore gives

dRs (0,B, cos 8) _ [p5 ph L
dleos )~ = | T® o W TR T o R ses s (1)

where p. is given by Eq. (15) as a function of ps. The final integration
over ps cannot be performed exactly in the gercral case where &ll three

particle masses are different and all different from zero.
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V EFFECTIVE MASS

a) Definition 2nd special case

The effective mass of two particles with masses my and mp is

defined as
B, = (Br+5)% - (Br+e)° g (18)

We will in this Chapter discuss the effective mass of a system of
particles with momentum distributions determined from phase space. To
illustrate a possible straightforward method, we will first calculate the' -
effective mass of two particles from 3-body phase space. H

In the preceding Chapter we evaluated the differential momentum

spectrum of a random particle in 3-body phase space

’ 1
ARy _ r°ph {[F-2BE; v mf - (m+me)?] (B - 2R, +mf - (my - me )21} 72
dP3 E‘_':. EZ"ZEE3+m§ L
. (19)

We are interested here in the differential distributiob' dRs/dM2
for the effective mass of particles 1 and 2.

Introducing energy and momentum conservation in Eq. (18) one gets

(E-B5) - g2 (20)

F? - 2EE; + m5 .

M 2

I

I

From this follows by differentiation
E Eps
M1 2 d.l‘;‘h 2 = -0 d.E3 = - E3 d.p;

Now, ps can be found -rom Eq. (20) a2s an explicit function of M,

U - (s em)?] (B - (e -ms)?]] 72
2E '

Ps
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We then get

_dR3 - dR3 d.p:; = quE; d.R:;
d:l‘.’h 2 dpz. d:l“h 2 Ep; dp3

(dropping minus sign)
and finally by the use of Eq. (20) and (19)

dRs  _ 7 ([, ~ (my+me )] [, - (my-me )] [F2 - (ms+lyp)°] [F® - (m;-l\.’l12fl§1/"’
M 2 2F% My »

(21)

which is the differential effective mass distribution of two particles from
3-body phase space. The lower and upper limits of My, are easily found from
the limits on ps given in Eq. (12). e get

M2 (min) = my + m,

My2 (max) = E-ms .

With reference to the next paragraph which gives a general formula
for the effective mass distribution, we want to re-write Eq. (21) in a form

which reveals the features of the general formula.

We put

By 6 = (my v me)?] e = (mo = me)* ]} 72
Eﬁ%z = (2My2) ;ﬁ”:-z +#12M12 m

i {[E2 - (ms + M2 )2 ] [E2 - (mz—qu)z]E%

*E oR T

Recalling formula Eq. (8) for the 2-body phase space we see that

the expression above is a product of two different R, 's, thus

%%%2 = (2My2) Re (0,My2,my,m:) Rz (0,E,ms,Ms>)

where the first factor R, is the 2-body phase space for particles of masses

my and mx and total energy M,. The last factor represents a system of

masses ms and My, with total energy E.
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b) General formula

e

The effective mass of k particles selected from n body phase space

n. . .
Il 1s given by
k
k k R k
e = (3 B.)® - (250" = (2q)° (22)

k . i
i=1 i=1 i=1

or from energy and momentum conservation

l

n -> no
EB-2 E)*-F-2 p)°
i=k+1 i=k+1

n
Q-2 q)° .
i=k+1

We have chosen here the k particles to be the first k when numbering

the n particles in order 1,2 ... k, k+1 .. n. This convention does not

restrict the generelity of our evaluation. “ie would now like to find an
expression
dRn d ( , )
£(1°) = = R (P,E,my, o.. m
a(e ) a(ur) ° n

where £(1®) is the probability that the effective mass of the first k particles
has the value . We have explicitly written for clarity that R.n is a function
of all the masses of the n particles. Using the expression for Rn from formula

Eq. (7b) we can write £(i) as

n n
£08) = [ L7 atag 8(g-a))6* (2 - 0) BGIE-02). (23)
i=1 i=1

The & function 6(§M2~ 1?) makes all contributions from phase space

vanish except for the cases where EMZ = 2.
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We will now try to transform Eq. (23) to a form where we can make use

and its recursion relation®. This

of the earliesr developed formula for Rn

will be more convenient for practical calculations.

Since K
4 _n s N,
/6(‘2 a kn)d A=
i=1
for integrations including y
n.
2oag =i
i=1
we can write
n k
8( 2 q-Q) =8"(2 q + 3 q;- Q)
1= 1=1 i=Kk+1

k
=/64(zqi §M>64<M+Z q, - Q) a* M .
i=1 i=k+1

When we put this expression into Eq. (23) we get

£(7) = /[raqam-m>1[w & g, 8(e2 - n)] x

—k+1

k
8°( 3 gy - M) ® (“M+ z q; - Q) 6(“m12—u)c1‘nM
1;1 * _ 1=k+1

. . |
=/u"y%a@;ﬁH#(g%;@M

1=t

x i m d‘q 5(q - mz)] a4 nM 6( W -~ 1P) 64( Mo+ E q - QD .

i=k+1 i=k+1

Since with the introduced nomenclature we can write

K K
R (0, H, me wovm) = ./[ 7 d%q, 8(qf-m3)] &° (iql-ﬁ i)

i=y

%

The following use of the recursion rclation to calculete the effective mass
distribution was, according to the author's knowledge, first made by A. Muller
and A. Verglas in an internal rcport (1962) at Centre d'Etudes MNucleaires

de Saclay, Paris.
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and N
v;. N : 4 2 2 Z N.o 2
n_k“(O,L,mkHa.° mo, Hj o= /i 7 4 qﬁ.6(%i mi) a EM 6(ku i) x
Ji=k+1
8% (i1 + ; .- Q)
X . i 7
i=k+1

we finally get
£(12) = Rk(O,u,m1 cee mk). Rn_k+1(O,E,mk+1... mn,¢0 . (en)

This is a general formula for the effective mass of k particles from n body

phase space.

We see that £(1?) is a product of two functions. The first, Rk’
gives the probability that the first k particles have total energy i in

their centre of mass. The second factor Rn_ is the probability that the

n-k particles plus one other particle with magziu (equal to the effective

mass of the first k particles) have total energy E in the centre of mass of
the original n particles. In other words, f£(1®) expresses the probability
that all n particles have energy E and simultaneously the k first particles

have energy u.
Exercise

Make use of the rule

dR 1 dR

e =

du2~ 2u du

and derive from Eq. (24) the formula for effective mass distribution of two

particles from 3~body phase space given in Eq. (21).

Compare this result with the curve for the (=Km) system given in
Chapter VIII.

c) "Shape" of effective mass distributions

The purpose of this paragraph is simply to show that all effective
mass distributions (the probability to find the effective mass u between u
and p+ duy) may be classified into a few groups of distributions; each group

has a characteristic shape determined by the values of n and k. The general
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appearance of each group may be used in a gualitative check of a particular
calculation of an effective mass distribution. A comparison of the different
shapes for different final state configurationsmay also give an indication

of, for instance, in which configuration it will be most fruitful to look for a
predicted resonance, in order to minimize the background expected from phase

space.

In general the effective mass distribution has zero probability for

two values of the effective mass ;M

i

EM(min) Mp o+ M+ evs 41

1

n, -

kM(max) E (mk+1+-...+-mn) .

The tangents to the curve at these points (minimum and maximum) will to a
large degree determine the shape of the distribution, and we have chosen

to characterize the curve according to whether these tangents are horizontal

or vertical. The following drawings illustrate the four different shapes

one can have

A
Rﬂ)
A
n=23 k=2 /////~’~—_—_N‘\\\\\ 2
) >-}k
A '
| [\ B
nxhL =2 e
N '
C
nz4 k =n-1
N\ .
/\ D
nzxb5. 3¢ kgn=-2
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Show that the distribution of type A hes vertical tangents at both
the minimum end meximum velue of “H. To do this calculate ar(u?)/du

2
from formula Eq. (21) and (24).

Snow by the same method that the distribution of type B has vertical

tangent at the minimum value of SM.

VI EFFECT OF A RESONANCE ON THE EFFECTIVE MASS DISTRIBUTION

a) Statement of problem

We will in this Chapter consider a system where we observe in total
n particles in the final state but where we also observe, or know there exists,
a resonance between the k first particles so that QM = I*, For this system
we ask the question: ‘hat is the effective mass distribution between any
number of rendom particles in the final state? It is clear that the presence
of a resonance between some of the particles will influence the effective mass

distribution between all pairs or groups of particles in the system.

We will assume in the following discussion that only (n=-k+ 1)
particles, with masses M*,mk+1 eee m, are produced in the original production
process which can be well separated from the decay process M* > my+ .00 m .
This description may be meaningful in particular if the resonance has narrow
width. To simplify the calculations we will also make the extreme assumption
that the resonance has zero width and can be described by a § function,

S(EM- M), It is clear that this assumption is in most cases gquantitatively
not correct, but it will, even for a broad resonance, describe in a qualitative

viay, the effect which the resonance has on the effective mass distribution
of the particles.

Our problem can be separated into three cases according td the method

of calculation of the effective mass.

(1) Calculation of effective mass of a group of particles none of which
participate in the resonance. In this case we can use directly the earlier

developed formulae applied to a (n-k+ 1) body final state, where one particle
has mass M¥, that is

R e (O,E,I\JI’",nqk+1 mn) .
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(i1) Effective mass of & group of particles wiiich all participate in the
resonance. This can elso be calculated from the formulac in Chapter V using

a k body phasc spacc with total energy M*,
Rn(O,M*,m1,m2 vos mk) .

(iii) Effective mess of a group of particles, some of which participate
in the resonance and some do not. This problem is more complex than (i) and
(i1) and cannot in the general case be performed with the help of a recursion
relation. We will in the following paragraphs discuss some very simple
special cases. In these calculations we have again assumed a resonance of
zero width. In principle the calculations might as well be performed with a

resonance of finite width as for instence with a simple Breit Wigner shape

£(0) = const [ (- w¥)? & (1/2)2]7 .

b) Three-body

We startwith the invariant 3-body phase space f ormula

3 3 3 | 4
Ry « d°py &°p2 4 ps 8% (Dy +pe+ps) 6(By +Eo+ E5-E) .
' Eir E» Es

We want to find the distribution of effective mass of particles 1 and 2 -
(dRs/dMy2 ) for the case where particles 2 and 3 are already in a resonant
state. We will first assume the resonance has zero width and mass M*. 1In

that case we can write

by, _ _d py Epp Eps .
dMy 2 - dMy 2‘/ Eq s Es 6(P) 8(E) 6(Mz3 M*) .
Integration over ps gives
dRs d ] Fp, Cope 1 , Y
T E -E Mo~ 1M
a2 diy » ] Ey T B (p1p2) 5( 1+F2+E3(P1p2) ) 8(1‘]23 I )
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Integration over angles sives (as demonstroted severel times earlier)

Ry _ 4 [ pidpe pedee p1p2d(cos O) gexy s
d.-l‘/ng B d.i‘."l'.12 ;/ E1 E2 E3 (P1 Pz) ( ) ( )

Now for py and p. constent we heve from nmomentum conscrvation

psdps = p1 p2 d(cos @)

and since

p3dp3 = E3 dE3

we get by substitution and integration over Es

Ry _ _d /dE1dEg & (M5 — M%)

Aty Ao

where momentum and energy conservation require that

nr B 2 2 2 .2
B = B~y -5 = B-F - ogietls o Balthem _ 5

For constant Ey it follows that

M
B = =-1ﬁ=2= dMyo &

Substituting into the expression above and recalling that

Mos = VE +m? - 2 By

we get

)
r%@gx. - /dE1 %% §(VF + mf - 2EE~ i) .

Integration over E4; gives

ARy _ Mip VE +mi-2E By

akiy 2 E E

E? - it*2 + mf
for E = '='='——"'§=E==~*===1== .
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Finally

dR D4 2, l‘i

o

d.l\,'l1 2 *x E E (25)

We need the maximum and minimum values of Miz . Due to the resonance

Mas = M* particle one always has a fixed cnergy

2 -
_ F? 4+ mf - 1P

E1 2E .

We see that
Mz = m§ +ms + 2E E, - 2p; p» cos ©

is a minimum for cos €@ = 1. To find the value of E, for which this takes

place we put

M 2. = B, - . =22 -
12 aEz 1 P4 P2 0
and find
-~ M2
P2 = oy P1

which gives

M, (min) = mf + md + 2 % (EF - %)

(my +m2 )%

Similarly for cos ® = -1 we find

1

8, (max) = mf +0d +2 22 (B} 4 p?)
jat] p

"

2 2 n
md o+ ms - 2my ms +L+;5-Ef
1

2
2 le (Ez + ]“2 - 1’1[*2
( . 2 ) m1 E; I\ )

1
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Exercise

e mes

A 3-vodv final state ..ith a resonance beticen two of the particles

(s = 1i*) can be thought of as an original 2-body decay

< e i

T
3

followed by a decay of the resonance

M

N

O
|
-0
23
2
w

into two particles which in the M* centre of mass arc emitted with fixed
energy. ilake a Lorentz transformation of particle 1 to the M* centre of mass,
and from the fact thet m, is emitted isotropically in this system, derive

the effective mass distribution of iy, given in formula Eq. (25).

¢) Four-body

We want to find the distribution dRs/dMi» for the case where we have

a resonance between particles 2 and 3. Assuming again that the resonance

Mz2s = M* has zero width, we can write

dR4 d d3p1 d3P2 d3p3 d3p4 3 > - - >
Ao & il 2 /‘ E, B, EB; Ea 8% (p1 + p2 + P3+ Da)

X 6(E1 +E2+E3+E4- E) 6(1‘.'.123_1\‘{*) .

Integration over ps gives

AR 4. [ &p &£pp &ps 1 . - i s = 3
dM12 = di“"hz / E1 Ez ~E3 T, 6[E1 +E2+E3+E4 (p1 pzp;) E] 6(1;123 R )

for momentum balance.
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We introduce polar coordinates as illustrated in Fig. 2.

N7 Fig. 2

Integrations over dy and d¢ give constant factors only; there-
fore

4Ry d psdp; padp. d(cos ©) p3dps d(cos ©s) dds 1
Mz & A o E, Es Es (p1 p2p3)

x 5(By + B2+ Es + B, = E) 8(Mps - M*) .
From momentum conservation we have
o= (Br+Pe+Ds ) = /% + 05+ 2p ps cos 6
so that for constant p’, ps and cos ©
ps dps = E4 dE; = p’ps d(cos 05) .

Substituting and integrating over E, one gets

dRy, _ 4 pidps pzdpe d(cos ©) dEs %5 s/ _ v
dlly,  dilya / B, R o/ 8 (M 5 - M¥)
for E; = E- By - E; - Es (energy conservation). If we express E; by ps from

the expression above we get

p'? + p3+ 2psp’ cos O3 = (E-Ey =By =~ Es)? - m}
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or when solved with respect to cos ©s

_E-EB-F-E)-m-p’-5 (26)
- 2p'ps .

cos Os

Formula Eq. (26) will be used later to find the integration limits of Es.

Since

(By + B2 )2 —(I_J)H'Ez)z

i

}.’12

m§ + m3 + 2Ey E; ~ 2py p» cos ©

we can for constent py and p2 put
My 2 dMy . = F1 pzd (COS @) .

If we also put dp; = %L dEs; etc. we get
1

dE dE; d®
By :1\1112/ 0t 2 5 (s - 1Y)

Interpreting the argument of the 8 function as a function of &5 we get by

performing the integration over this variable

QRs_ _ [ 4B d aE,
dl\"112 12

s
/ Sy | .
P ‘_S.%%TJ( (i s=1*) = 0

Here Mz3 is given by
Né;; = (E2+E3)2" (;24-;3)2 :m§+m§+2E2 E3‘2p2p3 cOS @23

where ©,5 (the engle in space between p» and ps) is a function of ©,,0s and

®s .+« From spherical geometry
cos Op3 = cos O cos Oz + sin O, sin @5 cos &5

®s is given by Eqg. (26) and ©, can be found from
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\N
N
|

> > - - -> 2
o, - B'.P2 _ (PitPe) Pe _ P1pe 0OS O+ 15 5
cos B = & = - = n ( 7)
D" Do P’ pe L P2

m% + mg - I’ﬁg + 2E1 _EZ + Z‘E-ga .
2p' pe

1]

By proper substitution it is therefore possible to express explicitly M,z as
a function of &, and determine o (My;-M*)/8%5 . This expression should then
be evaluated for the & that makes 13- M* = 0. wWe find

m5 + m5 + 2B, Ex ~ 2p, ps cos O, cos O = L*?
2p2 Pz sin ® sin CH

cos &5 =

Recalling that ©; and ® by Eq. (26) and (27) are expressed as
functions of E,,E,,Es and My,, we see that we are left with a triple integral
in E,,E;, and Es . This integral has to be solved numerically. The inte-
gration limits can be found as follows. For fixed E, and E, are E;(min)
and Es(mex) determined by Mps = M* f‘of cos @23 = -1 and cos ©z3 = +1 respectively,
together with the possible restriction that from Eq. (26) -1 < cos 05 < +1.
Similarly the limits for E, with fixed E; are determined from My, = mj + m3 +
2Ey E, - 2p; p2 cos © by putting cos ® = *1 if for these values Eq. (27) '
satisfies -1 < cos € g +1. : '

The lower and upper limits of E, are given by ‘

E, (mln) 2 Iy

and [ - (M eme+m )] [E2- (I\/I’°"+m4...1:f11)2]}1/2

E1 (max) o5 .

IA
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VII DALITZ PLOT

a) Contours of the Dalitz plot

We will discuss herc in some more detail the 3-body phase space, and
especially the properties of the Dalitz representation.

First we take the general case of three particles with different
In their centre of mass the particles are emitted

rest masses my ,m; and ms.
The Dalitz representation is a scatter

with kinetic energies Ty,T: and Ts.

plot of the kinetic energies of any two of the particles, say Ty and T., along

the x and y axes of a Cartesian coordinate system. The kinematical limits of

the reaction imposed by energy and momentum conservation will now confine the
points to the area within a closed curve which touches the two axes, see Fig. 3.

The kinematical constraints are

Es = E- (Ey + E») (By =Ty +my etc.)

I

(28)

05 + D3 + 2p1 P2 cos Oy, (0, angle between py and p)

3

It is clear that for given Ty and Tz (or equivalent pi and p2 )

we have also a fixed Ts. From the second equation (28) we then have
determined ©45. This means that for given Ty and T, we have a uniquely

specified situation.

B,

Fig. 3
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In other words, each point on the Dalitz rvlot corresponds to a well-defined

configuration in the final state.

The contour of the Dalitz plot revresents the configurations where

particles 1 and 2 are emitted psrallel or entiparallcel, that is for
cos @ = a = * 1

where a = +1 for ;1 and Ee parallel and 2 = -1 for 51 and 32 antiparallel,
that is at the lower (4¢ D A.) and upper (A; By B, A,) half of the contour
of the Dalitz plot respectively.

From equation (28) above we can eliminate E; and Ps and get

v+ aVv® - uw

T, = ” ‘ (29)

where

u = B? ~ 2ET,

v = BC - (AB+ C-2mym,) T, + ET3

w = (C- ATz )*

A=E- my

B =F - mp

C=%[(E-m-m)?-ni]

Formidea Eq. (29) gives the general relation between Ty and T.
along the contour of the Dalitz plot. We will look in more detail at some special

cases along the contour and see what they mean physically.

First let the curve touch the Ty and T, axes at points Ay and A
respectively (Fig. 3). Point A; corresponds to the case where particle 2 has

zero momentum, that is 51 = -53. The value of Ty at A is

- (E-m1~m2)?‘—m§
2(E - my)

Ty (A)

Similarly point A, corresponds to the case where particle 1 has zero momentum

and p, = -ps. To(A) can be found by irterchanging particles 1 and 2 above.
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The straignht line in Fig. 3 represents states where lp1‘ = pzl.

This line crosses the contour at pocints C and D. Point C corresvonds to

the state where ps = 0 and 2 value of Ty given by

D (0) = B Bemm)om
Z(E— m3)

We denote the maximum values of Ty and T, by By and B, respectively.
Point By corresponds to the situation where particles 2 and 3 are emitted

parallel and with equal velocity, that is

Ty (max) =Vl + pj (max)

where py (max) is given by equation (412) in Chapter III.d.

Point B, is found in the same way by interchanging particles 1 and 2
above, and corresponds to the case where particles 2 and 3 are emitted parallel

and with equal velocity but opposite to particle 1.

In the case where the three particles have equal masses as in the
decay of the T meson, the w resonance etc. another coordinate system is
mostly used. This representation is based on the fact, that from any point
inside an equilateral triangle (Fig. &) the sum of the distances to the sides
is equal to the height of the triangle. One therefore plots the kinetic
energies of the particles along the normels to the sides; then Ty + T +T5 =
Q value = height of triangle. Not all points inside the triangle are avail-

able because of momentum conservation.

If/;ﬁ treats the pions non-relativistically, one sees easily that

the points have to be within the inscribed

- Lr // circle of the triangle. For more details
k"j‘ Y Tz\\/T/; ebout this special kind of Dalitz plot we
Y refer to the original work of R.H. Dalitz
/,f’ T \ (Proc. Phys. Soc. A69, 527 (1956), and
// : \\» Reports in Prog. in Phys. 20, 163 (1957)).
/ N For the relativistic case, see Fabri, Nuovo

Cimento 11, L79 (1954).
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Exercise

Place a Cartesien coordinete system with origin in the centre of the

inscribed circle in Fig. 4 with y axis along Ty .
Show that
L= T
V3

Py~ 2 (g value = height of triangle)

3

n

N

and prove that for non-relativistic particles (of equal mass) the constraint

equations
Ty + T, +T5 = Q (Energy conservation)
[;1+.§2+.§3 = 0 (Momentum conservation for collinear particles)
cos @12 =11
lead to
eyt = (9

which is the equation for the inscribed circle of the triangle.

Exercise

A resonance between particles my and m, will give points clustering
along a 45° line crossing the Ty and T, axes on a Ty T» plot. Derive the

equation for this line for a given resonance mass My, = M*.

b) Distribution of points on Dalitz plot

We will show here one of the special advantages of the Dalitz
representation, namely: egqgual areas on the Dalitz plot correspond to equal
probabilities in the Lorentz invariant phase space. In other words, phase

space predicts uniform population of points on a Dalitz plot.

The importance of this fact appears in practice when one plots the
kinetic energies (for 3-body states) on a Dalitz plot to see if the points

are equally distributed throughout the plot. If the points are clustered

7863/p/cm



i
N
.

i

in certain regions on the vlot or along certain lines, this indicates that
(apart from experimental bias and statistical fluctuation) some final state
interaction has affected the distribution. The density of voints is pro-

portional to the square of the invarient metrix element of the reaction.

We will now prove that phase space predicts uniform population of

points. From formula Eq. (7) we get

_ a° py d3p2 d° ps 307 > I
Rs ~/ B S5 35 85(By + B2+ Es-E) 6 (py + p2 + ps )

which by integration over ps gives
Ry = | mee—e A0y P2 dpy A% P2 dpe 8(Ei + B + By - ).
8Ey E. Es
Integrations over space angles other than ©,, gives

1 ‘
Rz = /°8E1 B, B, Lr p; dpy 27 d(cos ©12)ps dpe 8(Es + Ex + Es - E).

Now, the space angle between 31 and 32 is for fixed py and p. determined from

momentum conservation

P2 = pi+ P2+ 2p1 Do COS Oy

so that
P> dps = p1 Pa d(COS @12) .

Further: from
p2 - EZ_m2
we find

pdp = EdE = E 4T

which when substituted into the expression for R; above, gives
Ry « /d’l‘1 T, daTs 8(Ey + E, + Es = E) .
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Integration over T; finally gives

Rs /AdT1 dT.

which expresses the fact that the density of final states is proportional

to the area in 2 Ty T, plot.

Exercise

Show that for non-relativistic particles, that is for

it is the non-invariant phasc space p and not the invariant phase space R

which is proportional to the area in a Ty T. plot.

¢) Effective mass plot

We showed in the preceding paragraph that equal areas on a Dalitz
plot correspond to equal probabilities in phase space. We will now introduce
another much used form of Dalitz plot, namely one where the effective mass
squared of any two particles from 3-body final state is plotted along the x

and y axes in a Cartesian coordinate system*®.

We will now show that phase space predicts a uniform population of

points on this plot as well.
We have
.-)
(B + B )? = (P +pe)°

(E - E3>2 - p§

}ﬁz

E? + m§ ~ 2FEs

I

E? + m5 - 2Em; - 2ETs

1

®

A useful representation for the messes of a pair of particles from a L-body
final state has rccently been given by Goldheber et al. in Phys. Rev. Letters
9, 330 (1962) and Physics Letters 6, 62 (1963).
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Fig. 5

We see that M5, is a linear function of Ts, which by differentiation gives

A(if,) o ATs »

This means that

d(M§3) d(M?3) oc dT1 d—TZ 9

or put in words: Areas on the M3; M§s plot are proportional to areas on the
Ty T> plot. From this follows that equal areas on the M plot correspond

to equal probabilities in phase space.

We may note that the minimum and maximum values of the invariant

masses are given by
iy 2 (min) = my + mp

M12 (max) =5 - Mx .

Similarly for iiis, by interchanging particle 2 and 3. The contours on the if
plot can in general be found by using the relation between Ty and T, given

by equation (29). For cach value of T, we have p» :'VT§+-2m2T§ and
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M35 = (E-E2)®~ 2. From Eq. (29) we find the corresponding Ty and can

then calculate

M2 = (Bi+E2)® - (pf+p3t2p p2) .

Exercise

Show that if a resonance Mys = M* decays isotropically in apace
with respect to particle 2 (that is dR/d cos @y, = constant) the points will
be evenly distributed along the Mj. axes on an M;, Mis plot.

We see also that formula Eq. (25)

E%%Z « My for Mys = M*

can be directly verified from the fact that the points are evenly distributed

along the My, axis on a M. M;s plot.

Show that the three possible effective mass combinations are
related to each other by the equation

2 2
Mo+ M55+ M35 = B2+ mf+ms+md .

d) Effects of angular momentum conservation

We have stated in the preceding paragraphs that phase space predicts
uniform population of points on a Dalitz plot. This statement is true,
however, only to the extent to which one can neglect the influence of con-
straint equations imposed by angular momentum conservation. In production
processes, for example, where one has a Q value high enough to expect some
contribution from production amplitudes with angular momentum states greater
than zero, one might expect these amplitudes to contribute differently to
different final states, since not all final states otherwise allowed by phase
space, will conserve angular momentum. The areas on the Dalitz plot

corresponding to such states will then be depopulated. Since one expects
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the contribution from higher vartial waves tc increase vith the § value of

the production vroccss, the relative depopulation of noints on the Dalitz plot
will probably vary with the § value in the production process. This makes

it important in the study of ;article resonances that the presence of an
apparent '‘bump’ on the phase space plot for cne particular incident momentum

is verifiesd for other incident particle momenta.

The effects of angular momentum conscrvation in connsction with the
production of the Y (1385) in the reection KS+p - A+ Tt 7°, has been dis-
cussed by R.K. Adair in Rev.iiod.Phys. 33, 406 (1961). A detailed quantitative
estimate of the cffect depends on the type of particles involved in the
reaction, such as the values of the particle spins, isospins etc. We will
give here a simple qualitative description of the angular momentum effect

with reference to the Dalitz plot for particles of different masses.

The configuration of three varticles in their centre of mass system
can be specified in terms of two momenta; E the momentum of say, the third
particle in the three particle rest system, and a the momentum of particle

one or two in the centre of mass system of these tio particles (see Fig. 6).

@

ol
!
®
rﬁ)l
S

©
N

-4
®

Fig. 6

Using this description of the threc particle statc we can express the total
anguler momentum (3) of the three particles as the vector sum of two inde-
pendent angular momenta 7 and T defined as follows: Particles1 and 2 revolve
about their mutual centre of mass with orbital angular momentum ?, while
particles 1 and 2 together with particle 3 revolve around the 3-body centre

of mass with orbital angular momentum I. The total engular momentum of
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the 3-body sys<tem is then F=T+L. Por simplicity we will in the following

assume all particles in initial end finel states to have spin zero.

For a given total cnergy of the system, the total production
amplitude (A) of a particular anguler momentum state J can be expressed as

a sum of partial amvlitudes of different 7 and T.

A =2 8301,
The summation is to be extended over all possible values of ¢ and L satisfying
7+ =73. The complex partial production amplitudes, a, are functions of
the individual perticle momenta, but are already integrated over space angles
i.e. the total production intensity is given by |A|2 =% laJZle' The

intensity of a specific pertial weave can be expressed as

|2 = K R5(0,E) P.P

'aJZL L ¢

where K contains the matrix element and is a function of the same variables
as aj; R3(0,E) is the invariant 3-body phase space integral, and PL and Pz
are the angular momentum barrier factors for the orbital angular momentum
of particle 3, and the two particle system 1 and 2 respectively. (The
labelling of the particles as 1,2 or 3 is of course in arbitrary order and
the labelling should be permuted in the summation above for the total pro-

duction amplitude).

PL and Pg can be calculated for different values of linear momenta
and orbital angular momentum of the system. For a simple qualitative
estimate it suffices to remember that for fixed angular momentum J,PJ
decreases with decreasing lincar momentum of the particle so that for J > O
is PJ = 0 for zero momentumn. For fixed momentum, Ejdeoreases with increas-
ing values of angular momentun. From this follows that contributions from
partial waves with L or ¢ > 0 diminish whenever one of the particle momenta
is zero or vhenever two particlas touch in momentum space, e.g. have zero
relatcive momentum. The points in phase spacc corresponding to *these con-

figurations can easily be found on the Dalitz plot.

7863/p/cnn



_)_}_3..

| b
g
c V/? e

194 2
~ | e
8—\' \“ ////\\
2 \ />>>
wl \\\ //2
0 \ A
A N N
) ~
E E) 3§
1 §‘~\ / ’ / ) \D

Ly

Kinelic l;r\eray
Fig. 7

With reference to Fig. 7 we schematically indicate the physical
interpretation of a few special points on the Dalitz plot. We have not
indicated the kinetic energy of which particle is plotted along the axes on

Fig. 7, since the choice is arbitrary.

Points a represent states where one of the particles has zero momentum.

Points b represent states where two particles have equal momenta.

It follows therefore that partial amplitudes where L > 0, which we indicate

by a give no contribution around the points marked a, and partial

JLL>0°

amplitudes with £ > 0 (a are zero around points b in Fig. 7. The

J£>OL)
size of the region which in this way will be depopulated, obviously depends
on the absolute magnitude of the angular momentum vectors 7 and T. For
instance around points a we expect PL to be small for

17| < kb

P r

where r is an effective radius, which we can take as the Compton wavelength
of the pion. fe ©ind that partial amplitudes with L=1 are strongly reduced
for |p| < 150 ieV/c.
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Similarly we expect P, to be small eround the points b for [E‘ < 150+¢ MeV/c.
Thus, to summarize, in the prascnce of angular momentum states J 2.1 one
cxpects some depletion of events in the region of the points a and b in

Fig. 7. These ercas neve been shaded to give & quelitative illustration of
the effect.

So far we have seen that the requirement of angular momcntum con-
servation gives rise to a centrifugal berricr effect which tends to depopulate
the Dalitz plot in certain regions. The arguments are valid irrespective of

the direction in space of the angular momcntum vector.
p g

We will now consider another effect of angular momentum conservation,
mainly pertinent to production processeé. This effect arises from the fact
that the orbital engular momentum vector in the initial state is not arbitrarily
distributed in space but confined to a plane perpendicular to the direction
of the incoming particle. Even though the Dalitz plot representation does
not contain any informetion regarding the orientation of the particles in
final state with respect to the beanm direction or production plane, we never-
theless find that the rcquirement of the angular momentum vector perpendicular

to the beam will influence the distribution of the points on the Dalitz plot.

A convenient description of the angular distribution of the particles
in the three particle system (see Fig. 6) is in terms of the distribution
function AN/d cos @ where the angle © is given by

> -

cos © = 4
. pPq

One particular advantege of this description is the following. Equel
intervals along lines paraliel to the axes on the Dalitz plot correspond to
equal intervals of cos ®. This nmeans that if E is isotropically distributed
in space with respect of E the Dalitz plot will be evenly populated with
points along lines parellel to thc axes and along lines at L5° with respect
to the axes. (This can casily be proved by performing a Lorentz transforma-
tion of a and @ to the threc particle centre of mass system. (cf. also

exercise in Chapter VII.c).

Since 7 and T arc randonly orientated in planes perpendicular to

-
q and B respectively, an isotropic distribution of a with respect to S results
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in a uniform distribution of the spacce angle betwcen ¢ and L. Wie will now
, -
show that the rostriction on the dirzction (given by the vector sum of J =
T . e, . . . . . _
¢+ L perpendiculer Lo the bearl) leads to & non-uniform distribution in space

- -
betieen g and p.

e introduce a Cartssian coordinate system with z axis in the beam
direction and assumc the physiczl system to exhibit rotationel symmetry about
this direction. iith no loss of generality the y axis can therefore be
taken in the dircction of the total angular momentun 3. Angular momentum
conservation now requires T and 7 to lic in a plane through the y axis.

For all combinations of L and ¢ satisfying

obviously

All plane anglecs 8 between T and 7 are equally probable. e will
now scek the angular distribution between 5 and 3 for a fixed and arbitrary
value of B, that is, we want the distribution function dN(B)/d cos ©. e
recall that p lies randomly in a plane (S in Fig. 8) perpendicular to L and g
randomly in a plane (T) perpendicular to ¢. Ve arbitrarily fix p to be
perpendicular to the intersecction linc between the 4o planes. The direction
of E is given by its angle ¥y with a plane containing E and f, see Fig. 8.

It then follows that the angle © in spece between a and ; is given by

cos @ = cos y cos (m= )
"1

-
g |
— ff"T:fA//)d JY
e ~

/\»//O o \2 ~ .
™~

N T

/ AN
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. - . . . dN( 5 . .
Since q can hove any direction in T, mﬂéﬁl = const, or eguivalently

dy
(<)
d cos ¥ sin ¥
we find
_an(g) . _ _an(p) , dcosy _ __1 1

T cos ® dcosy dcos®  siny cos (1)

Eliminating ¥y we get the distribution function for fixed f

\ 1
e, (cos® B- cos® @) /2 .

d cos ©

Finally, since all plane angles  have equal weights we find by integration

over f
+0

A
T - / (cos? p-cos 6) 7/ ap .
0
For numerical calculation this expression can be given a more convenient form
on éubstituting
sin® =k sin 8 = kt .
We then get a standard form of an elliptical integral of the first kind

an
d cos @

- (k)

1
/ at

« | - -~
J V-2 V-2 42
o]

which is tabulated in, for instence, Jahnke and Emde "Tablcs of Functions”.

The distribution function is shown in Fig. 9.

We also sec from Fig. 9 that dAN/d cos ©, which is symmetricel about
cos ® = 0, 1is strongly peeked forvards and backurards. This results in an
uncven populetion of voints on the Dalitz plot, i.u.‘thure w7ill be more points

concentroted near the boundary then in the middle of the plot.
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In summing up we conclude: The effect of angular momentum barrier
is to decrease the point density in special regions ncar the boundary of the

Dalitz plot. The uncven distribution in space of the angular momentum

vector will lead to decreasing point density around the centre of the plot.
We stress, however, that these remarks are qualitative only. In a specific
case, the effects will depend strongly on the particular type of particles

in question due to the conservation of isospin and parity.

e) Dalitz-Stevenson plot

From a very detailed study of the distribution of points on a
Dalitz plot Maglic and Stevenson et al. (Phys.Rev.Letters 7, 178 (1961),
Phys.Rev. 125, 687 (1962) were able to det:rmine thc spin and parity for the
three particle decay node w® - 7w o+ . Their elegant treatment is also
applicable to other threec particle decay modes proceeding via strong inter-
actions. Stevenson et al. made some special essumptions about the form of
the matrix element. This enabled them to perform a quantitative comparison
between prediction cnd exnerimentol data. Before revieving their arguments,
hovever, we will stete some more general and quelitative arguments given by
Dalitz which arc valid irrespective of the porticuler form of the transition
natrix element and which erc velid for spin velues less than three. [R.H.
Dalitz: "Three Lectures on Elenentary Particles" BNL 735 (1961) and "Strange

Particles and Strong Interactions, Oxford University Press (1962)].
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The fcundetion of the following discussion is the expcrimental fact
that no charged stote of the w has been found. Consequently w has isospin

I =0, i.e. the isospin irevefunction @w is & scalar.
We cssumc that the decay
+ - 2
W > T +T 4T
proceedsvia astrong interaction, i.e. isospin and parity are conserved. There-
fore, the isospin wavefunction of the final state nust also be a scalar. The
only way to obtain a scaler guantity from the threc isovector wavefunctions

®4,%, and ®; of tnhe pions, is to forn a triple product

e, = %1 (82 x @5)

@w = 0 and the transition matrix elcment will vanish if two or more of the

.particles are equal. Thus, the 37’ decay mode of the w’® is forbidden.

The triple product @w is antisymmetric in any pair of pions. . Since
the pions are Bose particles their total wavefunction (which can be expressed
as a product of a space function and isospin function) must be symmetric.
Thus, the space wavefunction of the w must also be antisymmetric in any pair
of bions. This fact has important consequences on the symmetry of the points

on a Dalitz plot representing the decay configurations of the pions.
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We consider in Fig. 10 o trianguler olot (cf. Fig. L in Chapter VII.a)
of the kinetic energiles of thec thrue pions. The contour deviates slightly
fron a circle because of the relativistic encrgics of the pions.  From the
antisymmetry of thc specce wavefunction in all pairs of pions it follows that the
distribution of events is unchanged by a reflection across any onc of the
three symmetry axes of the triengle.  This means that the distribution of
points should be the samc in all six sectors of the Dalitz plot; one of these
sectors is shaded in Fig. 10. In 2 study of the statistical distribution
one can, therefore, very conveniently, concentrate the points in a so called
6-fold Dalitz plot.

We will next consider some general features of the Dalitz plot dis-
tributions expected for different spin (J) and parity (w) assignments of the
w meson. (Sometimes we will denote the sign of the parity by a superscript

to the spin value, e.g. J,J° ).

(1) The density of points will vanish whenever one of the pions has its

maximum kinetic energy. This follows from the antisymmetry of the space wave-
function. An interchange of any two pions makes the transition matrix clement
vanish if two pions "touch" in momentum space. This happens when the third
pion has its meximum energy which is indicated by the points b in Fig. 10.

The above statement holds for all spin and parity assignments of the w to be

considered.

(i1) The density of points will vanish on the boundary of the plot for

w parity w = (~1)J. The contour represents configurations where the three

pions are emitted collinearly and their directions can therefore be specified
by & single vecctor. The space wavefunction will be a spherical harmonic
Y?(cos @), which has parity (-1)J. Since the intrinsic parity of each pion
is (-1), the total parity of the collinear configureation is (~1)>. (-1)J =
—(-1)J. Hence, if thewparity is (-1)J, the matrix clement must vanish on the

boundary of the Dalitz plot.

(iii) The density of points will vanish &t the centre of the plot if the

w parity is even. The centre of the plot rcpresents configurations where the

pions have equal cncrgy and their dircctions of motion meke cngles of 120°
with each other. Therefore, if the three particle system is first rotated
120° around an axis (N) normal to its plene it can be returned to its initial

position by intcrchaonging the perticles 1 » 3 and 2 » 3.
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exp <23= ) (-1) (-1)

If the angular momentum is quantized along N with a magnetic quantum number m,

the rotation corresponds to an operation

exp <%g mi) .

Each of the two successive interchanges corresponds to multiplication of the

space wavefunction with a factor (-1). Since the system is restored to its

initial position we must have

exp (-3- mil. (-1)(-1) =

For J < 3 (recell that m < J) this.equation can only be satisfied for m = 0.
This means that m = 0 is the only possibility for a non-vanishing matrix element
of the symmetrical configuration. This information will now be used when

we perform the following operations.

We reflect the symmetrical configuration with respect to the origin
and return it to the initial state by rotating the system 180° about N (the
normel to the plane of the system). The effect of the first operation is to
multiply the space wavefunction by (-1)>+w (w = intrinsic parity of the w)
whereas the second operation for m = 0 leaves the wavefunction unchanged.

Thus, we require
(=1)? w(+1) =
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This means that the matrix element must vanish at the symmetry point if the

w parity is even. This statement is valid for all J < 3.

(iv) The density of points will venish et the centre of the plot if J is

even. To show this we rotate the configurction at the symmetry point about
an axis along the direction of motion of one pion, say pion 3, and return

the system to the initial state by the interchange 1 « 2.

The first operation corresponds to an operator
= imr J
exp (im y)

where the y axis is oriented along e direction of motion of particle 3. Now,
since m = 0, J_ can also be guantized. Therefore the rotation multiplies

J
) .

the wavefunction by (-1 The second operation (interchange 1 ¢ 2) changes

the wavefunction by a factor (-1). In total we must have

-1)7(=1) =+ .

Thus, the matrix element has to be equal to zero at the centre of the plot if

J is even. This statement is also valid for all J < 3.

The above gqualitative but general considerations are sufficient to
distinguish between the possible spin and parity assignments of the w meson
if J < 3. A 0" state of the w decaying via the mode w - 7 + 7 +7° violates
the conservation of parity. The other possible states are O-,1-,1+,2- and
2%, Prom (iii) and (iv) follows that the states 1% and 0 ,2%,27 respectively,
would all demand zero point density at the centre of the plot. The experi-
mental distribution on the 6-folded Dalitz plot in Fig. 11 clearly reveals
that the dénsity of points does not vanish near the centre of the plot. Thus,
of all the admissible spin parity assignments for J < 3 we are left with only
one possibility, 1 , which from (ii) should require a depopulation of events
near the contour. This is in agreement with the observed distribution in
Fig. 11.

e conclude therefore, that the w meson probably has J = 1 and w = =1.
This was already shown by Stevenson et al. in their original paper, and we
now proceed to discuss their assumptions about the transition matrix element

and the quantitative comparison they made on the basis of the assumptions.
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The transition metrix element of the w decay is most conveniently
analysed in terms of the vectors ; and E introduced in Fig. 6. e recall
that E is the momentum of one pion (3) in the 3-body centre of mass system
and q the momentum of one of the other pions (2) in the centre of mass of

these two pions (1 and 2).

No rigorous derivation of the different matrix elements will be
attempted here. Our aim is simply to present some physical arguments from
which one can understand the qualitative form of the simplest matrix elements
derived from different tentative spin and parity assignments of the w. The
implicit assumption being that the wavelengths of the decay pions are large
compared to the interaction dimension of the decay which presumably is of the
order of the Compton wavelength of the w. Consequently the momentum dependence
of the transition matrix element will be determined mainly by the coefficients

for the centrifugal barrier penetration and will for L and ¢ greater or equal

L [/
| R R
= <yl lop é‘%:%?::é%‘:lﬁ?:

where R is the radius of interaction. Ve note that the momentum dependence

to one be of the form

of 1 is independent of R, so that in order to study the variation of M from

the Dalitz plot it suffices to write
il e« pL qe .

One general remark can be made about the possible values of {. A
reversal of E which multiplies the wavefunction by (-1)8 corresponds to an
interchange of the two particles (1 & 2 in Fig. 6) which changes the wave-

function by (-1). Thus we must have
{
("1) . (_1) = +1 .

It follows that only odd valuss of ¢ are allowed. Therefore only ¢ = 1 will
be considered in the following discussion of the three possible matrix elements

for w spin less or equal to one.
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0 meson (L=:<=1), Jince the intrinsic pority of the three plons is
(=1)® = =1 the 0 meson should rewuire a scaler transition matrix element.

The only scaler qucniity which is odd with respect to an interchenge of eny
- > .
two pions (say 1 end 2) is a scelar product of the form p .q (interchenge

of particles 1 and 2 corresponds to a rcversal of a).

We will now express this scaler product in terms of the centre of

mass energies of the pions. In the non-relativistic limit we can write

(-3

By = —=——— + m
2m
> 2
>
(i3
E; = =——————— +m
2m

where Ey and E, are the total energies of pions 1 and 2 in the 3-body centre

of mass system. From these two equations follows

E.E=m(E1-E2) .

Now, since the matrix element (i) should be symmetric in the labels of all

three pions, it will, for a 0 meson be of the form

i#07) = (By=E2) (Ba-Es) (Bs—-Ey) .

We see that M(O-) vanishes whenever two of the pions have equal energies,
that is along all three symmetry lines of the Dalitz plot. In particular
the density of points will be very low where the symmetry lines intersect,
that is, in the centre of the plot.

1 _meson. The matrix element describing the transition from a vector meson
state 1 to the three pion state must heve the properties of an axial vector
(pseudovector).  For the decay with L= £=1, ii(1 ) must therefore be of the
form Ex E. e note that this metrix element is also odd for an interchange
of two particles (reversal of q). Since ps = p and pz = -p/2+ q etc.

i can be expressed in terms of the momenta of the particles in their overall
centre of mass system as

. -> -> -> -> > -
{(1) = p1X P2+ Pax P3+ D3 X D

where M is made symmetrical in the labels of all three pions.

7863/p/cm



- 56 -

We see that M(1_) = 0 vhenever the sions are emitted collinearly;

that is the density of voints venishes on the boundary of the Dalitz plot.

1t meson. The transition matrix element must in this case have the properties
of a vector. The simplest decay of ¢ 1% w meson 1s by the emission of one
s-wave pion (L= 0) and two pions in a relative p-state ({=1). Then the

matrix element will be of the form Es E. Since

v

3 ->
= 4 p2

ng

-
q:

we have from momentum conservation

- -> ->
q=- /o(p1=-p2) »

Thus, a matrix element symmetrical in the labels of all pions and odd for

the interchange of any two pions will be proportional to
A + - > ->
H(1%) = Es(ps = p2) + Br (e - bs) + B2 (P5 = b1 )

This matrix element vanishes whenever any two pions have the same momentum,
that is at the points b in Fig. 10. It also vanishes at the symmetry point
of the Dalitz plot where Ey = E» = Es.

The variation in the point density on the Dalitz plot for the
different matrix elements can be illustrated on a three dimensional plot =~
referred to as Dalitz-Stevenson plot (see Fig. 11) - where the height above
the Dalitz plot is proportional to the square of the matrix element. Due
to the finite width of the resonances (i.e. the variation of the Q value
from event to event) it is most meaningful to make the Dalitz plot in terms
of the normalized variebles T4/Q, T2/Q and Ts/Q. In a Cartesian coordinate
system with x axis and origin as indicated in Fig. 11 we now have

Tp = Ty

= e

V3 Q

y=g -
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Figures 11 4,3, and C show isomctric zravhs of |#(17)|%, |u(07)|?
and IM(1-)|2 respectively. The meximum height above the plane is arbitrarily
chosen as unity and the contours heve besn drevm at 0.2 intervals. For
comporison with experimental date the contours are projected onto the plane
of the Dalitz plot. Because of the symmetry of the »nlot referred to carlier,
it suffices to make the projection in one sixth of the Dalitz plot. Such a

projection is shown for the 1 meson in Fig. 11 D.

The matrix elements for the 17 and 0 meson show considerable and
different azimuthal variation. For instance H(O-) = 0 for x=y=0 whereas
M(1+) is large at the same point. The 6-folded Dalitz plot has therefore
more or less arbitrarily been divided into two sectors A and B. The contours
(for constant |i]|?) in turn divide each sector into sub-areas Ai ... As and
By +.. Bs as illustrated in the 1 case in Fig. 11 D. Finally, Fig. 11 E
displeys the number of events found within each areca As,A> etc., as well as
the theoretical curves of |Mlz (obtained by azimuthal integration from Fig.

11 A, Band C) versus the distance from the centre of the Dalitz plot.  (This
plot is also generally referred to as Stevenson plot). It is evident that
the 1~ assignment to the w meson is in perfect agreement with the experimental
result. On the other hand, a 0" orai’ assignment would contradict the

experimental date for both sectors A and B.

With reference to the general remarks made in the preceding para-
graph about the effect of anguler momentum barrier on the distribution of
points on the Dalitz plot, one comment should be made. It was shown that
the contribution from partiel waves with L > 0 would diminish whenever one
of the particles in final state had zero linear momecntum. In the case of
the 17 w meson, however, |il(1¥)|? has its meximum value at y = 0 (Fig. 11 A).
The reason for this, is, that the matrix element is celculated for L = O only.
Inclusion of higher L values would still give finite values of M(1+) for
¥y = 0, but M would show a decrease for Tz - 0 duec to smaller contribution

from L > 0 states.
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a) Branching ratio in 7 decay

One has observed two 2-body decay modes of the 7 meson

If the matrix clement of the transition is the same in both reactions
the branching ratio is determined by phase space. We will calculate here the

branching ratio predicted both from Lorentz non-invariant and Lorentz invariant

phase space. In the centre oI mass oi ‘ule pion we have
E = 139.59 leV
Ey = 109.78 leV
pu = 29.81 lieV/c
Eg = 69.80 eV
Pe = 69.79 MeV/c .

Using formulae (6) and (8) these values give the following phase space pre-

dictions for the branching ratio

Pa(llv) _ s .

s (ev) = 0.427 (non-invariant)
Re(uv) = 0.207 (invariant)

Rz (ev)

We notice firstly a marked difference between prediction from non-
invariant and invariant phase space. Secondly we have a large discrepancy

between the predicted values andvthe cxperimental result.

Experimental branching retio
J¢ g
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From this discrepancy follows that there is no resason to believe that the
matrix element is the same for the two decay modes. On the contrary, we
expect from the two component theory of the neutrino that the matrix element
will be very sensitive to the velocity of the emitted lepton. Since the
positively charged leptons arc preferentially emitted with positive helicity,
the decay rates of 7° = pT+ v and 77 » eT+ v are reduced by factors (1-V /)
and (1-ve/c) resnectively. Disregarding phase spece this gives a branching
ratio of the order of 10° [see for instence A. Lundby, Progress in Elementary
Particle and Cosmic Rey Physics V, 1 (1960) ].

Sy

To illustrate the use of formulae (21) and (24) and to show the

appearance of some effective mass distributions, consider the reaction
K +N->K+% +n7w

which has recently been studied at CERN (Belliere et al. Physics Letters 6,
316 (1963) and the Sienna Conference 1962).

The reactions were produced in a heavy liguid bubble chamber filled
with CFsBr by a separated K beam with an average momentum in the chamber of
about 3.4 GeV/c. A K interaction with a single nucleon at rest corresponds
to a total energy in the centre of mass of 2.75 GeV. Since in the heavy
liquid the nucleons are bound in a nucleus, the centre of mass energy will be
spread out due to the Fermi momentum of the nucleons. The effect of the
Fermi momentum on the phase space distribution of the E7 mass is illustrated
in Fig. 12 for the case vhere only one pion is produced (3-body final state).

We have calculated here from Eq. (21) the Em mass distribution for the case of
a nucleon at rest (No Fermi) and for the two rather extreme cases that the
target nucleon moves parallel to the beam end with a momentum of 200 MeV/c
towards or away from the beam particle. These extremes correspond to a centre
of mass energy of 3.01 GeV and 2.52 GeV respectively. For the cases with
two or three pions (L4 or 5-body final state) we heve used Eq. (24) to calculate

the Zm mass distribution for a target nucleon at rest only.

The experimental values of the Zm coffective massces are presented

as histograms in I'ig. 13 and Fig. 14 for events containing 1,2 and 3 pions.
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The & m system which hes a third conponent of isotopic spin I = ~3/2
. . . . e :" 0o
ond therefore I 2 3/2 is presented in Fig. 13 ond the & 7 and Z 7° nass

values which heve I 2 }E arc conbined in Fig. 1L,

The curves in Pig. 13 end Fig. 14 are phase space curves constructed
from Fig. 12 for interactions with terget nucleons ot rest, cnd azre simply a
super position of 3,4 =nd 5-body phase space weighted according to the respect-

ive number of events observed.

There seeils to be good agreement betieen the experimental E 7 mass
distribution and the predicted phass space curve. This is rather remarkeble
since we have neglected all efficts from Fermi wotion of the target nucleons,
secondary interaction in the targoet nucleus of primery and secondary particles
ete. On the other hand the phese space curve in Fig. 14 seems to fit the

experimental histogram rether poorly.

The above gualitetive statements should be expressed in a nore
objective and quantitative way by perfornming a goodness of fit test of the
distributions. To do this we divide the mmss valucs of Fig. 13 into four .
groups with approximntely equal number of cvents in each group. Recalling

the definition of X® of a varicble x

q’*[xi (experimental) - X, (theoretical) ]2

& R TR e R MR

X% =) - S .
a X, (theoretical)
i

we find from Fig. 13 X® » 3 for three degrees of freedom. This gives a pro-
bability of about 40%, so that our expérimental mass distribution should have

X% > 3.0. In other words, if our sanple of events is taken from a universe
which follows the laws of phase space there is 40% probability that new measure-
ments performed on an equivalent number of cvents will give a distribution

which deviates even more from the theoretical curve.

Correspondingly we find from Fig. 14 X® = 10 for four degrees of
freedon, i.ejr a probability'of about 2%. It is therefore rather unlikely

that the & 7° noss distribution follows phase space.

We interpret that data in Fig. 14 as e likely production of two Zm

resonances; one 1is the well-estcblished &, with mass 1.53 GeV, the other is

S
a possible resonance at about 1.75 GeV.
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The phase space cffective rass distributions of the Erm system fronm

the same 4 and 5-body finel states ere showvm in Fig. 15.

The effcct of a resonance on the effective mass distribution is

illustrated in Fig. 16 for the following reactions

K+ N> K¥e B
LK+ T
and
K +N->K+8 +7°
LK°+ at

Fig. 16 illustrates both the 2 7° and © 7' effective mass distribution from

the last configuration.

c) Angular distribution

To illustrate the use of the formulee evaluated in Chapter IV we
have calculated the angular distribution of two pions from the T-decay. This
example is particularly sinple since as a good approximation we can do the
calculation for three non-relativistic particles of equel mass. The result

is shown in Fig. 17.
Exercise

Show that for three non—relati?istio particles of equal mass, the

integration limits of ps in Eq.(17) will be given by

ps(min) = 0
1
ps (max) = ()
L~ cos®®

where m = mass of any of the three particles. Show that the angular dis-
tribution is independent of the mass of the particles and of the total energy

of the systen E.
d) Dalitz plot

In Fig. 18 is drawn the contour of a T"+ Tn— Dalitz plot for the

reaction

— + —
K+p2A+7m 7
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with total energy in the centre of mass of about 2.02 GeV. This reaction

has been studied at CERN in a 30 cm hydrogen bubble chamber (Cooper et al.

1963 Sienna International Conference on Elementery Particles) using a separated
K beam with momentum 1.45 GeV/c.

Fig. 18 shows the result from an analysis of 582 events, and reveals
an exariple of a non-uniform distribution of points. There is a marked
clustering of points for both a constant T - and a constant T ot value indicat-

ing the production of Am" and AT resonances respectively, i.e. Y§~ (1385)

Figure 18 shows also a tendency that the points within a resonance
band may not be evenly distributed along the axis. For the Y+" there seens
to be more points for high Tﬂ_ values et¢. One explanation of this is sone
production of the p° meson. e leave as an exercise the finding of the
band on the plot within which one should expect points due to the meson resonance

+ -
p’ >4 m .
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APPENDIX
We define the Dirac & function by the equations
5(){) =0 for x /é 0 } (i)
lim §(x) »« 1in such a way that /Ié(x) dx = 1
X->0
for all integrations enclosing the origin.
From this definition it follows that
b
[ f(c) forac<c<hb s
/'f(x) 8(x-c) ax = { 0 forc<aorc>ho. (i1)
a

Correspondingly if we define a three-dimensional § function 5(r) as
-
8(r) = 8(x) 8(y) 8(z)
the integration over a volume V gives

£(%o) if o lies inside V
/f(?) 5(3e To) &3 :{

v

0 if 7o lies outside V.

In the case where the argument of the & function is itself a function,
like 8(3(x)), we find by substitution

/’6[§(x)] dx = /'G(y) TETg%ijT

where the absolute value is nccessary to ensure that dx = @,% >‘ is always
X

positive.
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From the above follows

! ; - 1ii
e e o o

'/Téfé(x)] dx =

The equation (iii) can also bec gencralized, using Eq. (ii), as

Jo ir a(x) = 0 .

|37 (%0 )]

/g(x) 5[e(x)] ax = -

This rule is valid for all functions g(x) which arec continuous at x = Xo .
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SY:BOLS USED

Momentum of the system in initial state.

Total energy of the system in initial state. It will be evident
from the context whether this is in the laboratory or centre of
mass system.

Total energy of i'th particle in final state.

Rest mass of i'th particle.

Kinetic energy of i'th particle in final state.

Momentum of i'th particle in final state.

Effective mass of two particles i and j.

Effective mass of the first k particles taken from a system of
n particles.

_ (2 2 _ p2_ 2
Four vector = (pi’Ei) of length qf = Ef - pf.



