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KINEMATICAL ANALYSIS OF BUBBLE CHAIBER FICTURES

B. Ronne,

Track Chamber Division, CERN

I. INTRODUCTION

There are many different systems used in the treatment of bubble
chamber pictures. Every big laboratory has its own system. In all of them
the scanning and measurement has to be followed by geometrical reconstruction
and kinematical calculations. Big computers are always used in the last

two steps.

We will not try to make any comparison between different systems
but only describe in some detail how the analysis is performed at CERN,

especially by the group working with a heavy liquid chamber as detector.

Many examples in later Chapters will be taken from one special
experiment concerning the properties of negative cascade-hyperons, and we will

therefore concentrate somewhat on describing this experiment.

IT. TREATMENT OF BUBBLE CHAMBER PICTURES

The three corresponding rolls with different views of the same
events are examined visually and all events fulfilling special criteria are

written down. The criteria of & are mainly:

1)  that a A (or V°) comes from a kink of a negative track,

2) that the transverse momentum of the decay particles are about
the same and oppositely directed,

3) that the transverse momentum is not obviously much greater than
what is possible.  The maximum transverse momentum (~ 140 MeV/c)

is equal to the momentum of the particles in the & rest system.
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RO . . . +
An event fulfilling the above criteria and where further a K or a
K°+iis associated with the production point of the E—, is noted as a signed

E « Those events without the K signature are noted as unsigned. In Fig. &4

we see one event which fulfils the criteria of signed &= .

Photograprhs are taken of all interesting events and short descrip-

tions of the events are given on scanning sheets.

Before an event can be measured it has to be carefully prepared.
The preparation of events is needed because the treatment of measured data
is performed by a computer, and this must know for instance which tracks stop

and which belong to a special interaction.

In our case the preparation includes labelling of vertices, tracks,
stopping points, decay points and intermediate points of tracks. As this
experiment is performed in heavy liquid, we often have a particle which is
scattared a few degrees at one point. If one assumes that the particle
loses only a small amount of energy in this single scattering, it may be
worth while to measure the track after the interaction point also, to receive
a more accurate value for the momentum of the particle. This is especially
true if the particles stops in the chamber. Multiple scattering may further
have as a result, a track which looks partly straight and partly curved. The
geometry programme, which is described below, can only accept a track which
has the same curvature along its entire length. Other tracks have to be
divided in several pieces, with the help of intermediate points and each piece

is treated separately by the geometry programme.

The measurements are made on a digitized projector, which gives the
output coordinates (precision a few microns on the f£ilm) on a tape. This

can be treated bty the following chain of vrogrammes which are described below.

REAPy—é*—LTHRESH !JOIN' > %GRIND
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ITI. GECMETRICAL RECONSTRUCTION

The data from the measuring machines are first sent through a pro-
gramme named REAP. Somc types of measuring errors and errors in labelling
of tracks and vertices are rnow detected. REAP further prepares the data to

be in a suitable order for the following programmes.

The geometrical reconstruction of tracks is mads in THRESH. A
detailed description of THRESH is given by Cnops (THRESE Manual) and Moorhead
(CERN 60-33). The input tape from REAP contains measured coordinates of
fiducial marks and of points along the tracks and also information which makes
it possible to identify the event and recognize different types of tracks

and vertices. This is needed later in GRIND.

Before the reconstruction of a track can start, one has-to provide
THRESH with some general information needed for all events in an experiment,
€.g8. coordinates of cameras and fiducial marks, refractive index of the media
between the cameras and the back glass of the chamber. path length in each
media, tolerances for the measured coordinates of fiducial marks, tolerances on

the error of a reconstructed point etc.

A reference system is fixed. The z direction is chosen to be
parallel to the uniform magnetic ficid. The cameras are positioned around
the z axis. The plenc z = 0 is defined to be in the back of the front glass.
The apparent position (%0,ye) in the z = 0 plane of the fiducial marks, as seen
from the cameras, can be calculated from the general information above. The
coordinates (xm,ym) measured on the film can further be transformed through
intermediate media to the plane z = O. This transformation is described by

the following equations:

Xo = 1 +02X + o
r e m 3yﬁ

(1)

I

- Xg + s X+ o
Yo s X eyh

The six constants a; can be svaluated by the method of least squares (Chapter
IV.2), if at lcast four fiducizl marks have been measured. A set of a values

is calculated for each view.
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The number cf measured fiducial marks needed can be reduced if one
includes some additicnal conditions, i.e. that the coordinate systems are

orthogonal and that the magnification in the x and y directions is the same.

The coordinates of all measured bubbles can now be transformed to

the reference plane z = 0.

A light ray, which passes from & point inside the chamber to a point

on the film, may in the chamber be described by the following two equations:

o

where Fx’Fy’Gx and Gy can be calculated (Moorhead, CERN 60-33). The line

I

F z+ G
X X

(2)

F z+ G
y y

Eq. (2) is called a reconstruction line and can be derived for each measured

point.

The position inside the chamber of a bubble, measured in at least
two views, is identical with the intersection point of the corresponding
reconstruction iines, where the intersection point is defined to be that point
which is closest to the two lines. It is then easy to find the true coordinates

of such bubbles.

A track is, however, measured at about 5-10 arbitrarily chosen points,
and the measured points are normally not the same for diffecrent views. At

the first reconstruction of a track, one uses the following method.

The two best views, according to the following criteria, are picked
out. The first view is chosen to be the one on which thec track is most nearly
seen as an orthogonal projection. We then calculate the angle between the
tangent to the track at the initial point and the line joining the camera
corresponding to the first view with each one of the other cameras. The second
view is chosen to be the one for which the corresponding camera gives the
greatest angle. 411 points in space corresvonding tc the measurements in the
first view are reconstructed. Before cne can find the points in space, one
must, however, have the reconstruction lines from exactly the samc roints in
the second view. Thesc lines arc not available, but it is possible to inter-

polate between reconstruction lincs of ncar positicned voints until one finds
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a missing line. This will intersect the corresponding line from the first

view in the <true space position of the bubble.
fter 21l points in one view have been reconstructed, one determines
a first approximation to z helix, which can describe the motion of the particle
inside the chamber. The helix is described by the following equations:
“x' =p(cos @~ 1)

"y’ =90 sin © (3)
z’ 0 e tga

The origin is at the starting point of the track, the z direction,

1l

as before, along the magnetic field and the y direction along the tangent
of the projection of the track in the z = 0 plane. p i1s the projected
curvature in the same planc. a is the dip angle of the track and © is the

angle between the x and x’ directions.

The parameters of the helix derived above are used as starting
values in a final least squeres fit, where the reconstruction lines for all
measurements in all views are included. The last fit is an iterative process,
and the parameters converge normally (in about 97% of the tracks) to the best

it solution.

For each track THRESH gives curvature, dip angle and azimuth angle..
It is preferable to use curvature instead of momentum because the f irst
variable is more normally distributed than the <econd one, and the method
of least squarcs is based on the assumption that the variables are normally
distributed.

The angles of a track are given for one or both endpoints, while
the momentum is given for a meanpoint. At e later stage, when one has
assumed a mass for the particle, one can make an energy-loss correction and

thus find the momcntum a2t other peoints of the track.

THRESH also gives errors in the derived quantities. The uncertainty
of track variables is mainly due to uncerteinties of the measuring device

and contributions from Coulomb scattering.
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The uncertainty of coordinates from thc measuring machine is
assumed to be known. This constant error is propagatsd through all the
space reconstruction and in the best fit solution it gives the corresponding

uncertaintics of thc derived guantitics.

The unccrtainties due to Coulomb scattering depend on the mass of
the particle. THRESH is mass indepcndent and the multiple scattering

errors are therefore included at a later stage.

A1l parts of a track which has been measured in sevecral pieces
are treated as scparate tracks in THRESH. One has to combine the informa-

tion from these pieces to one track. This is done in JOIN.

IV. KINEHATICAL CALCULATIONS

1) Constraint equations

A signed ol may look as in Fig. 4.

The possible hypotheses for the interpretation of an event have
to be tested by kinematic calculations, which are made in GRIND. A V°
may, for example, bec due to the decay of 2 K%, A or N, or it may be a two-
prong star from the interaction of a neutral particle. 0ften there is
mére than one possible origin for the neutral particle and all hypotheses
have then to bc tested for each origin. The V°'s in Fig. 4 may, for example,
have either A or R as origin. AV may be due to the decay of a E—, E-, K-,

7 or u , or it may be a scattering of a negative particle.

The basis of testing different hypotheses is that the four momentum
and cnergy equations havec to be fulfilled at the decay of a particle. If
we have less than four unknown quantities in these equations the system is
overdetermined, and the possibility to satisfy all equations give a test of
how good the hypothesis is. The tcst is in general performed by the method
of least squares, which is described below. All measured quantities are
fitted to give the best solution and the probability that the hypothesis

1s correct is also given.

7863/p/cm



For the & docay we can write the four cnergy and momentum equations

in the following way:

e
£y = PA cos lA cos o, - Pp cos KP cos @p - Pw cos Kﬂ cos ¢ = 0
o — ) a3 ¢ - si - b ix =
1 —.Ph cos &, sin ¢, PP cos xp sin @p Pﬂ cos xw sin ¢ 0
q f5 =P, sinx, -P sini_=-P_ sinA_=0
A A P P T 7
E “VEE LB - VPR 4R - VFR + I = O (%)
A A ol D T i

where Pi’ Xi, and ¢, arc the momentum, dip angle and 2zimuth angle of particle 1.

If we assume that a2ll threc parameters of the proton and the pion
are known and further that the lambda comes from a given vertex, we have only

one unknown quantity, P In this case the event is subject to three con-

AC
straints, and we talk about a 3 C-fit.
e may treat the mass of the decaying particlc as unknown and have

then a 2 C-fit.

Assuming the production paint of the V° to be unknown, there are
three missing variables (P,, KA
still a 1 C-fit to find out if the A hypothesis for the V° is correct.

ar.d Y in the caquations above, and we have
q)‘(\/ 1 5

For the @ decay we have equations corresponding to Eq. (L) if
we take the fitted lambda es measured. In the best case we have no unknown
quantities and thus a 4 C-I1t, Mostly, however, the © track is straight

and therefore the momentum of the ¥ is missing. We have then a 3 C-fit

-

with the & mass known and a 2 C-fit if the mass is calculated.

In the examples above we have only tracks from onc vertex, which
are subject to a fit. These types of fits are called 1-vertex fits. Once
all hypotheses have been tested by +d-vertex fits, onc may go a step further
and, for cxample, combine the four equations from thc lambcda decay and the
four from the & decay to a 2-vertices fit with cight cquations, vhich in
the best case gives a 7 C-r'it (P\ unknown ) .

2) The method of lcast sgu2res

A description of differcnt ways of using the method of least squares
in kinematical analysis of bubble chamber cvents is given by R. Bock (CERN 60-30

and 61-29) and Berge et al. (UCRL-9097).
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Ve denote the mcasured variables by m, ; i=1,2 ... I, and the
unknowns by xj,j:1,2 voe Jo The superscript 0 rbfbro to unfitted quantities.
The constraint equations arc written fk(x,m), k=1,2 ... K. The error

matrix of the measured variablces is called Gmi, where the clement (G )
is the variance of the clement m, and (G ) ; the covariance of lements

m, and mJ. The inverse, Gm’ of an ecrror matrlx is called a weighting matrix.

The methed of lcast sguares is based on the assumption of normally
distributed variablcs and states that the best sct of variables is that

for which the function

zfi

J:‘I

(- u2) (6,);; (m;-m3) (5)

-—

e

e
l_L

has a minimum, and where the variables fulfil the equations:

fk(x,m)zo k=12 ... K. (6)
Assuming uncorrelatcd variables [(G;1)ij =0 for i £ j] we find

that Eq. (5) is rcduced to the well-knovm expression
- (m, - m?)?
X? = ZE: ““&fT“é;" (5)
5 (Gm )ii

i.c. onc has to minimize the sum of the weighted squarcs of the deviations
between fitted and measured quantitics.
The least squares solution may be found in one of the folloving

two ways.

2.1) The eliminstion mcthod

The J unknowms xjare ¢liminated from the constraint equations,

and vie get a new sct of K- J cquations

fk(m) =0 k =1,2 ... K= J (7)
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There are two possibilities to go on.

One may use the equation (7) to climinate K= J of thc measured

variables from the function X® (m). The equations
X% (m .
—dmi)=o i=1,2 ... I-K+J (8)

may then be solvcd to give the solution for the remaining I- K+ J variables

and so on.

The othcr and better method is to introduce the Lagrangian multi-

K’ k =1,2 ... K~J. The problem is then reduced to finding the

minimum value of

pliers a

K-J

(mg-m3) ()55 (my=m3) + 2 Zakfk(m)' (9)

Xz(m,a) =

(et
T

-
1
-
e
n

k=1

In the first step we assume that the measured variables are
uncorrelated. The minimum of X® is then found by solving the following

system of equations:

K-J
S o _ -
Rk {(mi-mi) (6),, + Zakfki(m)} S0 41,2 ... T (10)
k=1
dxz
E"Z=2fk(m) =0 k=1,2 ... K-J (11)
where dfk(m)
f .(m) = ssesese——
ki dmi

Equations (11) arc just thc constraint conditions.

As these arc in general not lincer, one hes to repeat the calcula-
tions below to gect a still better solution until some given criteria arc

satisfied. A superscript v mecans that this value hes been derived in the

v=-th iteration.
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Assume that ve have passed the v-th iterative step and have to go

on at least onec step morc. From Eq. (10) wc have:

K-J
-1 X
W = nd - L(sﬂ)ii P (n) oo* i=1,2 ... I. (12)
k:1

The constraint equations can be cxpanded in the following way:

.
£ (m) + Lf;i(m) (m* - n?) =0 k=1,2 ... K-J. (13)
1=1

We can now eliminate mi*’ from equations (12) and (13) and get:

K-J
vo_ v v _ s _ . K-
Rj Zsjk a ' =0 =1,2 ... K=J (14)
k=1
where
I
v o pV v o_ Vv
R i) + ) £5,(0) (0 ) (15)
i=1 '
&
v v -t
Sjk = ZiJfki(m) (Gm)ii fji(m) . (16)
i=1

Eq. (14) is a system of K- J linear cquations from which the

unknown variables, ai+1, k=1,2 ... K~ J, can be solved.

The ncv set of mY*' values is then obtained from relation Bq. (12),
and the iteration proccss can go on until some stopping criteria are fulfilled.

The iteration process is started -ith the valuecs m, = mg and @, = 0.

7863/p/cm



-97-

The calculations are more simplified when matrix notations are
used. We re-writec the equations above in this wey and extend them to be

. . , -1 . . . .
valid also for corrclated measurcments (Gm is no longer a diagonal matrix).

X = (m- m°)T G (m-m°) + 20f (97)

where T means a transposed matrix
e _oyT T _ ,
_2{(111 m°) Gm-a-afm}—o (107)

where f = df(m)/dm is a (K- J)x I matrix

vt _ o A~ T vy

m =m Gm f‘m Q (121)

:f’v-e-f;;(mvﬂ—mv) =0 (13/)

R-S o'* =0 (14)
with

R=f”+f;(m°-mv) (157)

— b -1 vT

S = fm Gm fm (167)
and we get

=T R (17)

If Eq. (12') is introduced into Eq. (9’) we find
& = (@) r (18)

2.2) A generalized method

The elimination method has the disadvantage that the constraint
equations have to bc modified in nany ways, depending on which variables
are missing. One cen, however. make the fit in a morc general way, so

that the same systom of constraint cquations can be uscd in all cases.

We have to minimize the expression:
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/ \ T
X (myx,0) = (=)' 6 (m-n°) + 2 2 (x,m) (19)
which means that the following system of eguations hes to be solved:

7 ax? ( orT T ~
T Zt(m z°) Gm+afm}—0 (20)

[H

2
< BT Lo (21)

ax?
da
..

where £, = df(x,n)/dx.

= 2f(x,m) = 0 (22)

The constraint cquations can now be cxpanded in the following way
R S C A I £ @™ -n") = 0. (23)

Exactly in the same wey as above Egs. (12/- 17) we obtain:

AL [Re £ (27 = %)) (24)
with R and S defired by Eq. (45’) and 16').
We introduce this vector into Eq. (21) and find:

v+ v (fst"1 fv)"1

’ @75 R, (25)

The problem is then solved.  From the new sct of ¥ 7' values we
calculate o”™, Eq. (24), and finally m**, Eq. (12),

As above, Eq. (18), we have
2= @) R £ - x)]. (26)

The itcration process has to go on until somc test indicates
that a received sot of approximetions is good cncugh. One may, for example,
require that thc differcnce in X% between two consccutive itcrations is smaller
than a given value, or still better that the constraint equations and the

derivetes Eq. (20) and (21) arc zero within some given limits.

7863/p/cm



_99_

2.3) Calculation of errors

+4

From Eqs. (127), (15’), (2L) and (25) above, we see that m" ' and
x* ™ can be expressed as explicit functions of m°. Let us linearize these
equations and write:
v+t _ s o0
m’" = g(m®) (27)
v+ o\
x = h(m®) . (28)
The error matrices are then obtained from the formulae:
-1 gﬁ -1 (_15 T
va = g0 Gm 3o (29)
T
-1 dh -1 (dh
G'Xv+1 -"-EE"]‘O Gm <E50> (30)
and the correlation between measured and unmeasured variables from:
’ T
_dg ot (dh
C(mx)v+1 = 3p° Gm (dm°> . (31)

The two derivatives needed above, dg/dm® and dh/dm°, are obtained

in the following way:

48 _4_¢' pTda
In 1-G £

0 =

i
-
]
)
X
’—b
H
n
L
N
Bl&
+
H
Iy
"
Bl *
t
b
<
[

Il
—

]
“y
H

3
w
)
\
15

]

H
~~
H

=]
n
A
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A
H
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gle:
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~
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After having intrcduced these exoression into Eq. (29- 31) and

simplified the results we obtain:

-1 -1 -1 T o=t -1 T
G+t =G =G f S fC  + cn fs 't (f s'r o) f s f G (34)
-1 PP -1
Gpotr = (£, 8 1)) (35)
c = 'L 57 (¢L 57 )" (36)
(mx)*** "7 'm x\'x x/

One can see from Eq. (34) that the errors of the measured quantities
are reduced in the least squares solution and that there are correlations
between fitted variables even when the measured quantities are uncorrelated.

Some examples are given in Chapter IV.L4 and .5.

3) The X°test of a hypothesis

After an event has passed through the kinematical fitting programme,
one has to decide if the tested hypothesis is correct or not. All measured
variables are forced to fulfil the constraint equations. The megnitude of
X% is dependent on how big the differsnces between the fitted and the measured
values are. One can convert the X* value end the number of degrees of
freedom (n = K- J in our notations above) into a probability by using the

theoretical X* distribution. The latter is given by the formula:

£ () 71-?“- X/ (37)

2r(n/2)
where T' is the Gamma function.

A derivation of the X* distribution is given by D. Hudson (Lectures
on elementary statistics and probability, CERN 63-29).

Examples of X? distributions for three different numbers of degrees

of freedom are shown in Tig. 1.
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The mean of a X2 distribution is at X* = n, and we have further

/fn(x’) X =1, (38)

The probability that the X* is greeter than or equal to a given

value Xp is

P(X* 2 X3) = / £,(¢) axct . (39)
X5

These probabilities can be found in most statistical tables. One

example is given in Chapter V.3, (Table 3).

Assume that the least square method above, gives as result the
value X3 when testing & hypothesis. We can conclude that the hypothesis
gives a possible interpretation of the event if the derived probability (Pn)
is greater than 5%. If the probability is between 5% and 1%, we find the
hypothesis to be doubtful, and if P is less than 1% we conclude that this
hypothesis is very improbable.

The two percentage limits above (5% and 1%) may be compared with
the corresponding limits (2.0 and 2.6 standard deviations) for a normally

distributed variable.

Before we can use the probability test we have to check that the
X? distribution obtained from the fit procedure agrees with the theoretically
expected one. If the experimental X° distribution has a mean value, which
is too low (high) we may suspect that the errors of the input parameters

are systematically too big (small).



0.4
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0.2

r=5%

Fig. 1

x? distributicns for three 1ifferent degrees of freedom
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It is also possible to calibrate the errors assigned to each
variable m, . We know that

s(m,) = ——31 (40)

should be normally distributed with unit standerd deviation and mean value
zero. We can then correct the errors until S(mi) has the correct width.
If the S(mi) distribution is very asymmetric, we conclude that the variable
m, is not normally distributed or that we have a systematic error in the

measurement of mi.

In Fig. 2 we give the experimental and theoretical X? distribution
for the 1-vertex = -fit with M_- unknown, (see Chapter IV.1). The agree-
ment between the two distributions seems to be good. A method to test

the agreement by using probability paper is described in Appendix II.

4) Numerical example; fit of a A decay

We illustrate the practical use of the generalized method of
least squares by testing the hypothesis that the event below (Fig. 3) is a
decaying lambda

Fig. 3.



Il

20

10

Fig. 2

Experimental and theoretical X° distribution for a 2 C-fit.
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To make the calculations somewhat easier, we assume that the three
tracks (A,P and 17-) are coplanar and further that the measured quantities
are uncorrelated. The notation of the measured quantities (mi) with errors

(O‘i) is explained in the figure.

The numerical values are

m{ = 900 * 100 MeV/c
md = 5.7 = 150

md = 100 * 20 MeV/c
ny = 573 1%0 .

The constraint equations can be written

fy{ = Xx-m cosme=ms cos mg =0

f2 = my-sin my, - ms sin my =0 (41)

P35 =VR +i8 -Vl +12 - VmE + 1 = 0
A P T

where the only unknown quantity (x) is the momentum of the lambda.
We have three equations and one unknown, and thus a 2 C-fit.

The error matrix is

o; 0 0
¢t 2|0 & 0 o0
n 0 0 & o0
0 0 0 o4
S —
and the weighting matrix
1 -
' 0 o0 o
1
0
z_g 0 0
G = 1
m 0 0 'O=_-§ 0
! 1
{0 0 0 ,
L o |

l_
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We have to minimize the expression
2 Q T (U ; Tn
X (myx,0) = ((m=-m°) Gm(m—xn )+ 20 f(x,m) (19)

which can be written

"1&? 5 0 ol im-m?
0 ‘6_:'2' 0 0 m, "mgo
X% = (m - mf;me - md3m; - md ;me - mQ) : .
0 o ?’ C m;-mg
3
0 0 0 g? m, - mg
i“f11
+ 2 smesas) | f2| =
f5

_A.(mi_ m;)z ,
- ———— e D E a. £. .
) Gi Jd J

i=1 j:1

This ié reduced to the first well-known term when the constraint

equations are fulfilled.

The following system of equations nas to be solved.

( 2 0 < .
Poeai™Tme N o Floo 125 (2)
dm, o% L9 am.
1 .j=1 1
4 ot afy
— =2 ) a —3dog (13)
dx [ 9 ax
j:1
an
E*;;: =2 fJ =0 J = 1,2,3 (L*J"')
. J

We have thus eight equations and eight unknowns (a4 a2z as my mp ms ms

and x).
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The constraint equations can be expanded in the following way

after we have passed the v-th iterative step

4

v v v+ v v +1 v . c
+ (mL - mn , - = =1 .
£ y‘fjl(ml )+ ij(:e) x’) =0 32,3 (45)
1=1
We have
T v v v v v . v_m‘
i = COS mp + my S1ln o - COS ma + M3 S1n Mg
afY . v v v . v v v
£ - )eed { = + 51n M2 + my COS mp - sin mg - ms CcOsS Mg (L|.6)
i am’;_ ’
- ‘fg‘g‘:_’i 0 - '=:;:£r‘_;=:= 0
Vind? + 1 Vid® + UI:T
and
o
af | 0 ’
{fx”g} = {g;ﬁ]‘ = | L (47)
| PTaE |
VA'< + 1, |

We can re-write the constraint equations in a more suitable form.

4

Y_‘v vty _ o0 Voot oy _ . o

Z_jfji(m:.L mi) + Rj + f‘xj(x ®¥) =0 i=1,2,3 (48)

i=t

where
4
Y_'\
- PV _ v v_ o

Rj = f’j fji(mi mi) (L9)

i=t

Equation (42) can be written

-+ - v+

v©eo_o0 VM QL . ’

my m, = oi > aj fji i=1,2,3,4 . (u2’)
J:1
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. e +
We can now eliminate mz ' between Egs (42') and (L8).

P

4

3
N

DG ) AR e ) S, ()
L L
k=4

It

i=1

e

After re-arranging the terms we have

3 4
N . fY. 02 =R, +f (PR j = 1,2 (51)
Z_,ak L ,jl kl 3 J Xj( ) J 3 33 ( )
k=1 i=1
or
( 4 4 4
1 v vit\ v oV V-4 v v - D
ay Zf1102 + az Zf1l 2102 + as Zf1l 310"]2_ R1+f‘X1(l )
=t i1=1 1=t
4 4 4
UH v v V-4 v2 V4 v v - vo(gvtt_
< @ zfalfucz"'“a Zfzio‘;+a3 Zfl 31 i R2+sz(y )
i=4 i=1 i=1
4 4 4
-Hr—.\ V4 v v v+ v2 v v+ v
v v v — ) -
) B B ) B o el 2l merl (70)
L....'
\ 1=1 J.=1 1=1
(517)
The three unknowns (ag_ﬂ)can be solved from this linear system of
equations.

Eq. (51) is of course identical with the equations derived in
Chapterv.2.2.

o’ = 5T Ry £ (2T - )] (24)

We have namely
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S _ \ --1 UT:
m m m
— e - —_
. £y, £9s  fli |ofF 0 0 0 | !f7y £33
0o & 0 o0 l'fh, . %
= | f¥y fh. fzz fia ~ i ) . . =
0 0 % 0 if” 25 35
]
£ f3. £S5 f5 [0 0 0 oF f¥s fis i
S11 St12 S43
= S21 S22 Sz23 (52)
S34 S32 S33
I JR—

where

X—f" e . . (53)

Ji “ki

i=é

. . V41
The S matrix has to be inverted before we can solve a; - We have

{Sn Sz 1 S34

S = TS!.T ‘1312 Sz2 S;g (54)
313 Sz3 Sas

where |S| is the determinant of the matrix S and Sj is the co-factor of the
element S e (The co-factor Sjk is equal %o (—1)J+k times that minor

which is obtained when the j-th row and the k-th column are deleted.)
The solution of Eg. (51) is

3

fsz%FEZSkﬂﬁk+f£Jf””~x“H 5=1,2,3 . (55)

k=1
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a;“is eliminated from %g. (43)

3
Lf;- Zskj Ry + ka(xv+’ -#&)] =0 (43)
J

J=t1 k=1

and #*'- X’ can be solved

J=1 k=4
b LA C (56)
3 3
v v
AR
j:1 k=1

The solution Eq. (56) is of course also obtained from Eq. (25) after
some matrix operations.

The X* value can be calculated from Eq. (26)

3
X% = Zav.'"' [Rj+ :f‘x'j(x”+1 - )] (26)

=1

[

The numerical calculations are made in the following order:

(i) 4An approximate value of X is obtained by solving the first constraint
equation (41).
(i1) The derivative matrices Eq. (46) and (47) are calculated. e have
v = 0 in the first step.
(iii) The S matrix Eq. (52) is constructed and inverted.
(iv) The correction to the unknown variable is solved Eq. (56).

(v) The a vector Eq. (55) and the correction vector (m;+'-mg), Eq. (421)
are evaluated.

(vi) X® is calculated, Eg. (25).
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(vii) A test is mads to see if the derivatives Eqs. (L2- 4L) are smaller
than some given values. if this is not the case, we start again with (ii)
above and now replace %’ and mz with ¥ and m;+1

(viii) When the given stopring conditicns are fulfilled we calculate the

(3L~ 36).

errors in the fitted quantities, Dus.

Results from calculations on the given example are given in Teble 1.

* : ' I
Ste my Ma Mx M4 ! x f1 fg f} : Xz
P 1 eV/c |degrees | eV/c |degrees HeV/c | 1leV/c | MeV/c | MeV
0 900-0 5075 ﬁOCtO 57»30 9}-;-905 OOOOO 50703 "6.9714- -
1 812.7 5,37 €9.9 57-16 1857.9 | 0.090 | 5.321 [-0.076 | 1.17
2 806.7 5.40 904 57.18 1852.2 10,001 | 0.004 | 0.002 |{1.,22
3 306.9 5.40 90 57.15 1852.3 1 0.000 | 0,000 | 0.000 |[1.22
|
i
Table
We find that the constraint equaticns are well fulfilled already

after two steps. than the mean value we

The X® value of the fit is lower
i that

expect to have ( = 2 for a 2 C-fit) and we conclude the tested event is

in good agreement with the given hypothesis.

The error mstrix of the fifted quantities derived after step 3 is
(Gi given in GeV/c and radians)

0.002360  =0.000655 ~0.000353  =0.000137

1 -0.000655  0.0C0187  0.000105  -0.000001
“2* T|-0.000353  0.000105  0.000063  ~0.0000%3
~0.000137  =0.000001  -0.000033  0.000295

and the

7863/p/cm
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m = 807 LD HeV/e
m = 554 006
ms = 90+8 ie/c
ms =57522 150
s = 852% 46 HeV/e

There is at CERN cne subroutine (BOZCK; written by W. Koch), which
makes the calculetiocns (iii)=~ (vi) and (viii) above, for the general case,

when we have correlated varisbies, (see Appendix I).

5) Results frem a B -fit

A typicel % candidate is shown on Fig. k. In Fig. 5 we give

the results from the geometricel and kinematical programmes.

The notation of points and tracks is explained in Fig. L. NTR
is the number of tracks leaving a peint. The nature (NAT) of a point is
for example, 2 if the apex cof a V? decay and 3 if the apex of a V  decay
starts from the point. The nature of a track is 1 if the particle stops
in the chamber, 2 if the track combines two interaction vertices and 10
for beam tracks. The CODE (U = unmeasured, W = measured and F = fixed)
is given for the momentum (P), dip eagle (DIP), azimuth angle (PHI) and
mass respectively. AD in front of a guantity means the error of this quantity.
AU or an F efter & varizble means unfitted and fitted quantities respectively,
L is the measured length of a track, H the average magnetic field and BUB

the expected bubble density of a charged *track.

The results concerning points and itracks are obtained from THRESH

and the fit resul%s from GRIND.

E
Ho
ot
m

We will now look at the differsant

a) K° (Vertex NIN)

TYP 200 indicate a V° and HYP 1 is a K°.  The first fit (1} is a K°-fit
of the NN vertex. "The mass of K° is fixed (=0.4978 €eV). We see that the

momenta of the pions are higher thar those g¢iven in THRESH.  The reason for
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this is of course that THRESH gives the momentum of a particle at the mean
point of the measured track length, while the unfitted momentum in a fit

is corrected to be valid at the interaction vertex.

The unfitted errors are greater than THRESH errors because

uncertainties due to Coulomb scattering have to be included.

The K° is assumed to come from the point AA, (TRACK NA), and we
consequently know the direction of this particle. Both pions are completely
measured and we have only one unknown in the fit, the momentum of the kaon.
This is a 3 C-fit (ND = 3). An unfitted value of the kaon momentum is,
hoewever, given. It has been calculated from the constraint equations, and

must be available before the least squares fit can start.

At the top we find that the X’ of the fit is 1.01, the probability
of getting a X* greater than the obtained value is 0.7999 and the number of

iteration steps performed to come to the solution is 3.

The K° hypothesis is very good for the vertex NN, and the fitted
data agree well with the unfitted ones. The fitted errors are generally
smaller than the unfitted. This is especially true for the relatively badly
measured momenta of the piens (from 67 and 215 MeV/c to 8 and 7 MeV/c
respectively).

Fit@differs from@ln that the mass of the neutral particle is
assumed to be unknown. We have therefore a 2 C-fit. The obtained pro-
bability (0.6048) together with the fitted mass 497.5%* 63.8 MeV indicate
that the K° hypothesis is still good.

GRIND has also tried to make a A-fit (HYP 2) and an A-fit (HYP 3)
with the vertex NN, btut we see from the summary bank, which follows after
the fits in Fig. 5, that an error 15 (ER 15) was found. This type of error
indicates that a fit to the given hypothesis is impossible. We may, for
example, have some obvious contradiction of a physical law, non-convergence
of the iteration process, or corrections to the measured data, which are
much greater than what can be expected from statistical fluctuations. The
last is what has happened in our case; X2 is 26.8 and 41.2 for the A and
A hypotheses after 3 and 2 steps respectively.



Fig. 5. THRESH and GRIND results for the =

candidate on Fig. 4.

EVENT 44 467683,1
POINTS NTR NAT X
14 2 0 6,381 O,
2R 2 3 T7.9113 O.
IM 2 2 17.2402 1.
4N 2 2 10.2983 1,
5P O 12 27.8238 O,
6 F O 12 17.8081 -8,
TRACKS NAT CODE P
1 AR +- 2 UWW 0.
2RF -~ 1 WWW 0.0650
I3 M2 - O WWW 0.1747
4F2 - O WWW 0.3304
5SMP + 1 WWW 0.4422
6N3 + O WWW 0.3148
7Al - 10 WWW 1.3475
8 RA +- 2 UWW 0.
GOOD FIT NOPT 1 NOTR 3  TYP
TRACK  MASS CODE BUB
NA O 00,4978 UWWF 2,2 O,
N3 + 0,1396 WWWPF 1.2 O,
N2 - 0.1396 WWWF 1.4 O,
GOOD FIT NOPT 1 NOTR 3 TYP
TRACK  MASS CODE BUB
KA O 0.4975 UWWTU 2,2 O,
N3 + 0,1396 WWWPF 1.2 O,
N2 - 0,1396 WWWPF 1.4 O,
GOOD FIT NOPT 1 NOTR 3 TYP
TRACK  MASS CODE BUB
MO O 1.1154 UUUF 3.6 O,
MP + 0,9382 WWWTF 4.8 0.
M2 - 0.1396 WWWF 1.4 O,
GOOD FIT NOPT 1 NOTR 3 TYP
TRACK  MASS CODE BUB
MA O 1.1154 UWWF 3.6 O,
MP + 0,9382 WWWTF 4.8 O,
M2 - 0,1396 WWWF 1,4 O,
GOOD FIT NOPT 1 NOTR 3 TYP
TRACK  MASS CODE BUB
MA O 1,0909 UWWTU 4.1 O,
MP + 0.9382 WWWF 4.8 O,
M2 - 0.,1396 WWWF 2.0 O,

SIS/R/8059

Y zZ

7826-23.8324
5849-23,6247
0983-22,1280
3145-25,8938
1450-20.0237
8863-27.4560

DIP
0.0781
-0.1949
0.1320
-0.5039
0,1768
-0,2907
0.0069
-0,0781

PHI
6.1567
5.1206
0.2950
0.9497
6.2616
5.7404
3.2228
3,0151

200 HYP

PU DIP U
518 0,481
332 =0,291
336 =0,504

PHI U
3.277
5.740
0.950

200 HYP

PU DIPTU
518 0.481
332 -0,291
336 -0,504

PHI U
3.277
5.740
0.950

200 HYP

PU DIPU
667 -0,166
486 0,177
188 0,132

PEI U
3,208
6.261
0.296

200 HYP

PU DIPT
667 -0,156
486 0.177
188 0,132

PHI U
3.171
6.261
0.296

200 HYP

PU DIPTU
667 -0,156
486 0,177
188 0.132

PHI U
3.171
6.261
0.296

DX
0.0155
0.0210
0.0200
0.0161
0.0237
0.0128

DP

0.0018
0,0129
0,1683
0.0531
0.0143
0,0168
0.

ER14

DP U

0.067

0.2

ER14

DP U

0.2

ER14

DP U
0.246
0.002
0.058

ER14

DP U
O.
0,002
0.058

ER14

DP U

0.002

0.0

0.067

DY
0.0149
0.0199
0.0177
0.0150
0,0191
0.0114

DDIP
0.0506
0.1176
0.0035
0.0269
0.0037
0,0062
0.0022
0.0506

NONE

DDP U
0,023
0.024

15 0.030

NONE

0.023
0.024

15 0.030

NONE

0.011
0,027
0.037

NORE

0,011
0,027
0.037

NONE

0.011
0.027

58 0.037

DDP U

DDP U

DDP U

DDP U

D2
0,0812
0.1086
0.0961
0.0828
0.1032
0.0624

DPHI

0,0077
0.0149
0.0022
0.0150
0.0026
0.0029
0.0012
0.0077

CHISQ

DPH U
0,005
0.017
0.018

CHISQ

DPH U
0.005
0,017
0,018

CHISQ

DPH U
0,006
0.019
0.027

CHISQ

BPH U
0,002
0.019
0.027

CHISQ

DPH U
0,002
0,019
0.027

L

1.59
15.07
8.73
4.79
10,91
15.16
=57.54
-1.59

DL
0.30
0.04
0.30
0.30
0.04
0.30
0,30
0.30

1.01 XD 3 PROB 0.7999

PF DIPF
0.505 0.497
0,336 -0.280
0.315 -0.488

1.01 KD 2 PROB 0.6048

PF DIPF
0,504 0.497
0.336 -0,280
0.315 -0.488

0.17 ND 1 PROB 0,6763

PF DIPF
0.694 -0.165
0.486 0,177
0,216 0.132

9.37 ND 3 PROB 0.0248

PF DIPF
0.691 -0.158
0.486 0,168
0.214 0,128

2,63 ND 2 PROB 0,2686

PF DIPF
0.623 -0.158
0.486 0.166
0.143 0.126

SAG
0,000
2,148
0.274
0.039

-0,167
-0.453
-0.090
-0.000

PHI F
3.277
5.743
0.948

PHI F
3.277
5.743
0.948

PHI F
3,218
6.261
0,300

PHI F
3.172
6.209
0.267

PHI F
3.171
6.240
0,276

PCOSL
o.

0,064
0,173
0.289
0.435
0.302
1.348
0.

STEP 3

H TESTS

0.
17.11
16.93
17.20
16.91
17.25
17.09

0.

DP F DDP F
0,012 0,017
0,008 0,022
0,007 0,025

STEP 4

DP F DDP F

STEP 4

DP F DDP F
0.004 0,022
0.002 0,027
0,002 0,037

STEP 4

DP F DDP F
0.004 0,010
0.002 0,018
0.003 0.033

STEP 4

DP F DDP F
0.023 0,010 0.002
0,002 0,015 0.014
0.024 0,035 0,023

42
0
0

40
0
0
0

42

DPE F
0,005
0,017
0,018

DPH F
0,005
0,017
0.018

DPH F
0,016
0,019
0,025

DPH F
0.002
0,009
0,022

DPH F

DM
0.0638

0.

DM
0.
0.
0.

DM
0.0068

0.



0

GOOD FIT ROPT 1

TRACK  MASS
MR O 1.1154
MP + 0,9382
M2 - 0.,1396

GOOD FIT NOPT

TRACK  MASS
MR O 11,0992
MP + 0,9382
M2 - 0,1396

GOOD FIT NOPT
TRACK  MASS.
RA - 1.3195
RF - 0,1396
RM 0 1.1154

GOOD FIT NOPT

TRACK  MASS
RA - 1.3215
‘RF - 0,1396

RM O 1.1154

GOOD FIT KOPT

TRACK  MASS
RA - 11,3215
RF - 0,1396
RM © 1,1154
MP + 0,9382
M2 - 0,1396

NOTR

COD;

==Eq
= =% O
=E=E=EmMD
g b

1 NOTR

1

= =q
=H =EO
EE®EMX
o

NOTR

=®Eq
== =0
HH =M
o

1 NOTR

L =]
=2 =HO
=% ==
RO ]

2 NOTR

EEA=EAQ
LR -E-E-E Kol
=dHEHEHE
g g g b

SUMMARY BANK FOR EVENT

KOPT PT NOTR

VTN WN
N R b b e

SIS/R/8060

NN NSNS S

ON OV AN AN AN AN N AN WY

3  TYP 200 HYP
BUB PU DIPU
3,6 0,667 -0.159
4.8 0,486 0.177
1.4 0.188 0,132
3 TYP 200 HYP
BUB PU DIPU
3.9 0,667 -0.159
4.8 0.486 0.177
1.7 0,188 0,132
3 TYP 320 HYP
BUB PU DIPTU
4,1 0.754 -0.078
1.9 0.152 -8.195
3,6 0.693 0,161
3  TYP 320 HYP
BUB PU DIPU
4.1 0.754 -0,078
1.9 0.152 -0.195
3,6 0,693 0,161
6 TYP 320 HYP
BUB PU DIPU
4.1 0.729 -0,078
1.9 0.152 -0.195
3,6 0,667 0,159
4.8 0,486 0,177
1.4 0.188 0,132
44 467683,1
TYP .HYP GDNS ER14
200 177 -
200 2 17 -
200 317 -
200 2 57 -
200 2 17 -
320 4 77 -
320 4 117 -
320 4 0 -
320 4 0 -

2 ER14
PHI U DP U
3.197 0.
6.261 0.002
0.296 0,058

2 ER14
PHI U DP U
3.197 0.
6.261 0,002
0.296 0.058

4 ER14
PHI U DP U
3.015 0.
5.129 0.001
0.056 0.004

4 ER14
PHI U DP U
3.015 0.
5.129 0,001
0,056 0.004

4 ER14
PHI U DP U
3,015 0.
5.129 0,001
0.055 0.
6,261 0,002
0,296 0.058

5

ER15
FIT 34 NO
FIT 34 NO

NONE

DDP U
0.015
0.027
0.037

NONE

DDP U
0,015
0.027
0.037

NONE

DDP U
0.051
0.258
0,013

NONE

DDP U
0.051
0.258
0.013

NONE

DDP U
0.051
0.258
0,015
0,027
0.037

0
0
0
0
O

FIT
FIT

CHISQ

DPH U
0.003
0,019
0.027

CHISQ

DPH U
0.003
0.019
0.027

CHISQ

DPH U
0.008
0,166
0,003

CHISQ

DPH U
0.008
0.166
0.003

CHISQ

DPH U
0.008
0.166
0,003
0.019
0.027

CHISQ

.1006E
.2679E
.4123E
.9366E
.2087E

2,09 ND 3 PROB 0,.5545 STEP 4

0.28 ND 2 PROB 0,.8706

0.18 ND 2 PROB 0,9132

01
02
02
0l
01

0,1816E-00
0.2228E-00
0.2310E 01
0,2310E 01

PF DIPF
0.693 ~0.161
0.486 0,172
0.215 0.129

PF DIP F
0,650 -0,161
0.486 0,171
0.171 0.128

PF DIPF
0.753 -0,092
0.152 -0,275
0.693 0,160

0.22 ND 3 PROB 0,9738

PF DIPF
0.749 -0,087
0.152 =0.385
0.693 0,160

2,31 ND 6 PROB 0,8891

PF DIPF
0.749 -0.087
0.152 -0.305
0.693 0,160
0.486 0.171
0.215 0,129

PROB
0.7999
0.0000
0.0000
0,0248
0.5545
0.9132
0.9738
0.8891
0.8891

PHI F
3.197
6.237
0,285

PHI F
3.197
6.256
0.290

PHI F
3,015
5.141
0.056

PHI F
3.014
5,121
0.056

PHI F
3.014
5.121
0,056
6.237
0.285

STEPS

E N S A L AV AN )

DP F DDP F
0.004 0.013
0,002 0,019
0.003 0,034

STEP 3

DP F DDP F
0,029 0,013
0,002 0,018
0.030 0,035

STEP 3

DP F DDP F
0,017 0,032
0,001 0,172
0.004 0.012

STEP 3

DP F
0,005
0,001
0,004

STEP 4

DP F
0,005
0,001
0.004
0,002
0,002

DDP P
0.020
0.089
0.012

DDP F
0,020
0,089
0.012
0.019
0.034

DPH F
0,003
0.009
0,022

DPH F
0,003
0,016
0,023

DPH F
0.007
0,097
0.003

DPH F
0,007
0.028
0,003

DPH F
0,007
0,028
0.003
0,009
0,022

DM
0.0101

0.

DM
0.0095

0.

.

OO'OOO
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An error 14 (R 1!), of which we have none in our example, shows
that some minor contradiction has been fcund in the fit, for example, that
the mementum of a particle derived from its range and curvature disagree.
The fit will in these cases go on, but the contradiction is flagged at the top

of the fit results and also in the summary benk.

= e o= =3 rha

Results from good V° fits of vertex 1N are given in (3 to(7) .

The lambda is assumed to be completely unknown in(j? (HYP. 0, CODE
UUUPF). e have then a 1 C-fit, which gives X* = 0.17 and probability
0.6763. This shows that the lambda hypothesis is possible.

In QQ and.GE we assume that the lambda comes from the primary vertex
AA., Fit QD, where the lambda mass is fixed, results in a very high X® and
gives a low probability (0.0248). Fit(ﬁﬁ with the mass of the neutral
particle unknovn gives a high probability, but the derived mass 1090.9* 6.8 MeV
is 3.6 standard deviations from the lambda mass. We conclude that the
hypothesis that the lambda comes from vertex AA is almost disproved by the

fit results, or at least shown to be a very improbable solution.
The hypothesis that the lambda comes from the kink RR is a very
good solution according to the two fits (6) and (7).

c) & _1-vertex fit (Vertex RR)

En om an e e e e

When a lambda is shown to come from the kink of a negative track,
we test the hypothesis: & =4 + 7 .

We assume in the 1-vertex fit that the fitted lambda (RM in our
notation) is measured and we have a 3 O-fit with the © mass known Gﬁ, and
a 2 C-fit with the mass unknovn 8).

The two fits give very high probabilities, and the derived mass,
1319.5* 9.5 1leV, is in good agreement with the known = mass. We conclude

that the = hypothesis is a good explanation for this event.

-

If a good 1-vertex = -fit is obtained, we gc on by combining the
two fits (§ and A decay) in a 2-vertices fit, @ﬁﬁ. e then have 8 constraint

equations and in our casec 2 unknewnc (P_- and P\). The kigh probability

7863/p/cm
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(0.8891) of the 6 C-fit means that our conclusion above has a good chance

of being correct.

A 2-vertices E -fit is also tried when we do not get a good 1-vertex
fit. The 2-vertices fit should in principle be superior, and we have
observed a few evenis vhere the 2-vertices fit is good, while the 1-vertex
fit fails. However, in most cases we obtain both fits, and the fitted data

agree extremely well.

V. COMPARISON OF RESULTS FROM AN EXPERIMENT
WITH THEORETICAL PREDICTIONS

1) Introduction

Most experiments are performed to test some hypothesis. The
observed quantities will of course deviate from the theoretical ones. The
purpose of a test is to find out whether the deviation between experimental
and theoretical values could be due to random sampling variations, or whether
the deviation is too great, from which we may conclude that the hypothesis

is probably wrong.

In the following we describe two types of hypotheses which are
of'ten tested.

In the first type (Chapter V.2) the hypothesis gives the magnitude
of some parameter associated with the population, e.g. the mean value. The
test is in general performed in the following way. The sampling distri-
bution of the parameter in question is determined and the measured quantity

is compared with its theoretical distribution.

The theoretical frequency distribution is known in the second type
of hypothesis. The agreement between the distribution of the observed
sample and the hypothesis is in general tested by a X° test of significance
(Chapter V.3).

The two types of test will be illustrated by an example taken from
an investigation of leptonic decay modes (Physics Letters 6, 186 (1963)).

About 90 lembda hyperons decaying to electrons (A - P+e + ) were observed.

7863/p/cm
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There are different forms of interaction (V = vector, S = scalar,
A = axial vector and T = tensor), which might be responsible for the decay.
We give the transverse momentum spectrum of the proton (P, = Pp sin @Ap)
derived from the four theories in Fig. 6. We have also given the observed
spectrum, which is corrected for detection efficiency. To make the
following tests easier, we assume that the histogram contains observed
events only (110 in number).

There are some events in Fig. 6 which have transverse momenta above
the theoretically maximum possible value. The reason for this is of course
uncertainties in the measured variables. One should therefore, in a treat-
ment which is more strict than that below, take these uncertainties into
consideration. One possibility is, for example, to modify the theoretical
curves in such a way that the uncertainties in the measured variables will

be included.

2) Test of a mean value

The mean value (<P,>) of the theoretical distributions takes the

following values:

V 106 MeV/c
T 98 "
A 89
s 8 "

The measured spectrum has the mean value (PJ_)exp = 91 MeV/c.

The theoretical P, distributions are not normal, but the distribu-
tion of the mean value of a sample will in most cases approach the normal
distribution when the sample size increases. This is, for example, the case,
if the population has finite variance (o;) and mean. The mean value
distribution will have the same mean as the population and the variance o;/n.
The standard deviations of the four theoretical distributions are about the
same (34- 38 MeV/c), which means that the mean value distribution will have
a standard deviation (aﬁv) of zbout 3.5 MeV/c (n = 110).



The deviation between the theoretical and observed mean values is

then:
1 ]
\f LY 3 O-mV
T 2.0 fi
!‘& 006 "
S 2.9 i

The probability that <El>exp will deviate by more than - from

the mean value of the population is of course:

(P, - <P,>)?
Pr = —2- [ & Oy ap,
Vo -
x

. (57)

This probability can be found in most statistical tables. In our case we

have:
V < 0.01%
P 4o 6%
A 55 %
S 0.4%

The level of significance for a test is arbitrarily fixed at, for
example, 5%, 1% or in the more stringent tests 0.1%. Let us fix the signi-
ficance level at 1%. e then conclude that the pure V and S hypotheses
are apparently disproved by the experiment, while the A and T hypotheses

are reasonably practical intervretations of the measured mean value.

3) X? test of distributions

This test (ref. D. Hudson, CERN 63-29) is used when one wants to

find out how well the whole sample distribution agrees with a knovn population

distribution. t 1s therefore more general than the test described above.
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The distributions arc divided in class intervals of the variable

(P, in our case).

is compared with the expected number (N?) from the given hypothesis.

The number (Ni) of observed events in an interval i,

The

following quantity is calculated:

I

(Ni~ N?)Z

X‘- \, T e . (5
Lo §
i=t +
The distribution of X® will approach the X* distribution given
in Chapter IV.3 when the size (n) of the sample increases. One may use
the limiting distribution if' the size of the sample is so large that each
N? is greater than 10.
i
N -
P, MeV/c N,
v T A S
O - LI-O 1&01 507 9.| 12.8 15.7
80 - 120 21.9 38.5 38.6 39.3 39.3
> 120 31.2 45.8 35.7 254 15.7
X2 26,4 5.0 2.8 8.0
| |
Table 2
In our case we divide thz distributions into four classes. The

8)

expected and observed number cof events in each interval is given in Table 2

together with the X® values calculated with the formula above.
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The number of degrees of fresdom is r- 1 (3 in our case).  This
follows from the fact that one can cnly chocse r- 1 of the N? values

indcpendently when the total number of events in the distribution is fixed.

e s e g ~ . 2 ]
The probebilities {Ps%) to obtein X° values greater than given values

\
Y
(x3) are given in Teble 3 for 3 degrees of freedom (see Chapter IV.3).

o , :
o |2 |37 | w6 63 | T.8 | 9.8 | 113 | 16.2
| | |
| | |
Ps% | 50 30 , 20 10 5 % 2 1 1 0.1
; | ‘ ? |
Table 53

We conclude that our experimental data are not consistent with
hypotheses V and S even if we select the significance level to be as low
as 0.1%. The agreement is, however, good between both of the hypotheses

A and T and the observed distribution.

The X? “est may be used even when some parameters of the popula-
tion distribution are unknown. In this case one has first to estimate the
unknown parameters with the help of the experimental distribution. The
number of degrees of freedom will now be r-~ 1- a, where a is the number of

unknovm parameters in the population distribution.
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DESCRIPTION OF Tiis SUBROUTINE BOECK

APPENDLY T

BOECK is a FORTRAN subroutine, which performs needed matrix

tions for one step of the best fit calculations.

NF = Number of constraint equations.
NM = DNumber of measured variables.
NX = Number of unknown variables.

F(NF) = Constraint equations.

B(NF,NM) = Derivative matrix of measured variables.

A(NF,NX) = Derivative matrix of unknown variables.

GI(NM,NM) = Error matrix of measured variables.

Output quantities:

c(nm)

Corrections of measured quantities;

+
o' =m®+C

(C is put equal to O before the first step).

DX (NX) Corrections of unknown variables;

I

o+
¥ = xV + DX.

GMFI(NM,Ni) = Error matrix of fitted measured variables.

GXI(NX,NX) = Error matrix of unmeasured variables.

opera-

B(NM,NX) = Correlation matrix between measured and unmeasured

variables.
CHI = X® for thec last step.

Some further remarics:

an = = e3 e e2 wa em em e oea

1. The dimensions must be at least as big as those given within the

brackets.

2. H(MNM,NM), HH(Ni,Ni), R(NF) and AL(NF) are working matrices.

3. Some of the input matrices are re-defined in later stages of the

programme and thus used as working matrices.

L. One must have NM > NF > NX

7863/p/cm
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5. A 2 dimensional array A(1,1) ... A(m,n) ic in FORTRAN stored column-
wise, i.e. in order A(4,1), £(2,1), ... Alm,1), A(1,2), A(2,2), ... A(m,2),
A(m,n). It must for this progremne be ectorsd row-wisz, i.e. in order

A(1:1)’ A(1’2): oo 2{1,my, Ale,1), }A(Z:Z)

6. K is put eguzl %o O 28 long 28 2 further stey in the iteration

.o A(2,n), .. A(m,n).
process 1s needed and cqua’ to 1 then iteration is finished and the error
matrices have to be evaluated.

7. Equations and notations from Bdck (CERN 60-30).

8. All matrix operztions are performed by a series of subroutines
collected under ‘the name FMYXPACK and described in the GRIND manual. From
this we copy the introduction and also descriptions of subroutines used in
BOECK.

MXPACK is a sumnary neme for varicus subroutines written in 709 FAP
language for the fast cxecution of matrix operations. All entry names
start with the letter pair Mi. All routines assume that matrices are stored
row-wise and without gaps (thic is imporiant in case of FORTRAN double indexing)

in FORTRAN order (i.e. in absolnte dessending locations).
Description of subrcutings:
MYEQU  (A,B,I,7) “Motedix Fquations”
solves A{T,I) x X(Z,J) = B(T,J) for X.
The zesult (X) is stored into B, A is transformad.

A 1y ossuned o he

pos:tive definite. No pivoting is done.
MXUTY  (4,1) "Uatriz Unity®

weites a (I,I) Unit metris iate A.
MDD (4,B,C,T,T) "Wabri- Addition”

effeets A(I,J) + R(I,J) -~ C{I,J
HXSUB  (A4,3,C,I,7) "atrix subtrantica”

effects A(L,J) - B(1.J) » ¢{T,)

MXTRA  (4,B,C.1,7) Matrix Trensfer

cffects A(I.J) - C(I,7). The B-address is irrelevant.
MXMTR  (A,B,C,I,J) latrix tultirlicd Transfer"

o

s -\
effects B x A(I,J} ~»

to
[J
w
o)
0
o
)
H
]
]
)
o
0
o+
o
.J

7863%/p/cm
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MXPY  (4,B,C,I,J,K) "Matrix jultiplication"
effects A(I,J) x B(J,K) » ¢(I,K)

The rollowing entries use the same sequence of arguments:

HXGIPY1 for A x BY - C (B is a (K,J) matrix)
MXNPY2 for AT x B » C (A is a (J,I) matrix)
MXMAD for A x B + C » C "Matrix Iultiplication and Addition".
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MATRIX OPERATIONS FCR ONE STEP OF LEAST SQUARES CALCULATICNS
SUBROUTINE BGECK(K)

DIMENSION F(3),B{12),A(3),GI(16),C(4)yDX(1),GMFI(16),GXI(1),
1H(16) ,HH{16),R{3)5AL{3)

COMMON NFyNMoNXyF3B3ApGI,CyDXyGMFI,GXI,CHI

IFLK) 241,2

CALL
CALL

CALL
CALL

CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL

CALL
CALL
CALL
CALL

MXMPY{BsCsHyNFyNM,y1)
MXSUB(F,Hy,RyNF,1)

R IS CEFINEC IN (15°')
MXMPY1{(GI,ByHH,NM,NM,NF)
MXMPY(BsHHsHoNF o NM,NF)

H IS EQUAL TO S, DEFINED IN (16')
MXUTY{(GMFI,NF)

MXEQU{H,GMFI 4 NF &NF)

GMFI IS THE INVERSION OF S
MXMPY{GMFIsAsHyNFyNFyNX)
MXMPY2{AsHysHHyNX s NF4NX)
MXUTYI(GXI4NX)

MXEQUIHH,GXT g NXsNX)
MXMPY2{HsReCoeNXoNF,1)
MXMPY{GXI 4CoDXyNXsNX51)
MXMTR(DXy—1lesDXyNX,1)

DX IS EQUAL TO THE SECOND EXPRESSION IN (25)
MXMAD(A,CXsRgNF4NX,1)
MXMPY{GMFI Ry ALsNF,NF,1)

AL IS THE SCLUTICN (24)
MXMPY2{AL,R4CHI1¢NF,1)
MXMPY2{BgeALsHyNM,y,NF,1)
MXMPY(GIsH,CyNMNM,1)
MXMTR{Cys=1le9CoeNM,1)

C IS EQUAL TO THE SECOND EXPRESSION IN {12°)

RETURN

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALCULATIGON QOF ERROR MATRICES {34-36)
MXMPY2(AsGMFIHyNX,NF4NF)
MXTRA{(H,Cy Ay NX,NF)
MXMPY{(BoGIsHyNF s3NM,NM)
MXTRA{H,0 4By NF,NM)
MXMPY(GMFI4BeHyNF5sNFy,NM)
MXMPY2({BsHsHHe NMsNF4NM)
MXSUB({GI HHsGMFIsNM,NM)
MXMPY{A;BsHsNX 3 NFyNM)
MXTRA{H,;D,HHyNX,NM)
MXMPY2({HH sGXI 9B aNMsNXyNX)
MXMTR(B'-IQ ’B’NM ’NX)
MXMPY{BysHH, He NMsNX,NM)
MXSUB{GMFIsHeHHNM,NM)
MXTRA(HH,0,GMF I ,NM,NM)

RETURN

END



APTENDIX IT

GRAPHICAL METHODS OF TESTING TE PROBABILITY DISTRIBUTION
A SAMPLE 15 THOUGHT TO LAVE CCiE FROM

Contributed by D. Eudson,

Data and Documents Division, CERN

Suppose we have arranged a sample of size n in increasing order

of magnitude to get

Xt < Xz < aes <X (1)

and we wish to test whether it comes from a continuous distribution with

probability density function f£(x), and cumulative distribution

F@):/f&)m. (2)

-00

In the first instance it is assumed that f(x) is completely known. Later
on the technique is extended to the case where a location parameter u
and a scale parameter o are unknown, and only the general form f(x; ,0)

is given.

Example (i)
The X3 distribution has density function

£(x)

£(x)

0 y =0 < X < 0

1}

(3)

1/2 e-X/z

R 0 X < o »

The cumulative distribution is

I

0 , —® < x< 0,

F(x)

P(x)

(%)

% , 0 < o,

n
»

Examplc (ii)

The normal distribution has density function

o (x-u)? /20

£x) = - , =© < X< (5)

oV2r

and so has to be treated by the second method when p and o are unknown.
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Large samples

When the samnle size is large it is vossible to draw a histogram
and compare the resulting diagrem with the expected {recuency curve. On
page 104 there is a histogram of a samnle of size 80 from & X5 distribution,

together with the curve

N(x) = 80x Y o /7 ()

Small samples

' and 'holes'

It can be difficult to decide whether the 'bumps
in a histogram are significant, especially if the sample size is small.
A rough guide can be obtained by using the graph of the cumulative distri-

bution F(x). ‘e may interpret F(x) as follows:

Given a number x, the proportion of random variables X in a very
large {actually infinite) sample for which X < x is F(x). In a finite
sample of size n, we can estimate points on the curve F(x) by calculating

proportions of the sample less than or equal to x.

'The n points Xy, Xz, ..., X give rise to (n+ 1) intervals on

the x axis, viz.

("wyx1) ’ (X1)X2) )y ereee (Xn_

:xn) ) (Xn:“) (7)

1

and it is conventional *to say that 1/(n+ 1) of the sample lies in each such
interval. Thus 1/(n+ 1) of the sample is < xy, so 1/(n+ 1) estimates

F(xy); 2/(n+1) of the sample is < X2; +.... ; and n/(n+ 1) estimates F(xn).
[If we add the points xe = =-» and X by =% to the samvle, then 0/(n+ 1)

and (n+1)/(n+1) are the correct values of F(-«) and F(+=) respectively].

A useful convention therefore is that the granh of F(x) is to be estimated

by plotting the n points

[x, F(x)] = [xi s ;%T l,1i=12, ... ,n. (8)
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Example

The following is a sample of size nine from the X3 distribution.
L0, .78, .86, .96, 1.21, 1.86, 2.96, 3.41, 5.68

The points (.40, .1), (.78, .2), etc., are plotted next to the curve

F(x) = 1- & ¥/2 (9)
) 4
N\
[\1.0 -
X
: X
05 = X
» X
» X
X
1 1 ] 1 |
0 1 2 3 A 5
‘<...<%______
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Probability paper

We next show how to straighten out the curve of F(x) on the
above graph so that the plotted points may be compared with a straight

line. There are two alternative methods when f(x) is known completely.

(1) We transform the (horizontal) x axis to a new variable z = 2z(x)
in such a way that we 'contract' the x axis most where the graph of

F(x) is flat, as indicated by ¢— . The transformation is
®

X

z = /.f(t) at . (10)

-0
The curve Eq. (9) becomes the straight line
F(z) =2z . (11)

(ii) We may alternatively transform the (vertical)F axis to a new
variable y = y(F) in such a way that we 'stretch' the F axis most where
the graph of F(x) is flat, as indicated by ‘T. The transformation
. ®
is

y(F)
? - /f(x) ax . (12)

-0
The curve Eq. (9) becomes the straight line

Yy =X . (13)
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The table required for graph (i) is completed by using 'Table 7:
Probability integral of the X3 distribution and the cumulative sum of

the Poisson distribution' in the Biometrika Tables.

x = X2 L0 78 86 .96 1.21 1.86 2.96 3.41 5.68
14 [ 018 .32 035 038 045 060 o77 082 0914-
F(z) 1 2 W3 Wb .5 .6 .7 .8 .9

[ T T T T T T Y T 1 1 > x
0 12 &4 .6 .8 1.0 1.5 2.0 3.0 4L,05.010.0

The words 'probability paper' would refer to the above graph paper with
only the x and the F scales printed. It would then not be necessary

to look up the g values.
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The table required for graph (ii) is completed similarly.
(An augmented table of percentage points of the X* distribution has
been compiled at CERN, using the library tape subroutines referred to

in the GRIND manual).

x = X3 0 .78 .86 496 1.21 1.86 2.96 3.41 5.68
F 01 02 -3 .L" 05 06 07 08 09
y(F) 21 W45 W71 1.02 1439 1.83  Z.41 3.22 L.61

LS

.925

.85
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The words 'probability paper' would refer to the above graph
paper with only the x and the F scales printed. It would then not be

necessary to look up the y values.

Probability paper of type (ii) is used more often in practice.
The plotted points will be very bunched at parts of the graph where the
original curve of F(x) is steep. Conversely, the data corresponding to
'tail areas' is well spread out. Usually we are particularly interested

in these extreme values.

Further example

We use probability paper of type (ii) to plot the sample of size
80 on page 10k. We wish to do a rough visual test to see whether the
sample can reasonably be considered to have come from the X3 distribution.
The plotted points are given below. (In order not to crowd the grarph,

not every possible point is plotted.)

i 5 10 15 20 25 30 35 40 45 50
xg = X3 .08 .18 .27 .37 49 .64 .82 .98 1.31 1.53
Fi = i/81 006 012 018 025 031 037 014-3 014-9 056 .62

i 55 60 65 68 70 72 Tk 75 76

x; 2.05 2.4k 346 Le05 423 L4.95 5.14 5.19 5.65

Fi .68 o (4 .802 .840 .865 .890 .914 .925 .938

i 77 78 79 80

xl 5-99 7-37 8032 114—.98

F, «950  .963  .975 .987




.9825
+980

<97

.96

¢95

9

«92

<90
.88

.85

Sample of size 80 from the X3 distribution

(80) X

N
7.

5 10

15
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Conclusions from the graph

The graph indicetes that

(a) on the whole the data follow the X2 distribution fairly well;

(b) the smaller voalues (i = 1 to 60) tend to be a bit smaller than
expected;

(¢) the largest value xso avpears to be too large.
Exact test

We can find the cxact level of significance of Xso = X

max”
We have Pr(x < k) = (k)
Let Pr(xmax < k) = H(k)
Then i(k) = Pr(4A11 x, < k)

li

(F(x)]e°
[F(14.98)]8°

(1- e-7°49)80

]

1- O.OL}'L"‘

. Pr(xmax 2 14.98) = L.4% .

The conelusion is that X ox is significantly larger than we expect the
largest value of X to be in a sample of size 80. The value Xso = 14.98
may indicate that o different physical hypothesis is reguired for the

relevant event.

Case of unknown parsmeters

Suppose that the probability density function of x, f(x; u,o),
contains an unknown location paramcter u and an unknovn scale parameter o
such that

3 (12)

is a standardized variable with density function £(w; €, 1) which is

completely known.
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w
Let F(w) = /f(t; 8, 1) dt (15)
-co
be the standardized cumulative distribution. We can prepere probability

paper of type (ii) by making the transformation from the F scale to the

y scale
y(F)
F = /i‘(t; 8, 1) dt . (16)

-00

Comparison with Eq. (15) shows that the curve P(w) becomes the straight line

y=w . (17)

From Eq. (14) we see that if we measure x on the horizontal axis, Eg. (17

becomes the straight line

y = 54 (18)
Thus, when y = 0 , X =y 3
when y = 1 , X = U+0;
when y =-1 , X = U=ga;

so the parametecrs can be read off the graph.

Example

A sample of size 7 is available and we wish to do a2 rough test to
see whether they come from a normal distribution. The density function

for x is

—

£(x) = e . o" ()20

m

N

and the standard density function for w is

2
) - L L2
N
T
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The required transformation from the F to the y scale is

y(F

-

Ver

- 00

which is tabulated in the Biometrika Tables.

The data are given below in increasing order of magnitude.

1 2 3 4 5 6 7
x; 10.3 11.9 12.6 12.6 13.8 145 15.7
Fi <125 «250 375 «500 «625 « 750 875
yi -1¢150 "067‘4- "0319 0 0319 067)+ 10150

The 'normal probability plot' of the 'order statistics' is
shown on page 144. The linearity shown by the plot is a rough assurance
that the data are normally distributed. A line drawn by eye through
the points gives the estiimates

u = 13.08 }) O’ 202 .

(The maximum likelihood estimates are

Tl = 13006 » 8’

n
-
.
(0 ¢]
S
-



; ‘09
Y Ordered sample, size seven -
1.0A
-0.8
05 *0.7
0.6
0.5
- v = X
00150 X B 16
+0.4
-0.5- 0.3
0.2
-1.0° ¥ = (Xx—13.08) /220
X (drawn by eye)
r0.1
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