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Introduction

For the first time in papers/I’z/ the behaviour of some

physical characteristics of inelastic processes

a+b—vc+...

with a detected particle ™ C " were investigated. Later on/5/
these processes were called inclusive ones. Unitarity proper-

ties and analytic conditions in angular variables allowed one

to draw definite conclusions/u/ on asymptotic behaviour of

differential cross-section dzO‘ab.,cd/dCOSGd¢ for the process:
a+b —-c+d+-

Basing on the results obtained in paper/A/, it was shown
(see/sl) that pionization, if it does exist, is accompanied
with a very large mean multiplicity.

New physical characteristics (see/5/) for inclusive pro-
cesses are being discussed in the present paper., They are as
follows: average multiplicity of particles with bounded momenta
in the c.m.s., at large angles, at small angles, etc.

The paper presents an analysis of the hypothesis on
pionization/6/, scale invaria.nce/7’5’8/and limited fragmenta—
tion/g/ in terms of analyticity and unitarity. It is shown, that
if the hypothesis of scale invariance takes place, then analy-
ticity and unitarity conditions lead to a very large (maximum)
mean multiplicity at large angles 6 and ¢ . In this
the differential cross-section cannot decrease with energy

increase more rapidly than —!- .

S
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Analyticity results in the fact, that either there exists
a diffraction domain in asymuthal angle yD , shrinking
with energy increase, or if there is no diffraction domain,
then scale invariance is violated at large angles 6 and P
and pionization does not take place.

If for any kind of particles the multiplicity for large
angles slowly grows with energy, then scale invariance is being
violated for this kind of particles.

In Sec., II, proceeding from analyticity, we have improved
the bound for differential cross-section of an inclusive process,
that was earlier obtained in paper/u/. It should be noted, that
this bound is obtained in weaker initial assumptions on analy-
ticity, as compared with paper/4/. It is also shown, that the
bound obtained cannot be improved under such conditions in the

sense of power dependence on energy.
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PART I

PARTICLE PRODUCTION AT LARGE ANGLES AND HYPOTHESIS
ON SCALE INVARIANCE

§ I. Physical Characteristics for Inclusive

Processes

To describe inclusive processes:

AQ+b —=>C,+ - F+Cmt--- I

it is convenient to introduce the following characteristics:

The total cross—section for an inclusive process
_ }
O'ab-uc‘...cm (S> = Z o—ob_,cl,,_cmm (,S) (D)
d

where summing spreads over all the channels of reaction I,which
contain particles CI’ C2 cee Cnlin the final state, and the

differential cross-—-section for process I

CJOab-»c‘.-.c,,, ch’aJ‘b—»Q"'Cm"’

Lk, oLke, - J, Lhe, - Lk, )

In (I) and (2)

: 7
J c’dab—Peg"‘Cm"’
O'ab‘>C4"'cm"c ('S) and dSke .o e C/3kc
4 m

are the total and differential cross-—-section for the j-channel

of reaction I, in this

\

JI
O‘o::b‘)c4mcm". (S’): fd3kc‘.“ol3kcm C/O'ab»cg-..cm... (S) (5)

C/akc‘ e c/sk

Cm
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Here —
ke, = ot
¢ T @R)P2E e
We will also introduce the particle momentum distribution
f ( P4 ) E’ i J c/of;,_.e,...c W
bae, e (S, . = Re -+ N -
ab-+C;-Cpy Cio 0 ' Cm 3‘ ¢y em dgkc.‘ ... c/akc,,,

d

where RN, 1is the number of the particles of ¢, kind, produ-
2

ced in the j=-channel of reaction I.

The momentum distribution is normalized in the following way:
_’ —' 3 3 = LN
J' fab-»ci-nc,,,(S) kc,,...,kc,,,)cl kcj"'d kc,,,- <an ncm) oab--> c_,---c,,,(3> )

where <rzci---ncm> is the mean value of the product of multi-
plicities for the particles of ¢4 C,,...,Cm kinds, produced
in reaction I. From here, in particular

ffab-)c (s)-lzc)olskc = <nc>6ab->c (5) (6)

where < N.) is mean multiplicity of the particles of e
kind.

f Fobred (5.Ke, K1) = {NcNgd Capeq (8) @)
Generally speaking, generation of the particles Cy:++Cn
in reaction I may be different in various parts of the phase
space (e.ge. with different production mechanisms - pionization,
fireballs, etc.) besides in different parts of the phase space
the momentum distribution may be of different asymptotic be-
haviour,
When studying such a characteristic as mean multiplicity,
where integration is performed in the whole phase space, the
effects connected with different particle generation mechanisms

are fully smeared off. However, if we treat mean multiplicity



- 495 -

in a certain subdomain of phase space, then even this mean
multiplicity alone can supply us with a more detailed informa-
tion on the production mechanism of detected particles in in-
clusive process (I).

Let us give a definition of mean multiplicity in some
domain ‘f of the phase space:

Let momentum distribution (4) be expressed in some inde-
pendent variables (¢ , ﬁi >, i.u and let V be some

subdomain of the phase space, than it is easy to see, that:

{r“ab"‘"""' (8,84, 80)l0 = KNy Ney) O, o (8,V) (8)

where

- _ ACabas ¢, ey
ab-»c,.--cm(‘S’V) ‘[ cqu ~~-o(3kcm o ’
v

dvo=J(t,, . E,:8)dE, . dE,

](Ei,“qu;S) is a Jacobian of transition from variables kc;

€©))

to g“ . If the whole phase volume is devided in some way
into R subdomains V} y then:

R
j fab-»c‘...cm (‘g; gx 9ty gy)Cl'U = Z\<nc,"'nc,,,>vr o’ab-bc(..cm (,S” I/J-*) (IO>

r=1

In conclusion we will drow out some general relations

(sum rules) for inclusive reactions.

Let us consider some definite reaction channel:
a+b—->c+d+e+f+---

then the energy conservation law for momentum will be:

N
P0+Pb:=22.kv

v=4
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where [N; is the number of particles in the final state.
The total cross-section for this reaction channel will be written

in the form:
sl - L .rm naskd [<abI T'led-8Cprp-Zk)

Let us consider the magnitude:

P00 = [ (2 Lk Lt - Kbl T8 om0, 2%

Tle will devide the sum of the momenta of the particles in the

final state into the momentum sums according to the kinds of

particles:
Nj "cJ . ﬂdl i
L [
Zkv=2kc +2:/<4 + -
V=41 1=4 i=g

Substituting this expression into the foregoing formula we will

obtain:

(Pa., PL)O' (S) *"24 fcpk k. k + N dfc/3k4 kd

From here summing in all the reaction channels and taking into

account (4) we find the sum rule in the form:
mn —
<P°»+Pb) 6£o‘t(5)=f°‘3kc kc#fob_,c(sl>;:)+/d3kdkrfdb_,d(S’»kel)“‘"' - (ID

For the furthergoing it is useful to write down the sum
rule in some other form. Let E  be the energy of an incident

hadron, M ¢+ TDbe the target mass, then in the lab system, using
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energy conservation law, we will write down the equality:

N
VZ=; (Ek - k//)y = Mt +F - ,,-5;/

A%t high energies this expression is of the following form:
L/
ZM{: (Ei- ki), =1
V=4

Repeating all the foregoing reasonings, carried out when obtai-

ning relation (II) we will find:

abac

e o
B0t () = chkCE_‘A;]_f_”_ frs,k)+ fc/akd%fab,d(s,a)*“ e (12)

Here summation is performed over all the kinds of particles,
which may be produced in process (I).
—y
Sometimes the distribution function [ (s, k.) is norma-

lized as follows:

[a%. f (sF)=<nD o, co) (13)

Ot (s) = total cross—-section for interaction
<nc>t - mean multiplicity for the particles of "¢ " kind,
taken for all the opened reaction channels.,
This normalization differs from the one, presented before
(see formula 6). The mean multiplicity < n.> , derived above,
was taken for all the channels of the reaction, that contain
the particle "¢ " in the final state. If using normalization (I3)

then relation (II) can be presented in the form

|

x

# _
(patpp) = <NOKE + <nad kE 4+
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where kﬁL is the mean value for the projection of the " C "
type particle momentum.
If we had not included the elastic channel, then relation

(II) would have been of the form:

(P Po) e (5= 2. [l kL' (5,5,

From here in the c.mes. we will have:

-\/—S—,G{neg (8) = Z fdakv Ev f (5';7(:) (IT1a)
v

If we introduce mean multiplicity for the particles of "y " kind

in all the inelastic channels:

(n = 2= [ f(sR,)

O inet

and determine the energy mean value for the particles of "y "

kind:

-9 -
T, = [k K] [ E f(sK)

then relation (IIa) will be written in the form:
{3 = ;Ev<nv>z. (I1D)

The magnitude equal to

_ 1 3 T\ 7?:
%V 18 Ginet fc/ bE (5 h)- }7:8—:_'— %

defines the fraction of the total energy, carried away by all

the particles of "™y " kind and is called partial inelasticity.
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8§2., Hypothesis on Limiting Fragmentation (HLF)

/9/

In paper it is assumed, that at high energies there
takes place the following particle production mechanism in col-
lision due to meza-like continuous structure of hadroné.

In the lab system (where one of hadrons is at rest) in
the collision process there are produced particles with bounded
momenta, independent of energy (target fragments) and particles,
whose momentum increases alongside with the total energy (in-
cident hadron fragments).

It is assumed, that at §+c the momentum distribution
of the target fragments tend to some limiting distributions

different from O and independent of the total energy of the
system. It should be noted, that the fragments of an incident
particle are not included into any limiting distribution. Study
of incident particle fragments requires a consideration of a
projectile coordinate system ( in which an incident hadron is
at rest).

Similar to the foregoing it is assumed, that in the
projectile system there exist limiting distributions for frag-
ments of incident hadrons at §—co .

For example, in the lab system

Him W, (P;8)p. = f (BL)d %
(14)
tim W (B,,..., B0 ; ) Lpdipn= f (BB )byl

S—=>o00

in accordance with the HLF the momentum distribution, for

example, for one or two particles are the functions in the form:

fOpi,PE) | f (P B bl BE)
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where F?c and i?d are momenta for the particles of

"o ognd "d" kind in the lab system. For the sake of convinience

we will introduce the variable

*
2 Py

Vs’

X =

» .
where p” is a longitudinal momentum in the c.m.s. Using the
Lorentz transformation this variable can easily be expressed

via a lonitudinal momentum Pu in the lab system:

= & [puehu - Epsha]

Here

*
P 8 e
shu - M, 'th ’ EP’ Pnz*Pf*mz

If s is large, and p; 1is fixed, then:
-1
X= Mt (pII'EP)
Adt is the mass target. Going from the variable Pu to X ,
the limiting distribution for the functions, e.g. of one or two

particles may be written down in the form

FP) ) (%, P5; %, BY)

Thus, we easily see, that from the HLF there quite natu-
r§11y follows the scale invarlance in longitudinal momentum,
i.e. the momentum distributions depend on the incident particle
energy via the variable X .« In our consideration X< 0 in
the lab system. In transition to the projectile system the va-
rigble X will be positive. We would like to underline, that

the HLF does not contain the value X=0 .
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§ 3., Hypothesis on Scale Invariance

In papers/7’5/ the hypothesis on Scale Invariance has
been put forward on the basis of model treatments. The essence
of this hypothesis lies in the fact, that the momentum distri-
bution, e.g. for one or two particles at tending to in-

finity is of the form:
FOOBDY, Foxe s xa, B (15)

i.e. momentum distributions do not explicitly depend on energy.
This hypothesis includes the point X=(0 as well. Various as-
pects of this hypothesis have been considered in papers/B/.
Carrying out a comparison between the hypothesis on scale in-
variance and the HLF we can see that they lead to similar re-
sults, if X < O or X >0 . The point X =0 does not
correspond to any bounded momentum either in the lab system or
in the projectile system, it corresponds in particular to the
bounded momenta in the c.m.s.

Let vs express the mean multiplicity via the momentum

distribution f (X, 7,)
2 (Zﬂ)sgabec : <nc> = J(S) (16)

where

J(S)=fo/,5;c/x f (xPL) - (17)
VX2 445 (m2e F2)

&s the function [ (X,7)) is bounded, the integral J(s) in the
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domain asymptotic in S increases with energy not more ra-
pidly than:

J(8) € const ln —r;%'g (18)

If the function [ (X,F}) at X —= 0 decresses so that the in-

tegral
JESTRA

converges, then the function J(,S) is independent of energy
i.e. constant.
E.g. the integral o/ (§) will be a constant, for the fun-
ction f(X,PL) that at &>0 satisfies condition:
P(pL)
Ln (1/1x1) ]+

fix, L)< i

If at X — ¢ the function f(x,pPL) decreases slowly
enough or tends to a constant value, then, generally speaking,

the integral J(,S) will increase alongside with S .If e.g.

f(X,/B?L)z 50(15-.:)
|t (1/ixD+c 7

then

9(8) > eonst tnS, . —L—
)3 eonst a4
me

- A . —
If f(o, pL )0 and at X — O the function f‘(x,p_,_)
tends to the value [ (0, ,B:,_) rapidly enough, then the func-

tion J(8) equals:

J(s)=a.tn mﬁ; + b, (19)
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where a. and 56 are some constants.

For example:

ac:fdﬁz f(QEL)

Thus, the integral J(§) is bounded from top and bottom

with inequalities

0 < const £ J (&) £ const tn

ﬁe (20)

From (I6) and inequality (20) it follows, that inclusive
cross-section Oy, (S) cannot increase with energy more
rapidly than 457753 « Due to energy conservation law mean

: Vs’

multiplicity canmnot increase more rapidly than

s Whereof
(<3

it follows, that on the basis of (20) inclusive cross-section

cannot decreases with § more rapidly than

const

ey (21)

dab-'c €P) =

8§ 4, Production of Particles with Bounded

Momenta and Pionization

Lately a wide discussion is being held on the so-=called
pionization phenomenon. Paper/6/e.g. gives the following de-
scription of pionization effects:

If in the high energy limits there are produced partic-—
les with bounded momenta (independent of initial energy) in
the cemes. and their momentum distribution differs from zero at

S , tending to infinity, i.e.

Sfi':; abac,...cp, (S, kcu s kcm) = fab-»c,.‘.cm (ke‘)" © kc,,,) 5-& 0 (22)

then such a phenomenon is called pionization.
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Here, using two-particle momentum distribution
]Z/,nd (S,K,E) we will tackle the problem of the consistency
of hypothesis on existence of pionization with bounds for the
inclusive cross-section, established from unitarity amnd analy-
ticitye.

In Sec. 2 (see 68) for an inclusive process
a+b—sc+d+--- (23)

there has been obtained the following inequality

2
A Cobred < const 205/

AlosBd e S Sin°818ing|P

(24)

where <=4 , p=57, y=9.
. é 7
Here O is the angle between momenta p,,, and l(e , and @
- — - e

is the angle between planes ( ke , Po. ) and ( ke , kd e
Everything is treated in the ce.mes. When deducing inequality
(24) use was made of an assumption, that the amplitudes for
processes (23) are analytic functions in angular variables

(os@ and e®? in the neighbourhood of physical points
(for details refer to Sec.2).

Integrating (24) over the angular interval

6,9)€V = {0< 0. € < T-0o , 0<P<p<T-9, TH+p < < 277—90,} (25)
we will obtain:

Y
Oabrca (8,V.) & ﬁ"———(gﬁ"—) (26)
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The domain T/:, will be called the domain of large angles.
The cross=section O gpped (S5 V.) 1is connected with the

differential cross-section

d Cabred (27
cl*k.cl’ky
via the formula:
Oobaed (8,V,) = fjd[osedlpa’v Aabred (28)
v c/S/(c C/S/(el
2 2
dvo= (ony° Ke ka
@m) 75 3 £, clke kg cdCos (29)
ll/ is the angle between momenta /fc and /74 .
In accordance with formula (8) we have
L/‘e/foseclsofdv fab-vcd (s, ke ko )= (nc.nd>z Cobseet (,g)V;> (30)

V.

Here < N. nd>V is the mean multiplicity of particles in
o
the angular interval Vo .

Taking into account inequalities (26) and (30) we have

r
fjdfos@dsﬂdv Fabsea (S, ke Ki) € <nenay (55
A V. S (31)

Because of energy conservation law the magnitude </7ciu>v
may increase with energy not more rapidly than §/m.my )

symbolicallys

S
<hne na>V < (32)
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If pionization does exist, then at §—»>co due %o (22):

[ [destdpdv foy,eq (K Ka) 3 const > 0 (33)
T

Making comparison between (3I) and (33) we find:

S
n.n
< 4>V; > m.my &x(S/So) (34)

Thus it is necessary for the existence of pionization,

that the magnitude < n.nNy) at large S  should be equal
A

to

s O(s)
<ncnd>v; = m.my £n3’(,s/50) (55)

The function (8) is bounded with inequality

eonst < O8) < €n¥(s/s.) (36)

As it follows from our inequalities (3I) and (33) the existence
of pionization requires, that mean multiplicity reaches value
of (35) that is close to the limiting value of (32).

As our conclusions are based on upper estimation (26)
which, generally speaking, does not give precise asymptotic
behaviour of the magnitude O apLcq (S,V), then it is quite
possible to assume, that pionization leads to limiting multi-

plicity (in the sense of dependence upon S8 ), i.e.

S
<nc nal>V -~ m. my (37)

The cross-—section gpy ed ($,V;) should decrease with the

energy increase not more rapidly, t han:

bg
| V) > Ln(shse) (38)
O'ab-vcd. (S )> S 0(’5)
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this requirement is necessary for existence of pionization.
Or if we take for (D) the upper value from inequality (36)

we will have:

¥
o:zb-»ccl (‘S)V;) > _%/gﬁ—) (39)

_
Using inequalities (26) and (38) we find’/”/:

IRCID 'rs/s,)
m < Oab-»cal (SI)V;) < _—S‘— (40)

In addition to mean multiplicity of particles {N.NJ), one can
introduce mean multiplicity <. n4>V for particles "¢ " and
fi

"d" of bounded momenta

V= {ockeen , 0ckuche, lindles, o)} @D

For this physical charagteristic we can meke conclusions
similar to those, we have obtained for <% ’?¢>V .
[
For experimental studies the characteristic of mean,

taken for particles with bounded momenta
V; = {os k. < P, 0¢ kispd , ]Cou[zlgi, 0<0< T, 04<ps27;‘}

is also very useful.u
The mean multiplicity may be introduced into the dif-
fraction domains.

Let us introduce the angular region, close to O and 7 .

N 0<0<o,
V =

0 ¢<Q |, T-p.<psT+p, 27-¢ <p< 2
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}E angular variables © and ¢ belong to the domain
Vo +V; , then the argument of the momentum distribution
changes in the whole phase volume.
For a two particle momentum distribution formula (10)
for the given devision of the phase volume, can be written

in the form:

> . —_
‘J' fab-?col. (s,ke ka) k. d%a = <. nd)[’,oc)b-rcd (5,¥o)+ <, ’?J%;G;b_,d %)

Here <N, n4>{; is the mean multiplicity in the angular ran-
o
ge V; o

Summurizing the given paragraph one may say, that pioniza~
tion (if it does exist) is accompanied with a large (limiting)
multiplicity and weak (power) dropping of the cross=-section

O abyed (8, V,) for an inclusive process.

If at large Q& the cross—section Oapreq (S) for an
inclusive process behaves like (»ﬁn S /s° ) I , where /5
may be a negative, as well as a positive number, then the main
contribution to the total cross-section is made by fast partic-
les, produced in the diffraction domain, that narrows with ener-
gy increase. Quite possible, that the contribution of fast par-
ticles " ¢ ™ and " d " at large angles (independent of § ) de-
creases very rapidly with energy increase, however if pioniza-
tion exists, the value of the cross-section at large angles
will be determined by contribution of particles with bounded
momenta (independent of § ), and consequently basing on the

foregoing it cannot decrease more rapidly than :I_/S .
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§ 5. Scale Invariance and Mean Multiplicity of

Particles, Produced at Large Angles

According to the Hypothesis on scale invariance/7’3/the
momentum distribution of the particles ™ ¢ " and " d " depends

—y
on the variables X, 7—p_)j , Xd , P_LJ only,i.e.

e —
f (x5 xa F2)
Mean multiplicity of particles < h.nu), in the angular
interval, determined before, (see formula 30) is expressed

via f in the following way:
6
4 (27) <NeNa, Oabaca (5,V0) = I (8) where  (43)

I(87=fcl fc’ dxcded f (X Pl 1, P ) (4)
o, ten, YR )G HHE)

Here
2 -1 2 — - 2 =>/\2
fe=d S mee(BY] 15 = 45 mi s ()] (45)

Ac and Ad are some constants close to zero, they are
expressed through the angles 90 and ¥, , introduced
before in formula (25) when determining the domain Vo .
Repeating the reasonings of §4 with respect to the function

J(S) with some obvious changes, we will find

0 < const < T(8) < const €n°—5_ (46)
m.my .

From formulas (43%) and (46) it is clear, that if the

scale invariance takes place, than due to energy conservation
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law the cross—section for particle production "e™ and "d"

in the angular renge 'V; cannot decrease more rapidly than:

const

o'db-vcal (gJV;) > a47)
From formulas (43) and (46) and inequality (26) we find, that
in the domain asymptotic in § mean multiplicity<ﬁ%nd)v

(4

increases with S more rapidly than:

<ncnd>v_ > S

=7 momy En¥(s /m.ma) (48)

i.e. the scale invariance leads to the fact, that mean multi-
plicity of particles "¢ " and "d'" in the angular interval
almost reaches its limiting value ( in the sense of dependence
upon S ). Even if one of inequalities (47) and ( 48 ) is

not fulfilled, then scale invariance will be violated in the
range of large sngles, il.e. the momentum distribution will
quite explicitly depend on energy. Large mean multiplicity
leads to the fact, that particles of bounded momenta (inde-
pendent of § ) cam carry away a considerable fraction of

the system totel energy.

Let us consider an inclusive process of the form:
a+b —-c¢+-

and select the cases of particle " ¢ " production, when the
angle O ( angle between momenta pq and K. ) is within

the interval:

T, = {0<6,co0<T-0,] (49)
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The mean multiplicity for the particles of "¢ " kind, in the
angular interval T, is expressed via the momentum distri-

bution in the following way-

3 o5 —
202n)<n>. = f °f (xe,pf)
e G P e e o

where Ac is some constant close to zero. Ac is a

function 90 .
From here it is to obtain
eonst

<n6>r~ >
7 Gc-zlb-vc (S,T,) (5D

Thus, if the scale invariance is fulfilled, then in=

clusive cross-section cannot decrease more rapidly than:

eonst

{g’ (52)

O—db-rc: (S;To) Z

In conclusion we would make an important remark on
behaviour of differential cross-section (24),.

Let at large ,§ inclusive cross-section Oap,.q (8)
behaves as &P(S/S,) where /3 may be either negative, or
positive.,

At fixed angles @ and ¢ not equal to O and I
momentum transfers | tac’ and ( tad‘ are large and increase
with energy as S .

Decrease of differential cross-section (24) with ener-
gy increase gives an evidence, that probability of the pro-
cesses with a large momentum transferred is very small as
compared with that of the processes going on with small mo-
mentum transferred. This fact is in accord with the notion

that hadrons are of mesa-like structure/ 10,11/ o
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It is worth noticing, that if momenta of particles
" e gnd " d" are bounded, then momentum transfers [tael
and Itadl are also large and increase with energy as J?
for any angles 0O and ¢ , including values 0O and ¥ .

Therefore one might expect, the differential cross-—
section for "¢ ™ and "d " particle production of final mo-
menta (independent of & ) at the angles 0 and & to de-
crease with energy increase. This phenomenon has been di-
scussed in paper/IZ‘{.

At the angles O = 0,5 there should take place chan-
ges in the behaviour regime of differential cross-section
with increase of g . In this case the particle ™ o " may
be produced at small angles (or at the angles close to & )
with respect to the momentum of incident particle and the
mor:entum transfer lfadl will be very small. In this there
exists a diffraction domain in angle 6 (and angle 7-6 )
that shrinks with energy increase. These diffraction domains
make the main contribution to the inclusive cross-section

Oupored (8). When the angle 6  is in the interval:
T,= {0<6, <6< 76, | (5%)

and the angle ¢ = 0,7, then there also take place changes
in differential cross-section behaviour with increase of s ,
i.e. in angle ¢ (and angle 7 — ¢ ) there exists

a diffraction domain, narrowing with energy increase. The
circumstance, that at @ = 0,%  production of " d " par-
ticle at small angles (and angles close to T ) with

respect to the incident particle momentum is in favour of

this conclusion. In this the momentum transfer | tadl
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reaching the possible smallest value. If there were no chan-
ges in the behaviour mode of differential cross-section in
the domain  T,at ¢ = 0,7 , then at large angles € the
scale invariance should be violated and there should not be

pionization, as in this case

tn¥s/s,
o—ab-vc (S:To) < g (54)

this contrudicts inequality (52),that comes cut of hypothe-

sis on scale invariance.

§ 6. Behaviour of Inelastic Cross-Section for

Production of Particles with Bounded Momenta

with Energy Increase

Let us consider an inclusive process:

a+b >ve+---

when there are y particles of " ¢'" kind in the final state

with momenta in the region:
__> Ay
0« lkil<p LI S . (56)

where p is the quantity independent of emergy.
Te will introduce the cross-section for the process,
in which in the final state of the reaction there are pro-

duced 1n_. particles of "™ ¢ " kind, out of which ¥ par-

c

ticles have momenta within interval (56), and the production

angles in t he interval:




0<90£9“é -77_60).

Vc=
O<€poé Py < ],‘_Spo)' ],',..%é (pz.ézj,‘_%,‘ i=4,...,Y 57

Using expression (4) for the momentum distribution
for the case of similar particles we have:

§/m,
7 ne(nemt ) (=t )0y (P, Vi i1 )= const >0 (5B)

n.=v

Due to inequality (26) we have:

o en¥9/5,)
nZ; Oabyoe (6,0, Vesn) € —5— (59

These are only the reactions, in which multiplicity of the

particles of " ¢ * kind is within the interval:

{s’ s

ke = e S m, (€0)

that make contribution to sum

{S/m,

Z Ne(Ne1)Cqp 5 9 (s')p,V: ;N )= const >0

Ne= 2 (6I)

on the basis of inequality (59).
Thus, pionization, if it only exists, is for certain
accompanied by large multiplicity. From here it follows

that a reaction with the multiplicity smaller than in (60)
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do not make any contribution to two-particle function of
the distribution, and consequently to pionization as well.
If we assume, the processes with multiplicity smaller
than in (60) neither give a contribution to other distri-
bution function at g —» oo , then we may come to a conclu-

sion that if pionization exists, then:

. ¥ v
{ tn2(s/s,)
const (J_S_)v < Cobyve (s,p,Ve)g eonst _—F" > (62)

where O, (S>P>Vc.) is the production cross-section of

bayve
VY particles in domains (56) and (57).
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PART 11

ANALYTICITY, UNITARITY AND UPPER_BOUND OF DECREASE OF
DIFFERENTIAL CROSS-SECTION FOR INCLUSIVE PROCESS.

In the given part the upper bound for decrease of
differential cross-section for an inclusive process with
energy increase has been found proceeding from analyticity
in the neighbourhood of physical points and unitarity condi
tions.As compared with the results, obtained earlier in
paper/4/, the bound in the sense of logarithmic dependence
upon energy has been improved, and, what is more essentlial,
this bound was obtained at weaker assumptions on analyticity,

than those in paper/4/.

§ 1, Analyticity of inelastic process_amplitude in
angular variables.

In this section we will give a summary of the results
on analytic properties of the inelastic process amplitude,
resulting from the basic principles of theory.

Let us consider the reaction:

a+b—c+d+A; /1y
where jlj - is a hadron group.
We will treat the following variables in the c.le.8.:
S==(R;+be - the squared total energy of the system;
s8 - where _»9 is the angle between momenta /_3:_
and kc ’ -
- where _(p _ 1is the angle between the planes /,5:,, k./
and / ke, hkuli

-~ is a set of variables, that gives the configura-

)
e’

tion of particle momenta in the final state.

7 !
The Dyson representation for the amplitude Y:b‘c p (s, Cose,es,of)

may be written in the forms
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aj;cd (s,n, &) = /o/xfd“ Vixd. s, ¢)

-(ar
X, (s) ( )
where w is a unit vector along the momentumf)':_;
(Y is an arbitrary unit vector;

X,(S) 1is a semi-major of the Lebhmann ellips.

From here it follows /see/13/ / that the amplitude

1 3 7
Tab+cd is analytic in variables Z = (os 6 and w=e

in the domain, determined by the condition:

1 4 _ 2
(H+Z”wl+H—Z,Izo—,')(“-Flew, + ’1 Z"w,) < 4XL ()

/ 1/

/ 2/

excluding points Z , belonging to the segments /-X,(S)-1/

and /1 , X, (S)/«A8 the Dyson representation is true for

ab-rdd ( s, (s B, ’9’ ¢ ) as well, then the amplitude

715"4"111 be a.nalytic function in variables 2Z

w in domain /2/.

and

From condition /2/ it follows, that at physical Yalues

of the variable <0 the functions Ta,g_,cd and
will be analytic in Z in the domain

M+ Zl+l1-2] < 2 Xx,(s)

ab—»> ed

/ 3/

excluding the points Z , belonging to the segments [:xL(S)J—I (7

and [71,x,(s)/.

For physical values of the variable = (o3 6 _ the
analyticity domain of the functions ij_,, ed Tafe_nd
in the variable (v depends on the angle 6 .
In this case inequality /2/ is of the form
- +
ro(s6)< lwl < r(s,6) / 4/

where

ro (0= [[xt -G8t [ |

. * '

) 7
In domain /2/ the functions T ab—recd and [4p .y
are decomposed into the Hartogs - I-'amrent. series, e.ge.

T s (20,8 )20 & Fi(s26)

m=-.co

/5 /
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] ¥
The functions Fm (S)Z,é) and Fm (S,Z,cﬁ) will be
analytic in Z in domain /3/.They are decomposed in series
in Wigner functions, e.ge.

i co

/L_j (s,z,&)= []?%’—ilrz(2£+1)Tem(s)é;])d/:/ (z) /6 /

hd f:lml

It should be noted, that unitary condition has the form:
2 L/ m 2
Im{,(3) = I][E(s)]+”,Z=;§fclg[Te(s,g;p/+.-- /71

Here Z denots summation in all the channels, that give
a contribution to reaction/II/, and c/];- is an element
of the phase space; fe (s) 1is a partial amplitude for
the elastic scattering.

Let us consider the function

Q(z,0; 2,0, ;S)=L;f°’1; T! (szmd] szneb) 784

The differential cross-section dzd.g"d/dé’&aec/gﬂ can
easily be expressed via the values of the function 4’3 in
the points zi.—_zz.—.&ge, cui.—.wz:evsp :

ledab»cd dzdaab-)cd= 1 / 9 /

debdp o J00dp 2IR[S

O (6,7 6?5 9)

To end this Section we will tackle the analytic proper=-
ties of the function @ , following from the general
principles of theory.From definition /8/ it is obvious, that
the function (@ is amalyticin 2z, , Z, , G , W,
in the product of domains /2/,

Substituting decompositions /5/ and /6/ into /8/ we will
obtain:

00 (=]
@(zz’wi)ZZ;c‘Jst):%I—Zwi‘ CUz 2@"'4"72 (Z“’Zz). S)
2

mz=~00 M,=-00 / 10 /
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The function @mimz (z,,Z,;S) 1is defined by

@ 2,Z, 5) Z(Qéd)Zv(ZC*-{)C& ()C/&(zz)olez (Zz

eimi E=Im /11 /
€, ¢
The coefficients  C mym, (S) are related to the
m
partial amplitude T e through
¢t
C my (3) = Z‘fJFT (SéJ)T (Sf)J) /12 /
From unitary condition and Bunyakovsky - Schwartz inequality
it follows’ 1%/ that
’Cm,mz(g)lé \/Im )[ei(S')Im](fz(s’) /13 /

Taking into account inequality /13/, as well as analy-
ticity of the imaginary part of the amplitude for elastic
scattering in (o5 O in the Martin ellips we will find,
that the function O (z, w,; 7, w,;8) 1s analytic in

variables Z2, , wW, , Z, » @, in the product of domains:

1 ga A 7. . !
7((wl|+|w“><li le+H+Z1I\><2x°(s)) t=42. ;44

]

excluding the points Z . (2'= 1,2) in the segments

k1

-X.(s),-41 ana [ {1, x,¢s)]

Here x, (9)= ’XM(s)a-i ’ Xpm (5) is the semi-
2

major of the Martin ellips.

Thus, the function @ (z4,00.;2,c0,; §) 1is analytic
in the union of the product of domains /2/ and the that of
domains /14/.

It should be notcd, that at physical values 9, , the
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function P is analytic in Z, and Z, in the
product of the domains defined by condition

/

- {(u—zi|+u+z{|)<2xocs>} ,i=12, /15

excluding the points Z . (7= 4, 2) belonging to the segments
[-X,(s),-41 ama [ 1, X, (s)]
If the variables are Zz, = Z,= (s e, 6¢€ [Lo=x] |,
then the function @ will be analytic in the variables
Wy and w, in the product of the rings

r's min {[’;(s,e))n‘(s)}< lo;] < max {F:(g) ), ro+($)}=1’+ / 16 /

= 1}2)
+
where Focs)y= X, (s) X /xles)-+4
As
) 1 °/w1 dwz
@MIMZ(Z“ZZ)S):(E’?)Z wm,u O)m*“‘f @(Zi,wl)z W, g) / 17 /
le k=1 160, l=1

then the function @"’1”’2 (z,,z, ;S) 1is analytic in Z,
and z, in domain /15/.

§ 2. Integral representation.

Let us consider the function, defined by decomposition

G:,(S JEit)= [,P{]Z(QG.{ T (sé ])ij,/z)t ™! / 18 /
As series /6/ converges for any values Z in domain /3/,

then series /18/ will converge in t+ in the
circle of R radius for physical values 2Z = Cos O

7

R = XL(S)+JX,2_($)—:/ / 19 /
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7 7
As in decomposition of the functions F m and G,,,
m
there are present identical coefficients T ¢ s, then
C ,{, may be expressed via Fma «Indeed as the

Im]

function - J
( 1- Zz) 2 F:n (S)Z)é.>
is analytic in variable Z in the Lehmann ellips, then

using the Cauchy theorem and decomposition of the form:

Im|

{ {1-z%\2 e 2
z'-z \ 1- Z'2> - Z (2€+'{>C{"ﬂl(z)elml (z') 720/
l=Imy

4 ' /15/
where €,,(Z) is the Vigner function of the second kind

we will obtain

[TS]ZT:(S’&J‘):Z—%364[:/‘;}(5’5)‘5)6;/ (a) / 21/
9E,

Substituting /21/ into decomposition /18/ we will find

. . 1 ]
¢ <s,z,g,t>=mafd¢ﬁm GEOLRISELE), 0,

where

Hm(t,&9,€)=ez (2e+1)t€""’ét,f;,,(9)e,fm &) 723/
=/m|

Substituting into /23/ integral representations for
the functions of/ 16/ form

-1 . ¢-iml
A (0) = [N(tm)] 5o Sk tor)[stes(rot)sind] /2,
ITl=1

£ 1§ w !
S (1= M) 55 $ L ) v

Iwl=a.
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we will obtain

Imi
2

H, (t,6s0,L)= (1-¢%) 2 Fb,, (¢,046,¢) /25 /

where

o (4,018, )= A 3§°"H (ez)?GJWL () x

I't‘l 4 |wi=a

X (2/ml—1)t[Cose +2i('£4 %)Sin 6]4- (2Iml+1)w

: > / 26 /
{W— t [Cos@ +—£—('L‘+%)Sin9]}

Here
2/m]

C +1T St 4
Ko (0r) = (’”2(_;),:7,2) , {<a<ltyiy]

L (& &i—wﬂl 2{w+w?
} 2€W+w2 V&1

/[Zw./ DTWT] [ng-Fz};Tj }

Such a choice of " a " gave a possibility to make summation

in ﬁ under the integral signe. .
So, the integral representation for the function G,’n at

physical values Z is of the form

G (5,06 ¢ 4= 52 Zﬂ (jd%),m, F (s0,8)%,, (060 pyy

Here integration is carried out in the Lehmann ellips.
We will introduce the function

g, (20,22, 1,3 ) = ’P‘chlf' Ge (824 &;4,) G (sz Eit,) 28/
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It should be noted, that at t, = ‘l:z = { , we have

c’”‘tmz(zi)zz ; ‘{’4 ’5')= ¢m1m1(2472£;5) / 29 /

Substituting into /28/ integral representatione of type /27/
i J

instead of the function G Xy and & , we

will find

¢ L aa d¢
a

(1-¢)7
X @m‘mz 44,£2,'S)%m, (ti,&ﬁe)gx ) %'mz (fz)CM e;gz) :

Here we have taken into account, that

8, &0lsi9)- o GBSOy s

The function G mymy (21,25 3t4,t,; S) may be presented

in the form of a double series.For this purpose we will
substitute into / 28/ the decomposition ¢f form /18/ instead
of c fn , and we will have

G,,,m(z,, Z,;t,.t,:5)= Z: Z(Qc’+1)(2€+{)€"(s)a/ (Z,)c//é;(zz)fe'./m‘lfez’lmll

m,

e lm/€-IMI Myl 4 "2 / 32 /
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§ 3. Analytic properties of the Function
G mymy ((056,C030, 4,2, ;S) in variables ts

and ta o

On the basis of representation /30/, taking into account
analyticity of the function Dpmm, (¢, &, ;) in
variables &' 4 and C 2 in the domains of /15/-type,
one can ghow, that the function Gm.tmz (Co26,0046, ts, 8, ) s) is
analytic in variables ¢, and ¢, in circles of radius

I‘o+ (8) .It should be noted, that this analyticity may
directly be established from decomposition /32/.Indeed, for
physical values Cos O due to unitary limitations / 13/
series /32/ converges absolutely in the variables fl and

t , in the circles with radius I": (S ) .This analyticity
is a consequence of general principles of theory.Let us make
some additional . assumptions.

Assumption A
As it was exhibited before the function ¢m,m,(¢4,gz,'5'>
is analytic in the variables C 4 and C 2 in the
product of the domains o, xd, et O,(6.,7 ) and
0a ( 9,,;7‘ ) be some fixed neighbourhood of the physical
points Ci = Ces 0O, and &z = (s 6, ,6,€[0%]
7 characterises the size of the neighbourhood.The union
of the domains d, and X will be dezignated
as %i «Now, we will assume, that the function

Pmym, (£, Jé’z ; s) is analytic in the product of the domains
%1 X %z b
As usual we will consider the function @7"4"5 £,,¢, ;)
in the domain of analyticity in the variables £, and
g 2 be polynomially bounded in S i.e.

| 9, (8,05 9)] € (‘%‘)ﬂ /33 /

Now we will show, that from the assumption A it follows
that the function & m,m ((056,, Cos 6.5t ,t,;S) is analytic
in variables t 1 and t 2 in some fixed neighbourhood
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of the points '6_1 =1 and ﬁz = 1 Firstly we will
study analytic properties of the function G mym, in
variable T, .Let us write down /30/ in the form

G (80500, (058, 8, )= 1~ (zdfi)ml! (o5, )%, (6,050,034 /

where

. d¢,

“Y"n’mz(é:{,)&seo7t2789_ é([ Cz)lm;l MM(Q)ZZ,‘SQ% (‘t &‘ éz) / 35 /
Considering representation /26/ for the function
%ml(éi,ﬁs&o)é) we see, that if

It,]-] Cos6,+ %(T-» ,—‘t-) Sing, | < 1
then integration over g‘ 4 and W may be inter-

changed and after substituting /26/, /34/ will be changed
for

Crm, ( CosB,,Cs 8, 3 £, b 97 g 35°/‘ Ko (6,7) X /36/
(2Im/-1)t, | Cos 90_'__2 T+%— Sing, [+ (2 Im+1)w

X %e/w )i[ 2( ) ]4 1 . O\G,,,M(W,&sﬁ,’fz;s')

Iw/=a [W—-ﬁi[Cose,»L—Zz-(T’«,L:)S/bQ]} o

where

(W Cosb,, 2;3) 27_ §£ oli’.‘t)‘m MM(Q&‘Q,Q;S)LM(K w) /31/

As the function D, (£,,&, 5 s)  is analytic

in g P and g 2 in the product of the domains

D, X %2_ , then the function (/-gf) %m(é&j s ., )
will be analytic in CJ " in the union of ellips with a

semimajor X, and the domain (), .This union will be
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dezignated as 01 , and its bound as 9@_4 «In
representation /37/ the integration contour may be deformed
into 0@y, i.e.

, d¢ .
ogmimz(w,@!@;tz, S)=2—7|'{-;:.9Q ({- gjz u_::,l wmlmz(fl,&se” t2 ) S’)Lm‘ (41) W) / 38 /
£]

The function .L,,,i (C,,W) is analytic in variable
W through the whole plane, with exeption for the point
W = 0 and the logarythmic cut from the point W=§‘+VE.—['
to infinity.

When C . changes through the ellips, the beginning
of the cut

W=L+ C:‘-’l / 39 /

in the plane AW changes along the circumference
of the radius r (g) .The part of the bound 2@, , thut
envelops the neighbourhood O, 1is reflected with the
help of /39/ into the curves in the plane W that are
bounds for the neighbourhood of the points W = et ie,_,
Thus, the function oG, ., (W, 2s6,,t,,5) will be

analytic in w with exception for the point. W=20
in the domains, whose boundary 9 (2 is obtained from

0Q 4 by mapping /39/.The region of analyticity in W
will be dezignated as (2 ;, .In representation /36/ as the
contour of integrating over W one may take the boundary anl
After changing the integrating contour it is obvious from /36/
that the function under integrating will be analytic in 7,

and T in the domain, where the values of the function
W(’Gh,@,):ti[fos@,+Zl-(T+;Z-)S/n€°] / 40 /
lie inside the domain (L 1 and T does not equal

zero and infinity.

1f the domain (L., were convex, then the analyticity
domain of the function G mm, in t; would be determined
by the condition under which the points gy =t¢,e” 2,
would lie inside domain L, .
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Really, in our choice of the integration contour |T|=1
the domain of analyticity in t 4 is defined by the require-
ment that the segment

bl

t,[Cose, + z‘S/'neoCogoc] < o £2T

that connects the points g+ and g_ lies
inside the domain ()., .If the domain .() 4 1is not convex,
then the analytic continuation in t { requires deformation

of the contour of integrating in T , as the straight line
connecting the points t,e*® ana t;e” *®>  may not wholly
lie inside the domain (). , .

Easy to show, that the contour in T - plane fyom a
unit circumference can always be deformed into some contour X
going through the points T = * { and such, that the
curve

t,[ Cos6, +isine, 7 (r+1)] | T ey

lies inside the domains L 1 .

Thus, again the domain of analyticity in t 41 1is defined
by the requirement, that the points ¢ ,e'©° and ¢, e 1O
are inside the domain 2 { «The domain AL ¢ 1is a union
of the circle with [‘:( $) radius and some fixed neighbourhoods

of the points ¢ *:6o , the point v = 0O excluded.
It jci lies in some fixed neighbourhood of the point
ti =1 » then the points g ; lie in W  plane

in the neighbourhood of the points e *'% ,Hence, the

funotion G, ., (18, Ces8.;t, t, ; s) continues in
fi into some fixed neighbourhood of the point f1= {
for any fixed value of [t,[ < I':(s) .
Using the reasonings similar to those aforementioned, we
will prove that the function ¥, . (£, (40, t, ; &) is

analytic in some fixed neighbourhood of the point ¢, =/

—-—

Thus, Clm'mz (60399,4590,'2,1_‘2,' 5’) is analytic in 7,

P4
and 1, in the product @lx 2, _too, where %i
is the union of the circle with I'f (s) radius and some
fixed neighbourhood of the point ¢t = 1 .

2
In conclusion to this Section, we will obtain the upper

bound for the function G',,,,,,,z (CosB, (os6, ¢, t,; S) in the
analyticity domain in and .
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Due to the foregoing reasonings representation /30/
may be written down in the following way

Gmlmz(cogeo;&“eo;ti,tz;g) 27-‘ %v({clzi,mu f({ C. )Im.

/ 41/
K B (08,55 Ho (60,010, 0, ) B, (8,06, )
On the basis of /33/ as well as of inequality
§4k+1
'{ Im,-l
= § L @8,L0)< (2imind) () A
Q;
where A and k are some constants, we will
have the following upper bound
\Gmimz(&ae%(}:eo;ti,tz;g)l <M / 42 /

N+6+2 (Im,1 + 1m,)
M=const(-§-‘-o) , N>n

for large S S>> S, in the analytieity domain in f:i and ?_‘2

§ 4. The upper bound for the function

In the previous Section it has been shown, that in
assumption A that the function G'”;'"z ((0s6,,0058,;¢,,t,,8) is

analytic in ti and tz in the product of the

P "~
domains D, x D, .Let us remined, that the domains X:
are such, that the points t;= 7 have some fixed neigh-

bourhood independent of S .
To obtain the required bound, we will make use of
the theorem about two constants.For this purpose we will
perform the following costructions in the planes 'ﬁi and
fz /see fig.1/.
In the plane fi we will draw a circumference with
the radius e’g R f > 0 .Then through the point
t, = riee) + 7 Sin 6, we will draw a circumference with
the centre on the real axis, which is orthogonal with respect
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to the circumference with e -¢ radius. At 7 small
enough, this circumference lies wholly in the domain 9/5; .
Let us designate the crossing points of these circumferences
as g and 4 and their arcs between the points g
and h , and going through the points e’f - r°+(s)+7 Stn 6,
as C', and 6'7 , respectively.We will draw a
circumference through the points ¢ A and ¢, =1 .
A part of the arc of this circumference, which contains the
point t,=4{ will be designated as (, .The angle
between the arcs C, and C, will be « , and that

between the arcs Cy and C, will be B .

The domain, bounded with the arcs ¢, ad C, will

be marked as B_,,_ «Similar constructions are to be performed

in the plane fz .The domain between the arcs (, and 6'7
in ¢, plane will be B, .Let %, = £ , then applying
the theorem about two constants for the case with 75, domain,
we will have

Wy {-wy
|G (tet,t20)|< {woicﬁi,twﬂ [ggg?IG(’ci,tfi)l] /43 /

On the other hand, using the theorem about two constants
for the function & in the domain B, , when f.t € C,
and {,€C, we will find

@ 1-w

lG(hEC',,'tfi)’é [;‘:ggolG(ﬂEC,,fz)ﬂ E:gg,@({ieco,tz)” /e

@, {-c0,
|G(t€C,, 4,21)|< [Z:'eog:IG(%ifc’?,tz)” [Z%'G(fﬂy,fz)]}
/ 45 /

where W; and W, are harmonic measures for the
domains B, and B, equal to:

&

BT et e i
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Having taken the maximum for {1 in the two latter inequa-

lities, we will substitute the values, obtained into inequality
/43/, then

Wy, wy (4-w,)
6kt et & [ o e [ 6062 [ o e | o]

(1-wy)w,

x [ma/x max [G({i’tz),]

£EC) t,€C, (”’"«é o [ECRA]

(1-w, ) (1- w,)
€€y 126Gy ]

/ a1/

Simplicity we always designate G,.,,,,,z(cosa,,&se,;t,,tz;s)=G(f,,t,),
As the function G (t4,t,) in the analyticity domain has
the upper bound in the form of inequality / see 42 /

|G (tt)l g M
then on the basis of /47/ we will obtain
W W,

TR or. 1- wW
IGm,mz(C“ 6, (036, i,i,s)l < [ {r:gga ntl%.lg"’*'"z(&s 6, Cosb,; t, L, s)] MO

/ 48 /

Using decomposition /32/ and unitarity condition /7/ we will
find

[1+|mil(i-e—g)]'[i+lm2l(1-e—§)] /48 /
(1-e*)"

'ETeaé): Z%OIGmxmz((bseo’ bos 9°; %‘4 ’{2; S>l <

As is clear from inequality /4A8/ one should find a harmonic
measure and choose the magnitude e -¢ in the proper way
so as to obtain the bound.Directly from the construction it
follows that

2 tgEths
fgd:fgz.z'.{gi /2;;4_- / 50 /

4 x _ [;+($)+'732'n9,—e’€
12 © 1":(8)4-731'/7 0,+e'C

/ 51/
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If we choose

fh§= { {

to X. .
12 N+6+2(m+Im,i) {”’S.s‘, / 82/

then, taking into account the fact, that o +[3 according
to the construction equals I /2 , we will find, that the
harmonic measure satiesfies the inequality

4 {
‘JT[N+ b+2 (Im,1+lm21)] én _%_o

1—w=%_g—-<—,r%’c3o<< / 53/

Having solved equations /61/ and /52/ together we will find

-1 X
J- o C [N+ 6+20mimp] -1 +psie,
‘n é—o f;+(s‘)+i +7Sz'h 6,

/ 54 /

Substituting this expression into inequality /49/ we have

4

+ )
L ()+4+9Sin§, 4
< Const {[/m1/+lm2/+1]r( 720% }& il

max m
pix ritG)-1+ 78/‘» 6, S,

1€, 4,€C,

G’nw;z (0’590 Cose, st ’ 9)

On the basis of this inequality, as well as /49/ and /53/
we will obtain the required upper bound for the function

-

4 0 + ) 4
] @M‘MZ(CDSG,,(.’MG,;S))éconst 6m,;+lm2,+i>_[n(3)+1+7&09,] (né_;_'

rte)-41 +Sin b, / 55 /
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$ 5. Upper bound for decrease of inclusive
differential cross-sectione

As it was said, the function O (Cosb,wy;(xB,w,;s)
is analytic in Wy and o, in the product of

the rings of form /16/ for any physical values of the variable
Cos O .This analyticity is a consequence of the general

principles of theory.Let us designate the ring domain in the

plane /cei as K"/\,

Let O, (¢,,2) and o, (¢,,1) be some fixed neighbour-

hoods of physical points wy = e’  ana w,= e’%P

¢, € [0,2%], ) characterized the siZes of the neghbour-

hood.Generally speaking Po may depend on ®o .The

union of the domains Kg and (02' will be dezignated

as A'l‘ .

Assumption B

Let at physical values Zz,=2Z,= (e4 §, the function ®
be analytic in the product of the domains A, X A, .as
usually we will consider the function b (tos Go,w_t,(fos 0,,0, ,S’)
to be polynomially bounded in S in the analyticity
domain in w4 ,W, , i.e.

: y N,
l@ (C’o&eo)wi;CM9,7wz;5’>’é (?o) , S>$o ) / 56 /

We will proceed to the estimation of the function

| @ (Cub,,e 10, 5 (o3 B, € Y@, ; s)| .In decomposition /10/ of

the function @ in powers oy and O, it is

more convenient to separate summations in positive and negative
values for m. .For this purpose, we will use the Caushy
theorem

.¢(C’0399,C04_;G)$ S)— S < _cll_c_oi_, + dew, ) X

% W wi—w / 57 /
x L _i‘)}'_ + dwz
i w—w, -, @(Cos@ w, ; Cosb, W, )
+ r_
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From /57/ we have

(++)

O (Csb, wi;010,00,58) = B 4 YL B, 567 gy

where

Gk _ 4 4 95 dw) ,
CP '21:1‘;’?@;-@ Zm:rk 0, - w, @(Csaeo,wi,‘&seo,wz’3g)) /59 /

=) k= (7)) v 'ré; _
The sign + (- ) corresponds to integration in the positive
/negative/ direction.
As all the further reasonings are similar for any function

® GF) | we will treat just D+

In the planes (U4 and W, and the neighbourhoods
of e"9’° we will carry out the constructions similar
to those, made in the planes t.-t and ZL_,_ in the
neighbourhood of the points ¢,=1 f,=1.
¢ If we designate the radius of the inner circle as
e , T>0, then having made use of decomposition /10/ and
estimation /55/ for the function @,,,‘,,,z (Cos@,)é’os 90;5')
we will find

448
ritreensing, | %%
rIG)-LepSint, | (7 o) / 60 /

max max ‘ §(++)(Cogeo,a)i,'C’os@o,wz;s)gconst[

w,€Cp wW,€C,

T and 7(, are related to each other through the
same relation, as the variables g and X .
Taking

1_e—T N, [r"‘-c-ﬂSingoa—_{] /61 /
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Substituting this expression into /60/ we will obtain

+ ¢ 6
(++) r©)+1+03n6, | [r% 1+)Sing, |, 10
wy ;C0s8, w,;S)|< const |—3 2 |, 2 3
d';’g’éz:?c,i@ (Cost, 00; Cos, Z’S)l cons [r:(s).iJ«?SinG, rt £+ASing, (’n—§; / 62/

Repeating the previous reasonings and using the theorem about
two constants we will find

6

4
[ P, 1 ris)+1+n8ing, | [Fdeasi
PO P Y| HERS Y
l@ (Cos L e ,S)I\const 6)-don e, rt1+)\simp,e"—§: / 63 /

This bound is valid for the functions $ $¢ P
and consequently for P (cose, ,e'Pe; C’os@o,e"%,' s) too.

Thus from /9/ and the bound, obtained for _@ in the
domain asymptotic in S the inclusive cross-section is
bounded with inequality

g
S_l_z_gM < COY’!St znloTo ['”:(S)+i+7$:‘n6° 4 r‘++_{ 4;\31}7¢° 6
ollosbdy, | = S LrG)-1+nsin6,[ | r'-4 +ASing, /64
CECR
P=%s

The assumptions A and B on the basis of which we have
obtained this inequality are of a local character, therefore
/64/ is valid for the points 6, and ¢, .

If the assumptions A and B are true for any physical
values of the angles & and ® in the range

0 <B<LKT 0<p<T . TL pL2X
? 4 4 14 / 65 /

then bound /64/ is true for all the physical values of 7

and (¢ .For the angles 6 and @ of interval

/65/ we have

CJZG baod '&240-_3—
= _Yabred . o t Se
dCosbdp " e sine Sinp /66 /

This bound may be improved to a certain extend.Really, when

obtaining /49/ we made use of inequality (el,ﬁ,(e)l < 1,

This inequality may be improved for the angles O# 0,7 .
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From the theorem of group properties we have
[d2@]'< A jcup | B, (Coxt6+ Sin' (ot )

27?
-

taking into account that

{

[P, ()| < =
LSinQ

after some calculations we will find

ele e 4J—_v_§#—
[ < (2€+1)Sin /61 /

In our choice e'g /see 54 / this inequality
allows to obtain the following inequality

max max ((ot8,Cot 6; ¢, tz,s‘)‘ const

et Ten | onen Jsimb (1-e%)%

/ instead of /49/ /.
On the basis of this bound and with reasoning similar
to the previous ones, we will find

7
" Is
mavx. max I @ H(&»;Qco“&a@ “’z)g)l < eonst { s
wi€e, w,eC, Sin“e [1-€F

Application of this inequality allows to improve the bound
for the inclusive differential cross-section

clzﬁ'ab.nd 9 S’
< const

cléosadgo g SLh,l/G ISm(p/‘/ Simp| / 68 /
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For fixed values of © and (¢  bounds /66/ and /68/
for inclusive cross—-sections are somewhat better as compared
with bounds, obtained in/4/.1t should also be noted, that
these bounds have been obtained at weaker assumptions on
analyticity, that is in our opinion is very substantial.

Now we will show, that these bounds cannot be improved in the
sense of the power dependence on .

§ 6. Is any further improvement of the bounds possible ?

In the present Section we will make an attempt to
clarify the question, wether any further improvement of the
bounds on the basis of analyticity and unitary boundedness
is possible.From the first sight it seems to be obvious, that
widening of the analyticity domain under A and B assumptions
may lead to the improvement of the bounds.The maximum possible
analyticity of the function @m,mz (z.,2,;5) in
variables Z, and z, under assumption A is the
analyticity in every variable in the plane with the definite
cuts along the real axis.Similarly under assumption B the
maximum possible analyticity of the function ép in variables

Wi and G, is the analyticity in every variable in
the plane with definite cuts along the real axis.In this the
variables Zz, and z, take physical values only :
z2,=2,= (o306 .

We will show, that the class of functions, satisfying
the condition of the maximum analyticity in the above
mentioned sense and unitary boundedness on the partial waves

¢
22 T s )] < e

mz=-2€ ; / 69/
always comtains a function, decreasing with increase of S
not more rapidly than
tim § o Ot 2ed = eonst
C—_———— = COhS >0 / 70 /

Garoo ACosBdp

In that way the bounds of /66/ and /68/ obtained before
may be improved by decreasing the power of logarythm of the sys-
tem energye.
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Let us now construct the function that satisfies the analy
ticity conditions and unitarity and decreases with the increase
of S at O and ¢ fixed, not more rapidly than /70/.

The coefficients C «£2 (.g) in decomposition/11/ will be

chosen in the following way~

C’":"’z( §) = l[r,,u} [r‘,(s)] 0/21 (E)ely E)(‘i),m‘m

According to unitary bound /69/ diagonal elements of the matrix
C faty (s) slelould satisfy the condition:

/71/

m,m, ¢
14
2 Cmm (8) < 5
m-.—-E
In our choice of the matrix we have
28 772/
I
€ (5) = . r:m] ["/mo (z )]

As in accordance with the group properties

ch (B)adl (E) = o2 (o) =1

m=-¢
then we 11111 obtain

| 2t 4
ZCMH L& < 4

m=-¢

As riecs) >{ then unitary bound is fulfilled. If into /11/
we substitute the values of the coefficients equal to /71/ and
take into account decomposition /10/ we will find

@ (2.1 ,%;Zz,‘*’z; 5’)_.: ¢4 (Z‘)O)i)‘ S') @(zz,wz;sl> /73/

where

2 -3
Q_?L(z,,coi;s)= [£+(r;(s>)2][1-r;cs)(wi-c{;‘ W=z - ( rne)] ® /74/
3
. _ 242
@2 ( Z,w, )S)= [1+ (te ))2][ 1+ 1, () (w,- ai,l Wi-2% - (ri) ] 15/
In finding @i we use rela{tionm imp P
P, (5in0Cos(¢-3))= 2L (i) e 'l (8)ely(Z) /76/
as well as decomposition for the generating function for the

Legendre polynomials.
To investigate the analytic properties of the function

it is enough to consider only one of the factors of /73/,e.g.
{ eLet z,=0(e1B,, 0< 6, < T, then the function P, is ana-
lytic in the whole plane W, with the cuts from - r, (s) upto
O and from I, ()upto infinity., Taking o, = ez“’ﬁ, 0 P 22T
one can easily get convinced that 4+ 1is analytic in the va-
riable Z, in the whole plane Z, with the cuts along the
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real axis from — co upto - { and from 7 upto infinity.Similarly
the function @2 is analytic in the whole plane @, at physi-

cal values of Z,=-(sf,excluding the cuts along the real axis from
0 upto I, (s) and from —o°o upto - '), At physical
values w,=é¢€ ’“’2 the function @2 is analytic in the variable
Z, in the same domain as the function .@1 in the variable
Z, e.Easy to see that the function @ is polynomially boun-
ded in S in the analyticity domain.
Thus the constructed function @ satisfies the require-
ments of the maximum analyticitye.
Now we will consider the magnitude corresponding to the
inclus ive cross-section

d*6 { racs) x2¢s) 1/
d0s0do 4IRS [x2es)-1 v sinOsintg |F

at 0 and (¢ fixed and not equal to 0, T ,27
in the domain asymptotic in § we will have

J'o { /18/
4
SlewOdP 2 95020 Sin*p]

From here it is clear that the asymptotic bound for inclusive
cross-section cannot be improved in the sense of power depend-
eance of S « Moreover from our initial conditions it is impo-
possible to obtain a decreasing bound for the magnitude

/19/
T dCosO f o P Tsbde Od ¢
Indeed integrating /77/ over ¢ we will get
do wrie)xZes) F(j_ 3.,. Sin®% > /80/
036 ~ 2B NF[X2E)-CosB]E = 27277 xi6)-(os6

Let & be fixed and not equal to O and 7 then at §—o0
we will have

do WF( 7,7,41, i) /81/
dCs® —  2mk Sme

N |
clCabose d B absed /82/

JC1 6 7 " gCosO

then from our initial conditions it is impossible to obtain the
bound for the differential cross-section AlCabrc/d®sd that will
decrease with the increase of energy at large angles.
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