FAST ONLINE TRACK FINDING FOR THE MUON TRIGGER IN THE UA1 EXPERIMENT - K. Eggert¹, Th. Ehlert¹, Cl. Engster², P. Erhard¹, H. Faissner¹, K.L. Giboni¹, - R. Haidan², T. Hansl-Kozanecka¹, L.O. Hertzberger³, D. Hoffmann¹, D.J. Holthuizen³, - L. van Koningsveld², H. Lehmann¹, R. Leuchs¹, Y. Muraki², E. Radermacher², - H. Reithler¹, E. Tscheslog¹, H. Verweij² - 1. III Physikalisches Institut, RWTH Aachen - 2. CERN, Geneva, Switzerland - 3. NIKHEF, Amsterdam A microprocessor system will be used to trigger on high energetic muons in the UAl experiment. The system consists of 7 microprocessors MC 68000. Six of them work in parallel for a first online track finding and one as supervisor to take the final trigger decision. To reduce the input rate for the microprocessors a very fast prefiltering is done by a specially constructed hardware trigger.