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Abstract

In this paper we present the results concerning the
asymptotic behavicur of the cross sections of elastic &and
inelastic processes. Some of these results were obtained
together with M.A.Mestvirishvili and Nguyen ngoc Thuan.
For the sake of simplicity we assume all particles to

be spinless.
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1. Upper bounds for the cross—sections of binary processes

First we consider some process of elastic scattering

a+ b — a+ b (1)

We assume the amplitude of this process f’(ﬁ, t) to be
analytical in %= cos 6 ’ 0 being the scattering angle
in the centre of mass system, inside the Mandelstam

ellipse tc with foci at +1 and with the major semi-axis
c~ 4+ —j— ; Y70, at s —>oo . For a number of processes
such analytic properties were proved on the basis of the

fundamental postulates of the local quantum field theory l.

Let us expand F(A,i-) in partial waves
s S P
F(4z)= $r ——T-:— ZZ”(z{CH) aj&(A) . (2) . (1

As is well known, from the analyticity in % and from the
polynomial boundedness at s— o0 it follows that OLX/(A)

decreases exponentially when /{7/ increases

Ja, W] ¢ R@[erVezs] 2
where R(A) is a polynomial in 4 . Let L be that value
of 4 at which the r.h.s. of the relation (2) equals 1,
and Lzo be the smallest integer number still greater than

|, . Now we rewrite the sum in (1) as follows

nho 4
Fs2)= XEE—Z_/(-Z€+4)Q,(A) f}b(i)‘f gﬂﬂ_ Z (24¢1). (3D
(e £ (TR

0/6(,4) E( (—2—)
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By using the inequality (2) we can prove that a finite
integer number n can always be chosen to make the second term
in the r.h.s. of (3) decrease faster than any power of 4

at 4 —> 0.

We remember that if we substitute for qboﬂin the first

sum their upper unitarity bound

|2, () <« 4 (4)
then, in virtue, of the relation
nly, ~ wut V5o (5)
we obtain the Froissart bounds
\Fh0)] & wwt s A8 | (6)
PXOALY

| Flawt)| ¢ wmot = = = eson. (7)
Vsao
It is possible to improve these results using in the
first sum of (3) the Schwartz inequality instead of the
substitution lak(gl—a 4 . Then we have

wh,
Fenl ~| 2 @) a () B,
A=o

2
£

(8)

wLo 2 * 2
¢ ) @[ ). L (240 | @, (0| -
L=0

‘Y-:o
46,
‘We denote by s and Ogf the differential and the total
cross-sections of the process (I). We obtain, as a consequence

of the relation (8), the inequalities 3
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46 ¢ \ ¢ wwt ,6'&4/5 St ) (9)
4 ws &
0z0o
4654 Vz n s (10)
' < cwt - 6;2 |
A@S& 9_#0,7( «AVV)‘é'

We consider now any binary process

a + A — e+ oA / (11)
' m
and we decompose its amplitude l (4, f) in partial waves

T(s2) = 8z —‘ETZ— % (224 A) jz (4) ££ (%) . (11)

This always can be done in the interval -4 £ 2 £ 1
The contribution from the partial a,mplltude 4 (A) in the
imaginary part lmq,(a)equals \’ef (é)l

2 (12)
T o, () = | a, ) + | £,(8)] +

Since all the terms in the r.h.s. of (12) are positive, we

l{)rb(“), 4 l‘ IW\ CL@(,&) £ \/ 'qﬂ(y, ‘. (13

We conclude thus on the basis of relations (2) and (13) that

can write

also /er (4) decreases exponentially when 4 increases and

L : 467, A
for the differential and total cross sections —2=
ws o

we get the same inequalities as for the elastic processes

and 61(

T e

¢ et abaE (14)
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AG:‘V\LY { wot V—I"&'DJ G L -

Xosé | g Lox A & (15)

-~

IJf the differential cross sectlions are considered at fixed

t instead of ws® then we have

i%z & wu,t' fmzé 6;[' ) if;:.(; < anujl? _’e:_?J; 6;,@ ) (16)
A 'L':o M t«‘#o VF(:T
amn
\ 467, bns
46_:,\(2 £ W't_ (M-l/“ 6:;,,4) ) 'b'! £ wpt 6-:""0( ‘
at gl AV ey, Vil

The relations (16), in particular, shows that the width of the

diffraction peak for elastic and inelastic processes

) A Gl (18)
Ba= ey, 0 Do 5, |
tzo tzo

can not decrease at A p faster than }GL{S . This result
for elastic processes was obtained earlier in a paper of Bessis

who ured a different method 4.

2. Upper bounds for the cross—sections of inelastic processes

of multiple production

Now we are intended to show that the results obtained before

are true also for the processes of multiple production of the

type

a+ b — o+ %} ) (II1)
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where B} denotes asystem of hadrons. We denote the angle
w u )
between a'and ¢ particles momenta in the centre of mass system
C
by 6. The amplitude of the process III Té (»4,°°'5") )
will be presented in the form of a function of 4, #=cws@
and other independent variables, which always can be chosen
in sucn a way that the integration domains in these, variables
T4 (42— )
are independent of the angle 0 . The amplitude 4.
can always be decomposed in the Legendre polynomials
' = ¥
T (a2, ) = b~ Z_ (2947 (s,.) B (). (10)
: £=0
The contribution from the process III)to the imaginary part

of the partial amplitude of the process (I) is equal to

j Z/a () #S@r)}fg Fatbe™ per 27”",) (20)
L—’:Ar( ( (j (4]

2¢. (.z ) ”e

where r’m ) Tv( and T/e are the momenta of the correspon-
ding particles, 7»,; are the momenta of the particles of the
system BJ’ and ¢ ¢, are the time components. of fv,, and 7-/4; .
The differential cross section of the process(III)at a given

0, integrated over all other variables, reads

Ae:,?f}

S (ur) () B (W)f (wst) C}}("}(zn

& wsd T" )e L
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where , .
. . 3 4& ¢ * ‘
708 ' H W4 }"—’QFC dpe /é ..o (22)
CJUL'( )- ﬁ;t ?g\hﬁ O ’7@“ 2t éﬁ(é’ ) ,e’(é %

Due to the Schwartz inequality we can write

c 2 C <
‘ ng,(;&)) ¢ 22 (») Zi/ (1) < [ﬂz(*‘)// 42,0)/ ‘

As a consequence of this inequality we have, on the basis of

(23)

[
the relation (2), the exponential decrease of Qg;’ in £

!
and £ . By means of the arguments used above it is easy -

to derive inequality of the type (14) and (15) for JG?MX

5 ‘ dews &
(see 7 ) ) .
0‘6-:.“{2 2 Jt
— ¢ gt o s GO (24)
Xeost <)
'0:0 :
I (25)
G- ¥ 25
imed ) 4
’/—l S Wot’ V_A/{en ' 6?0\4
dwsé 4w, & 4
ﬂ%gﬂ }‘
. : dG o
Performing summation on the cross sections ne

A eos b
over all the possible system %% we obtain the expression for

« ?)

the total cross section for the production of a particles <

at a given angle © }c
. A6 5,2
467, 4 ) -
=y dw §
AwsS b

Similar relations can be established also for these quantities
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A

,z' [
¢ ot 4bB O

2
Aw b o=, (26)
16,8 Uz bns < (27)
—_— ¢ ""'M’b N 6';0( .
dast | 4o, 4 &

Similar1y1n (18) we infroduce the notion of the width of the

diffraction peak for the inelastic processes
<

yt 4 6::%4 A c 4 6\'1'”"0 ] (28)
inl = - e T
46—.\;‘1 Aw)b’ f=o ) ww(/lw&/a:o

Then, due to the relations (24) and (26), it follows that
these widths can not decrease faster than 1/( +
' n A

3. The exponential increase of the imaginary part of the

amplitude of the elastic scattering at real 2Z > ,i

We have in the foregoing sections established a
number of relations assuming polynomial boundedness of the
elastic scattering amplitude F(X,t) for all finite Z
inside the ellipse EEC . Using the unitarity conditionwe can
replace this assumption by a weaker one, the polynomial boun-
dedness of Ivnlfr(qi). If, at least, one of these inequalities
is not fulfilled, it could mean that either L, I (42)
is not analytical in % or it increases faster than any
polynomial in this ellipse. We denote by fV(A) the maximum of
the modulus of Lw F(A,l) for any % inside E . It can easely

C
be proved that Im, F(A,%) reaches this maximum at #=¢ &
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T F(A,O) = /V(A) . (29)

—

Agaln we assume Im F(A,z) to be analytical in tc_ + Then,
even in the case when only one of the established inequalities
is broken this would mean that N()) at 4 - o increases
faster then any polynomial, We show now that the study of the
behaviour of the corresponding quantities ( the cross-section
or the width of the diffraction peak) enables us to guess the
character of the increase of this function.

Indeed, by means of calculations used above we can,

instead of the inequality (6), for example, derive relation

Fa4) & wmt 4 Ao N(s) (30)

where N(,«Q is determined by (29). This gives

P 172 i S
N('A) 7 exl’ [““St L%"__'- ] ~v Mr [Coubt —j— —J—i{ff
s 4o

which is a generalization of the inequality

W) > ey [ omt S )’

Y2
obtained by Martin in a different way 2. The following formulae

73
1 S

can be derived analogously

,N(,9 y p [unst A‘j—‘;‘ 4621

A ws 6

G.f o,'l(

1 46

2 (.ons't ce
VN(:‘)>/ xf[ A6, deos & IG;OJ

(33)

p
)
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4nd AG:,C
N 4) > exX [wnst » :l
( ) 4 r \’z 6:2 dest 0#‘/7 ) (34)
Yo
A 46 (35)
N(ﬁ) 7/ &x,, [(ﬂus‘t s —-———a\wse— . J )
[ PR B (Y 7z
wm-t o tne
NG 7 e | o e l,,.. |, o9

,N(A>>/ exr

s 1

_t 1 0\ G:‘nte [ /2}
wns —_—

- 868 dwsb |y,

To } (37)

. ‘:V\ 46:1&
)‘J(A) p Lxr tons t Aen —————i/
[I 6. dwa &
‘we ¢ #ou ) (38

where E;“h( means either the cross section of a binary
inelastic process, or the cross section of an inelastic .

process of multipole production.

4. Lower bound for the cross sections of inelastic processes

In this section we estiblish some lower bounds for the

cross sections of inelastic processes of the type (III).
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We write the differential cross section in the form

'S ,;
L SO S (+ WO (39)
A os ¢ 7\/‘[;
where

40)

. (z’
o) [¥lpeper 70 0 | T )

We denote byl;nF{waV§he contribution to the imaginary part
of the amplitude of thgccorresponding elastic process (1).

Then we can write

l,,w F(,A, s G)/J‘c: T[‘J‘,(Qrb ,H,Jc(/‘, usﬂi) s Oy/

(41)

where
: }

3 y he'|
7 = P pen ) 22 17

TFJIC(A, uJoi/..-) TJL (A/ wy?z/_j*:

(42)

QL and QL denote here the angles between the momenta of
initial and final particles "a" and that of the intermediate

particles "c¢", The total cross section is

5‘0 A(.dlc (43)
5! ;J L
dwst 47’[I |
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We remind that Martin has proved the amalyticity in =
of the imaginary part of the amplitude of the elastic scatte-—

ring F(J, i—) inside the Mandelstam ellipse 1

« By the arguments
similar to those in the preceeding section, it can be shown
that LM F(A,%){. is also an analytical funetion in this
domain. The stutiy of the analytic properties of the Feynman
diagrams shows, however, that the contribution from some
simplest diagrams of the perturbation theory to the amplitude
F(A,v‘:) satisfies a dispersion relation
in %z for the values of 4 in the physical domain
of the s-=channel, This was the motivation for the assumption
that F(A,%) is analytic in the complex z plane with the
cuts and poles on the real axis, It is quite natural to
assume that Iw. F(A,-z){‘ for the values of 4 in the physical
domain of the A4 — channel is also an analytic function
in % in the complex plane with singularitites on}tl;e real
axls, Let us assume that IM F(Aﬁ)/_is polynomially bounded,

r

i.e, an nyo exists, such that

v

Iw. :F(J,-z){‘ / £ wwt S , s = A
! |

for all Z from any fihite domain, Then a certain relation

between the behaviour of thlis function at Z =1 and theilr

behaviour at 55 » in the interval-%1 < 2 { 1 can be esStablished.
<

¢
Let us assume that the total cross section G, does not

decrease faster than some power of Z‘ at 4 > 0

/IMF(A’i)GL/ > -—w—j"t:—: , b 2
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where M 1is some positive constant ( see relation (43) ).Then

the following lower bound can be written ¢
_.c,(é) V& b s
L F(”’/ww) L7 nst & ) 4= o, (44)
]C c(ﬁ)yo/ 4 wst 4.

We show now that the inequality (44) will be broken
at n—b9,< 6 < -?,90 if the ‘following inequality holds for all
® in the interval n-6 ¢ 6¢ 6, for some 6 satisfying L > 6 >0 :
h

_8(0) V5 s (45)

3 %
[Gﬁ' (A, us#)]< wnst € S > ov

P) )
£(6) yo
Hence we conclude that there exists a certain interval of
angles in which we havye
3 VIO
A6 e : , 42 o (46)

dws 6- 3
To this end we comsider the function 117, (A/ cos8y  cos by,

>, o

Comparing the expression (42) of this function with the
C .
expression (40) of 63 @mso) and using the Schwartz inequality

we get

ye 1 1- 72
176, )] < [6 Gwt) TG0 |
Thus

To F(A/ “‘9),3‘& ) < N§JQF° [GQ‘EA, wsﬁ) 69‘&(/4,@10,)\]%.
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Now, assuming (45) it is easy to derive on the basis of the
last relation an inequality reciprocal to (44). We have thus
proved the lower bound (46).

. We have introduced the notion of the total cross section

46;
if—%fwith the production of a particle "c" at a given angle
wS

6. It is possible to write a similar ineguality also for this

quantity
016‘¢1 _14(6—)[;&45
T > wwt £ , 52 *, (a7)
A o
4()>°

for the values of 6 in a certain interval.

) We point out that our assumption that the cross sections
3 “
G-Emcﬂ and 6“”{(

of 1/s can be also proved experimentally. In the framework

do not decrease faster than a certain power

of the Regge theory such a behaviour of the cross sections

for zero angles is valid for the majority of processes.,

5. Asymptotic equality of the cross sections of crossing

processes of multipole production

We consider now the inelastic crossing processes

)
at b — a, + ay ¥ - +a,\+/€

y (13,)

) ~N o~ ~
’3\,’+L—»>a+az+f'-+qw+/€. (Ivz,)
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We denote the momenta of particles "b" and "b"’ in (IV,_) and
those of particles "b," and "b" in (IYz ) by p and p’)the
momenta of particles "a" and "a ( or those of their
antiparticles by q and q; . We put k. = %‘1}

We can chose

= (1”'\)&) = (T’T’)L , (48)

V\/::— &1‘ o _ (1’ &iu) res e,z;i; 1:(t+t’)
‘ ﬁ'.‘“(’t"t"r/)

4.,1, )
Let 'T' (A,b/ w, ) t,;)E;) be the amplitudes of the processes

as suitable independent invariant variables.

under consideration. These amplitudes for fixed values of the
2

variables ‘t,’C;, W, /ZJ )generally speaking, do not satisfy the

dispersion relation in 4 . At 4 - o0 , however, they tend
m 2 2

to certain asymptotic amplitudes |°° (A, t, W, y; _l’]‘, f.)

analytic in s in the complex plane with cuts on the real

3

axis “. The crossing-symmetry relation holds for these

asymptotic amplitudes
“‘T':L & Wt T/t w’t o (49)
) (u, / o v, Z:) = P (,5, / t'/ o‘/ Z) 49

‘t' 1 2 2 2
where A+ u +t = M, + ’mé—{—'m,—;» . -
6

From this relation, we can prove 7

|_'.,4,z

that for non-oscillating

amplitudes at 4> we have the asymptotic equality

of the differential cross sectionsof the processes (IY) and (IY)
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2
for the finite values of the variables ‘t, VV;I ‘L'J, 2.’ .

Let us consider the processes (IY) and (IY) at

fixed values of t ana W,_z . The physical domains of the
rariables W;z, t%»2 and ‘t,;, Z‘.’ ¢« >» 4. depend on s,t and Wz.
However, these domains remain finite at 45 «# . It means that
at very high energies the domains of integration over the
variables W;"/ ¢y 2 and 17:/ z;/ ¢ 4 are practically
independent of s and the values of these variables are finite
Both sides of the asymptotic equality for the differential cross
sections of the processes (IY) and (IY,) can therefore be

2 .
integrated over all possible values of W, ;" y 2
and 15;’ ?;) v 4 .« As a result we have
2Ny 267
.4 2 (50)
- 2‘ ~J .z’ )
2tW; 2tow
where 6, and 6, are the cross sections of the
2
processes (IYL) and (IYQI). for fixed values of W
the number of possible systems 4 .+« ----- ~ a, is finite.

We can therefore perform a summation in both sides of the

relation (50) over all possible channels., 4s a result we obtain

] 2 ~ /
,aq,G,(\q*t_,_.._.*/ﬁ)N /D((Q*'&'a""""'il(ﬂ)
2taw? 2t w /

S>> 0 .
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The dots in the brackets denote the particle systems

with the effective mass VVL « We note that for the determi-
nation of the cross—sections appearing in the relation (41) it is
sufficient to measure the momentum of one of the particles

( particle "b" or particle w g ) since this allows the
definition of t and “ﬂ% ( the mixing mass method). Because of
the C-invariance the cross section of the process (IY) is

equal to that of the process

So we have besides the relation (51) another equation

/

‘BLG’(q-tﬁ 2 - - A+ /éf) o ®z€(4+’e%~'-- + 4) . (52)

2 2
2t W, CLRCAA

Concluding this sections we present some concrete relations

( see also ref, & )

Ve(nhp 5+ ) VE(Cip s -+ )
i ] S~ { vi

At aw? 2t dw,?
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ral' t +..~.. v = =
G"('ttf!z,—a T + )’\) ’36(7!+F—97c+-----)
2t Iw

2tawd g

'32'@(7["'4.1'\,_,7 K‘: ) ’)‘26‘<K‘+TL - -,[.,._..‘)

~J

at W ot 5W.’” g

QLG"(/!ti—./!y-e "tu+)r\/ 526—(}:+/’» -~ TV +—»--)

>t ’}W,'l Rt 2w g

olpip o o) | Vo (fapo t )

2
ot W, Pt wt
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